Publication:
Chronopotentiometric study of a Nafion membrane in presence of glucose

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-07-15
Authors
Freijanes, Y.
Muñoz, S.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Chronopotentiometric and swelling experiments have been conducted to characterize the behavior of a Nafion membrane in NaCl and KCl aqueous solutions without and with glucose. A mixture solution with similar composition to the cerebrospinal fluid and blood plasma has also been studied. From the chronotentiograms, current-voltage curves have been obtained, and the values of the limiting current density, diffusion boundary layer thickness, difference between counter-ion transport number in membrane and free solution, and transition times have been determined for the investigated membrane systems. The obtained results indicate that the presence of glucose affects the ion transport through the membrane depending on the electrolyte and glucose concentrations. At low electrolyte concentration, experimental transition times are found to be smaller in presence of glucose, which has been related to an effective membrane area reduction in presence of glucose. The membrane system corresponding to the mixture solution shows a behavior similar to the single high concentration NaCl membrane system, indicating that the observed behavior is mainly associated to the Na^+ ions transport in higher proportion. In this case, the glucose presence does not affect significantly the investigated properties of the membrane, which is interesting for its utilization in a glucose fuel cell.
Description
© 2016 Elsevier B.V. All rights reserved. The authors would be like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. Financial support of this work by Banco de Santander and Universidad Complutense de Madrid within the framework of Projects 910358 and 910305 UCM Research Group-GR3/14 is gratefully acknowledged.
UCM subjects
Unesco subjects
Keywords
Citation
[1] T. Alizadeh, S. Mirzagholipur, A Nafion-free non-enzymatic amperometric glucose sensor based on copper oxide nanoparticles-graphene nanocomposite, Sensor and Actuators B 198 (2014) 438-447. [2] K. E. Toghill, R. G. Compton, Electrochemical non-enzymatic glucose sensor: a perspective and an evaluation, Int. J. Electrochem. Sci. 5 (2010) 1246-1301. [3] L. Meng, J. Jing, G. Yang, T. Lu, H. Zhang, C. Cai, Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures, Anal. Chem. 81 (2009) 7271-7280. [4] D. Chen, C. Wang, W. Chen, Y. Chen, J. X.J. Zhang, PVDF-Nafion nanomembranes coated microneedles for in vivo transcutaneous implantable glucose sensing, Biosens. Bioelectron. 74 (2015) 1047-1052. [5] S. M. Daud, B. H. Kim, M. Ghasemi, W. R. W. Daud, Separators used in microbial electrochemical technologies: Current status and future prospects, Bioresource Technol. 195 (2015) 170-179. [6] K. Elouarzaki, R. Haddad, M. Holzinger, A. L. Goff, J. Thery, S. Cosnier, MWCNTsupported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells, J. Power Sources 255 (2014) 24-28. [7] S. Cosnier, A. Le Goff, M. Holzinger, Towards glucose biofuel cells implanted in human body for powering artificial organs: Review, Electrochem. Commun. 38 (2014) 19-23. [8] B. I. Rapoport, J. T. Kedzierski, R. Sarpeshkar, A glucose fuel cell for implantable brain-machine interfaces, PloS ONE 7(6) (2012) e38436. [9] G-P Jiang, J. Zhang, J-L. Qiao, Y-M. Jiang, H. Zarrin, Z. Chen, F. Hong, Bacterial nanocellulose/Nafion composite membranes for low temperature polymer electrolyte fuel cells, J. Power Sources 273 (2015) 697-706. [10] Y-L. Yang, X-H. Liu, M-Q. Hao, P-P. Zhang, Performance of a low-cost direct glucose fuel cell with an anion-exchange membrane, Int. J. Hydrogen Energy 40 (2015) 10979-10984. [11] R. Haddad, J. Thery, B. Gauthier-Manuel, K. Elouarzaki, M. Holzinger, A. Le Goff, G. Gautier, J. E. Mansouri, A. Martinent, S. Cosnier, High performance miniature glucose/O2 fuel cell based on porous silicon anion exchange membrane, Electrochem. Commun. 54 (2015) 10-13. [12] D. Orton, D. Scott, Temperature dependence of an abiotic glucose/air alkaline fuel cell, J. Power Sources 295 (2015) 92-98. [13] S. Kerzennmacher, J. Ducrée, R. Zengerle, F. von Stetten, Energy harvesting by implantable abiotically catalized glucose fuel cell. J. Power Sources 182 (2009) 1-17. [14] A. Heller, Miniature biofuel cells, Phys. Chem. Chem. Phys. 6 (2004)-209-216. [15] B. E. Logan, Microbial Fuel Cells, Hoboken, New Jersey, John Wiley and Sons, 2008 [16] G. Slaughter, J. Sunday, A membraneless single compartment abiotic glucose fuel cell, J. Power Sources 261 (2014) 332-336. [17] J. J. Krol, M. Wessling, H. Strathmann, Chronopotentiometry and overlimiting ion transport through monopolar ion exchange membranes, J. Membr. Sci. 162 (1999) 155-164. [18] J-H. Choi, S-H. Moon, Pore size characterization of cation-exchange membranes by chronopontentiometry using homologous amine ions, J. Membr. Sci. 191 (2001) 225-236. [19] R. K. Nagarale, V. K. Shahi, S. K. Thampy, R. Rangarajan, Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation-exchange membranes, React. Funct. Polym. 61 (2004) 131-138. [20] L. X. Tuan, M. Verbanck, C. Buess-Herman, H. D. Hurwitz, Properties of CMV cation exchange membranes in sulfuric acid media, J. Membr. Sci. 284 (2006) 67-78 [21] N. D. Pismenskaya, V.V. Nikonenko, E. I. Belova, G. Y. Lopatkova, P. Sistat, G. Pourcelly, K. Larshe, Coupled convection of solution near the surface of ion-exchange membranes in intensive current regimes, Russ. J. Electrochem. 43 (2007) 307-327. [22] M. Sidorova, L. Ermakova, A. Kiprianova, D. Aleksandrov, S. Timofeev, Electrochemical characteristics and concentration polarization of perfluorinated cationexchange membranes, Adv. Colloid Interface Sci. 134-135 (2007) 224-235. [23] J. M. Zook, S. Bodor, R. E. Gyurcsányi, E. Lindner, Interpretation of chronopotentiometric transients of ion-selective membranes with two transition times, J. Electroanal. Chem. 638 (2010) 254-261. [24] I. Herraiz Cardona, E. Ortega, V. Pérez Herranz, Evaluation of the Zn2+ transport properties through a cation-exchange membrane by chronopotentiometry. J. Colloid Interface Sci. 341 (2010) 380-385. [25] M. C. Martí Calatayud, D.C. Buzzi, M. García Gabaldón, A.M. Bernardes, J.A.S. Tenório, V. Pérez Herranz, Ion transport through homogeneous and heterogeneous ion-exchange membranes in single salt and multicomponent electrolyte solutions, J. Membr. Sci. 466 (2014) 45-57. [26] V.V. Nikonenko, N. D. Pismenskaya, E. I. Belova, P. Sistat, P. Huguet, G. Pourcelly, C. Larchet, Intensive current transfer in membrane systems: Modelling, mechanisms, and application in electrodialysis, Adv. Colloid Interface Sci. 160 (2010) 101-123. [27] N. D. Pismenskaya, V.V. Nikonenko, N. A. Melnik, K. A. Shevtsova, E. I. Belova, G. Pourcelly, D. Cot, L. Dammak, C. Larchet, Evolution with time of hydrophobicity and microrelief of a cation-exchange membrane surface and its impact on overlimiting mass transfer, J. Phys. Chem. B 116 (2012) 2145-2161. [28] H. Reiber, M. Ruff, M. Uhr, Ascorbate concentration in human cerebrospinal fluid (CSF) and serum. Intrathecal accumulation and CSF flow Rate, Clin. Chim. Acta 217 (1993) 155-164. [29] Y. S. Li, T. S Zhao, W.W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes, Int. J. Hydrogen Energy 35 (2010) 5656-5665. [30] V.M. Barragán, C. Ruiz Bauzá, J.P.G. Villaluenga, B. Seoane, On the methanol-water electroosmotic transport in a Nafion membrane, J. Membr. Sci. 236 (2004) 109-120. [31] G. J. Janz, Silver-Silver Halide Electrodes, in: D. J. G. Ives, G. J. Janz (Eds.), Reference Electrodes, Academic Press, London, 1961, pp.179. [32] J. O´M. Bockris, A.K.N. Reddy, Modern Electrochemistry. Vol 1. Plenum Press, New York, 1970. [33] V. M. M. Lobo, Electrolyte solutions: Literature data on thermodynamic and transport properties, Coimbra Editora, Coimbra, 1975. [34] P.C.F. Pau, J. O. Berg, W. G. McMillan, Application of Stokes´ law to ions in aqueous solutions, J. Phys. Chem. 94 (1990) 2671-2679. [35] A. C. F. Ribeiro, M. A. Esteso, V. M. M. Lobo, A. J. M. Valente, S. M. N. Simões, A. J. F. N. Sobral, H. D. Burrows, Interactions of copper (II) chloride with sucrose, glucose, and fructose in aqueous solutions, J. Mol. Struct. 826 (2007) 113-119. [36] R. Z. Sabirov, O. V. Krasilnikov, V. I. Ternovsky, P. G. Merzliak, Relation between ionic channel conductance and conductivity of media containing different electrolytes. A novel method of pore determination, Gen. Physiol. Biophys. 12 (1993) 95-111. [37] A. Randová, S. Hovorka, P. Izák, L. Bartovská, Swelling of Nafion in methanolwater-inorganic salt ternary mixtures, J. Electroanal. Chem. 616 (2008) 117-121. [38] D. R. Morris, X. Sun, Water-sorption and transport properties of Nafion 117, J. Appl. Polym. Sci. 50 (1993) 1445-1442. [39] V. M. Barragán, S. Muñoz, Influence of a Microwave irradiation on the swelling and permeation properties of a Nafion membrane, J. Membrane Sep. Technol. 4 (2015) 32-39. [40] I. A. Stenina, Ph. Sistat, A. I. Rebrov, G. Pourcelly, A. B. Yaroslavtsev, Ion mobility in Nafion-117 membranes, Desalination 170 (2004) 49-57. [41] V. M. Barragán, M. J. Pérez Haro, Correlations between water uptake and effective fixed charge concentration at high univalent electrolyte concentrations in sulfonated polymer cation-exchange membranes with different morphology, Electrochim. Acta 56 (2011) 8360-8367. [42] M. Y. Kiriukhim, K. D. Kollins, Dymanic hydration numbers for biologically important ions, Biophys. Chem. 99 (2002) 155-168. [43] F. G. Helfferich, Ion-Exchange, Dover, London, 1962. [44] A. Lehmani, P. Turq, M. Périé, J. Périé, J-P. Simonin, Ion transport in Nafion 117 membrane, J. Electroanal. Chem. 428 (1997) 81-89. [45] P. Somovilla, J.P. G. Villaluenga, V.M. Barragán, M.A. Izquierdo Gil, Experimental determination of the streaming potential across cation-exchange membranes with different morphologies, J. Membr. Sci. 500 (2016) 16-24. [46] J. F. Comesaña, J. J. Otero, E. García, A. Correa, Densities and viscosities of Ternary Systems of Water+ glucose +sodium chloride at several temperatures, J. Chem. Eng. Data 48 (2003) 362-366. [47] R. Ibanez, D.F. Stamatialis, M. Wessling, Role of membrane surface in concentration polarization at cation exchange membranes, J. Membr. Sci. 239 (2004) 119-128. [48] L. Marder, E. M. O. Navarro, V. Pérez Herranz, A. M. Bernardes, J. Z. Ferreira, Chronopotentiometric study on the effect of boric acid in the nickel transport properties through a cation-exchange membrane, Desalination 249 (2009) 348-352 [49] S. Grzegorczyn, A. Slezak, Time characteristics of electromotive force in single-membrane cell for stable and unstable conditions of reconstructing of concentration boundary layers, J. Membr. Sci. 280 (2006) 485-493. [50] C. Larchet, S. Nouri, B. Auclair, L. Dammak, V.V. Nikonenko, Application of chronopotentiometry to determine the thickness of diffusion layer adjacent to an ionexchange membrane under natural convention, Adv. Colloid Interface Sci. 139 (2008) 45-61. [51] C. Ponce de León, C. T. J. Low, G. Kear, F. C. Walsh, Strategies for the determination of the convective-diffusion limiting current from steady state linear sweep voltammetry, J. Appl. Electrochem. 37 (2007) 1261-1270. [52] V. M. Barragán, C. Ruiz Bauzá, Current-voltage curves for ion-exchange membranes: a method for determining the limiting current density, J. Colloid Interface Sci. 205 (1998) 365-373. [53] H. Strathmann, Ion-Exchange Membrane Separation Processes, Membrane Science and Technology Series, 9, Elsevier, Amsterdam, 2004. [54] J-H. Choi, S-H. Kim, S-H. Moon, Heterogeneity of ion-exchange membranes: the effect of membrane heterogeneity on transport properties, J. Colloid Interface Sci. 241 (2001) 120-126. [55] N. Pismenskaia, P. Sistat, P. Huguet, V.V. Nikonenko, G. Pourcelly, Chronopotentiometric applied to the study of ion transfer through anion exchange membranes, J. Membr. Sci. 228 (2004) 65-76. [56] X. L. Le, P. Viel, D.P. Tran, F. Grisotto, S. Palacin, Surface homogeneity of anion exchange membranes: a chronopotentiometric study in the overlimiting current range, J. Phys. Chem. B 113 (2009) 5829-5836. [57] S. A. Mareev, D. Y. Butylskii, N. D. Pismenskaya V. V. Nikonenko, Chronopotentiometry of ion-exchange membranes in the overlimiting current range. Transition time for a finite-length diffusion layer: modeling and experiment, J. Membr. Sci. 500 (2016) 171-179. [58] M. V. Soestbergen, P. M. Biesheuvel, M. Z. Bazant, Phys. Rev. E 81 (2010) 021503-1-13. [59] W.Y. Hsu, T.D. Gierke, Ion transport and clustering in nafion perfluorinated membranes, J. Membr. Sci. 13 (1983) 307-326. [60] K. Mauritz, R. Moore, State of understanding of Nafion, Chem. Rev. 104 (2004) 4535-4585. [61] I. Rubinstein, B. Zaltzmann, T. Pundik, Ion-exchange funneling in thin-film coating modification of heterogeneous electrodialysis membranes, Phys. Rev. E, 65 (2002) 041507-1-9. [62] M. Bass, A. Berman, A. Singhn, O. Konovalov, V. Freger, Macromolecules 44 (2011) 2893-2899. [63] V. K. Shahi, S. K. Thampy, R. Rangarajan, Chronopotentiometric studies on dialytic properties of glycine across ion-exchange membranes, J. Membr. Sci. 203 (2002) 43-51. [64] J-S. Park, J-H. Choi, K-H. Yeon, S-H. Moon, An approach to fouling characterization of an ion-exchange membrane using current-voltage relation and electrical impedance spectroscopy, J. Colloid Interface Sci. 294 (2006) 129-138.
Collections