Universidad Complutense de Madrid
E-Prints Complutense

Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis



Último año

López Alonso, José Manuel y Grumel, Eduardo y Cap, Nelly Lucía y Trivi, Marcelo y Rabal, Héctor y Alda Serrano, Javier (2016) Characterization of spatial–temporal patterns in dynamic speckle sequences using principal component analysis. Optical Engineering, 55 (12). pp. 121705-1. ISSN 0091-3286

Vista previa

URL Oficial: http://dx.doi.org/10.1117/1.OE.55.12.121705


Abstract. Speckle is being used as a characterization tool for the analysis of the dynamics of slow-varying phenomena occurring in biological and industrial samples at the surface or near-surface regions. The retrieved data take the form of a sequence of speckle images. These images contain information about the inner dynamics of the biological or physical process taking place in the sample. Principal component analysis (PCA) is able to split the original data set into a collection of classes. These classes are related to processes showing different dynamics. In addition, statistical descriptors of speckle images are used to retrieve information on the characteristics of the sample. These statistical descriptors can be calculated in almost real time and provide a fast monitoring of the sample. On the other hand, PCA requires a longer computation time, but the results contain more information related to spatial–temporal patterns associated to the process under analysis. This contribution merges both descriptions and uses PCA as a preprocessing tool to obtain a collection of filtered images, where statistical descriptors are evaluated on each of them. The method applies to slow-varying biological and industrial processes.

Tipo de documento:Artículo
Información Adicional:

En abierto en la web del editor.

Received Mar. 9, 2016; accepted for publication May 6, 2016; published online Jun. 7, 2016.
This paper was a derivation of our previous conference contribution titled “Characterization of dynamic speckle sequences using principal component analysis and image descriptors.”

Palabras clave:Principal components analysis; Dynamic speckle.
Materias:Ciencias > Física > Optica
Ciencias Biomédicas > Óptica y optometría > Optoelectrónica
Ciencias Biomédicas > Óptica y optometría > Láseres
Código ID:38122
Depositado:06 Jul 2016 07:49
Última Modificación:06 Jul 2016 10:13

Descargas en el último año

Sólo personal del repositorio: página de control del artículo