Publication:
Macro- and microglial responses in the fellow eyes contralateral to glaucomatous eyes

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015
Authors
Hoz Montañana, María Rosa de
Gallego Collado, Beatriz Isabel
Valiente Soriano, Francisco Javier
Ramirez Sebastian, Jose Manuel
Advisors (or tutors)
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Most studies employing experimental models of unilateral glaucoma have used the normotensive contralateral eye as the normal control. However, some studies have recently reported the activation of the retinal macroglia and microglia in the uninjured eye, suggesting that the eye contralateral to experimental glaucoma should not be used as a control. This review analyzes the studies describing the contralateral findings and discusses some of the routes through which the signals can reach the contralateral eye to initiate the glial reactivation.
Description
Book series. ISSN: 0079-6123
Keywords
Citation
Bodeutsch, N., Siebert, H., Dermon, C., Thanos, S., 1999. Unilateral injury to the adult rat optic nerve causes multiple cellular responses in the contralateral site. J. Neurobiol. 38, 116–128. Bolz, S., Schuettauf, F., Fries, J.E., Thaler, S., Reichenbach, A., Pannicke, T., 2008. K(+) currents fail to change in reactive retinal glial cells in a mouse model of glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 246, 1249–1254. Bosco, A., Steele, M.R., Vetter, M.L., 2011. Early microglia activation in a mouse model of chronic glaucoma. J. Comp. Neurol. 519, 599–620. Buckingham, B.P., Inman, D.M., Lambert, W., Oglesby, E., Calkins, D.J., Steele, M.R., Vetter, M.L., Marsh-Armstrong, N., Horner, P.J., 2008. Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J. Neurosci. 28, 2735–2744. Bunt, S.M., Lund, R.D., 1981. Development of a transient retino-retinal pathway in hooded and albino rats. Brain Res. 211, 399–404. Chen, S.D., Wang, L., Zhang, X.L., 2013. Neuroprotection in glaucoma: present and future. Chin. Med. J. (Engl.) 126, 1567–1577. Crish, S.D., Sappington, R.M., Inman, D.M., Horner, P.J., Calkins, D.J., 2010. Distal axonopathy with structural persistence in glaucomatous neurodegeneration. Proc. Natl. Acad. Sci. USA 107, 5196–5201. Cuenca, N., Pinilla, I., Fernández-Sánchez, L., Salinas-Navarro, M., Alarcón-Martínez, L., Avilés-Trigueros, M., de la Villa, P., Miralles de Imperial, J., Villegas-Pérez, M.P., Vidal-Sanz, M., 2010. Changes in the inner and outer retinal layers after acute increase of the intraocular pressure in adult albino Swiss mice. Exp. Eye Res. 91, 273–285. de Hoz, R., Gallego, B.I., Ramírez, A.I., Rojas, B., Salazar, J.J., Valiente-Soriano, F.J., Avilés-Trigueros, M., Villegas-Perez, M.P., Vidal-Sanz, M., Triviño, A., 2013. Rod-like microglia are restricted to eyes with laser-induced ocular hypertension but absent from the microglial changes in the contralateral untreated eye. PLoS One 8, e83733. Dervan, E.W., Chen, H., Ho, S.L., Brummel, N., Schmid, J., Toomey, D., Haralambova, M., Gould, E., Wallace, D.M., Prehn, J.H., O’Brien, C.J., Murphy, D., 2010. Protein macro-array profiling of serum autoantibodies in pseudoexfoliation glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 2968–2975. Donaldson, L.F., McQueen, D.S., Seckl, J.R., 1995. Neuropeptide gene expression and capsaicin-sensitive primary afferents: maintenance and spread of adjuvant arthritis in the rat. J. Physiol. 486 (Pt 2), 473–482. Fu, C.T., Sretavan, D., 2010. Laser-induced ocular hypertension in albino CD-1 mice. Invest. Ophthalmol. Vis. Sci. 51, 980–990. Galindo-Romero, C., Avilés-Trigueros, M., Jiménez-López, M., Valiente-Soriano, F.J., Salinas-Navarro, M., Nadal-Nicola ́s, F., Villegas-Pérez, M.P., Vidal-Sanz, M., Agudo-Barriuso, M., 2011. Axotomy-induced retinal ganglion cell death in adult mice: quantitative and topographic time course analyses. Exp. Eye Res. 92, 377–387. Galindo-Romero, C., Valiente-Soriano, F.J., Jiménez-López, M., García-Ayuso, D., Villegas-Pérez, M.P., Vidal-Sanz, M., Agudo-Barriuso, M., 2013. Effect of brain-derived neurotrophic factor on mouse axotomized retinal ganglion cells and phagocytic microglia. Invest. Ophthalmol. Vis. Sci. 54, 974–985. Gallego, B.I., Salazar, J.J., de Hoz, R., Rojas, B., Ramírez, A.I., Salinas-Navarro, M., Ortín-Martínez, A., Valiente-Soriano, F.J., Avilés-Trigueros, M., Villegas-Perez, M.P., 2012. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J. Neuroinflammation 9, 92. Gallego, B.I., Ramírez, A.I., Salazar, J.J., de Hoz, R., Rojas, B., Garcia, E.S., Triviño, A., Ramírez, J.M., 2013. Fisiopatología y progresión de la neurodegeneración glaucomatosa. Rev. Esp. Glaucoma Hipert. Ocular. 3 (2), 197–211. Giulian, D., Li, J., Li, X., George, J., Rutecki, P.A., 1994. The impact of microglia-derived cytokines upon gliosis in the CNS. Dev. Neurosci. 16, 128–136. Gramlich, O.W., Beck, S., von Thun und Hohenstein-Blaul, N., Boehm, N., Ziegler, A., Vetter, J.M., Pfeiffer, N., Grus, F.H., 2013. Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 8, e57557. Hammam, T., Montgomery, D., Morris, D., Imrie, F., 2008. Prevalence of serum autoantibodies and paraproteins in patients with glaucoma. Eye (Lond.) 22, 349–353. Harris, M.G., Hulseberg, P., Ling, C., Karman, J., Clarkson, B.D., Harding, J.S., Zhang, M., Sandor, A., Christensen, K., Nagy, A., Sandor, M., Fabry, Z., 2014. Immune privilege of the CNS is not the consequence of limited antigen sampling. Sci. Rep. 4, 4422. Howell, G.R., Libby, R.T., Jakobs, T.C., Smith, R.S., Phalan, F.C., Barter, J.W., Barbay, J.M., Marchant, J.K., Mahesh, N., Porciatti, V., Whitmore, A.V., Masland, R.H., John, S.W., 2007. Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J. Cell Biol. 179, 1523–1537. Inman, D.M., Horner, P.J., 2007. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 55, 942–953. Joachim, S.C., Reichelt, J., Berneiser, S., Pfeiffer, N., Grus, F.H., 2008. Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens. Graefes Arch. Clin. Exp. Ophthalmol. 246, 573–580. Joly, S., Francke, M., Ulbricht, E., Beck, S., Seeliger, M., Hirrlinger, P., Hirrlinger, J., Lang, K.S., Zinkernagel, M., Odermatt, B., Samardzija, M., Reichenbach, A., Grimm, C., Reme, C.E., 2009. Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am. J. Pathol. 174, 2310–2323. Kanamori, A., Nakamura, M., Nakanishi, Y., Yamada, Y., Negi, A., 2005. Long-term glial reactivity in rat retinas ipsilateral and contralateral to experimental glaucoma. Exp. Eye Res. 81, 48–56. Kaplan, H.J., Waldrep, J.C., Chan, W.C., Nicholson, J.K., Wright, J.D., 1986. Human sympathetic ophthalmia. Immunologic analysis of the vitreous and uvea. Arch. Ophthalmol. 104, 240–244. Karlstetter, M., Ebert, S., Langmann, T., 2010. Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology 215, 685–691. Kelly, S., Dunham, J.P., Donaldson, L.F., 2007. Sensory nerves have altered function contralateral to a monoarthritis and may contribute to the symmetrical spread of inflammation. Eur. J. Neurosci. 26, 935–942. Kielczewski, J.L., Pease, M.E., Quigley, H.A., 2005. The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest. Ophthalmol. Vis. Sci. 46, 3188–3196. Kolston, J., Lisney, S.J., Mulholland, M.N., Passant, C.D., 1991. Transneuronal effects triggered by saphenous nerve injury on one side of a rat are restricted to neurones of the contralateral, homologous nerve. Neurosci. Lett. 130, 187–189. Kuehn, M.H., 2014. Immune phenomena in glaucoma and conformational disorders: why is the second eye not involved? J. Glaucoma, S59–S61. Lam, W.L., Chow, P.H., Chik, K.P., Yew, D.T., 1996. Bilateral biochemical and biophysical retinal changes after unilateral ocular trauma in the mouse. Neurosci. Lett. 218, 1–4. Lee, J., Shin, J., Chun, M., Oh, S., 2014. Morphological analyses on retinal glial responses to glaucomatous injury evoked by venous cauterization. Appl. Microsc. 44, 21–29. Lehmann, U., Heuss, N.D., McPherson, S.W., Roehrich, H., Gregerson, D.S., 2010. Dendritic cells are early responders to retinal injury. Neurobiol. Dis. 40, 177–184. Leske, M.C., Heijl, A., Hussein, M., Bengtsson, B., Hyman, L., Komaroff, E., 2003. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch. Ophthalmol. 121, 48–56. Li, W.W., Shen, W.Z., Hung, Y., Jen, P.Y., Yew, D.T., 1994. Bilateral retinal responses during the acute phase (4-14 days) after traumatization of a single eye in the mouse. Eur. J. Morphol. 32, 49–57. Liu, S., Li, Z., Weinreb, R.N., Xu, G., Lindsey, J.D., Ye, C., Yung, W., Pang, C., Lam, D.S.C., Leung, C.K., 2012. Tracking retinal microgliosis in models of retinal ganglion cell damage. Invest. Ophthalmol. Vis. Sci. 53, 6254–6262. Lönngren, U., Näpänkangas, U., Lafuente, M., Mayor, S., Lindqvist, N., Vidal-Sanz, M., Hallböök, F., 2006. The growth factor response in ischemic rat retina and superior colliculus after brimonidine pre-treatment. Brain Res. Bull. 71, 208–218. Lucas, K., Karamichos, D., Mathew, R., Zieske, J.D., Stein-Streilein, J., 2012. Retinal laser burn-induced neuropathy leads to substance P-dependent loss of ocular immune privilege. J. Immunol. 189, 1237–1242. Luna, G., Lewis, G.P., Banna, C.D., Skalli, O., Fisher, S.K., 2010. Expression profiles of nestin and synemin in reactive astrocytes and Muller cells following retinal injury: a comparison with glial fibrillar acidic protein and vimentin. Mol. Vis. 16, 2511–2523. Luthra, A., Gupta, N., Kaufman, P.L., Weinreb, R.N., Yucel, Y.H., 2005. Oxidative injury by peroxynitrite in neural and vascular tissue of the lateral geniculate nucleus in experimental glaucoma. Exp. Eye Res. 80, 43–49. Macharadze, T., Goldschmidt, J., Marunde, M., Wanger, T., Scheich, H., Zuschratter, W., Gundelfinger, E.D., Kreutz, M.R., 2009. Interretinal transduction of injury signals after unilateral optic nerve crush. Neuroreport 20, 301–305. Maruyama, I., Ohguro, H., Ikeda, Y., 2000. Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest. Ophthalmol. Vis. Sci. 41, 1657–1665. Morrison, J.C., Cepurna Ying Guo, W.O., Johnson, E.C., 2011. Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma. Exp. Eye Res. 93, 156–164. Mu ̈ller, M., Hollander, H., 1988. A small population of retinal ganglion cells projecting to the retina of the other eye. An experimental study in the rat and the rabbit. Exp. Brain Res. 71, 611–617. Nadal-Nicolas, F.M., Jimenez-Lopez, M., Sobrado-Calvo, P., Nieto-Lopez, L., Canovas-Martinez, I., Salinas-Navarro, M., Vidal-Sanz, M., Agudo, M., 2009. Brn3a as a marker of retinal ganglion cells: qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest. Ophthalmol. Vis. Sci. 50, 3860–3868. Neveu, M.M., Jeffery, G., 2007. Chiasm formation in man is fundamentally different from that in the mouse. Eye (Lond.) 21, 1264–1270. Niederkorn, J.Y., Streilein, J.W., 1983. Alloantigens placed into the anterior chamber of the eye induce specific suppression of delayed-type hypersensitivity but normal cytotoxic T lymphocyte and helper T lymphocyte responses. J. Immunol. 131, 2670–2674. Niederkorn, J., Streilein, J.W., Shadduck, J.A., 1981. Deviant immune responses to allogeneic tumors injected intracamerally and subcutaneously in mice. Invest. Ophthalmol. Vis. Sci. 20, 355–363. Panagis, L., Thanos, S., Fischer, D., Dermon, C.R., 2005. Unilateral optic nerve crush induces bilateral retinal glial cell proliferation. Eur. J. Neurosci. 21, 2305–2309. Parrilla-Reverter, G., Agudo, M., Nadal-Nicolas, F., Alarcon-Martinez, L., Jimenez-Lopez, M., Salinas-Navarro, M., Sobrado-Calvo, P., Bernal-Garro, J.M., Villegas-Perez, M.P., Vidal-Sanz, M., 2009. Time-course of the retinal nerve fibre layer degeneration after complete intra-orbital optic nerve transection or crush: a comparative study. Vision Res. 49, 2808–2825. Pekny, M., Pekna, M., 2014. Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol. Rev. 94, 1077–1098. Perego, C., Fumagalli, S., De Simoni, M., 2011. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation 8, 174. Perry, V.H., Cowey, A., 1979. The effects of unilateral cortical and tectal lesions on retinal ganglion cells in rats. Exp. Brain Res. 35, 85–95. Pinazo-Duran, M.D., Zanon-Moreno, V., Garcia-Medina, J.J., Gallego-Pinazo, R., 2013. Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma. Curr. Opin. Pharmacol. 13, 98–107. Qiao, H., Lucas, K., Stein-Streilein, J., 2009. Retinal laser burn disrupts immune privilege in the eye. Am. J. Pathol. 174, 414–422. Quigley, H.A., Broman, A.T., 2006. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90, 262–267. Ramírez, J.M., Triviño, A., Ramírez, A.I., Salazar, J.J., García-Sánchez, J., 1996. Structural specializations of human retinal glial cells. Vision Res. 36, 2029–2036. Ramírez, A.I., Salazar, J.J., de Hoz, R., Rojas, B., Gallego, B.I., Salinas-Navarro, M., Alarcón-Martínez, L., Ortín-Martínez, A., Avilés-Trigueros, M., Vidal-Sanz, M., Triviño, A., Ramírez, J.M., 2010. Quantification of the effect of different levels of IOP in the astroglia of the rat retina ipsilateral and contralateral to experimental glaucoma. Invest. Ophthalmol. Vis. Sci. 51, 5690–5696. Rojas, B., Gallego, B.I., Ramírez, A.I., Salazar, J.J., de Hoz, R., Valiente-Soriano, F.J., Avilés-Trigueros, M., Villegas-Perez, M.P., Vidal-Sanz, M., Triviño, A., 2014. Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers. J. Neuroinflammation 11, 133. Salinas-Navarro, M., Alarcon-Martinez, L., Valiente-Soriano, F.J., Ortin-Martinez, A., Jimenez-Lopez, M., Aviles-Trigueros, M., Villegas-Perez, M.P., de la Villa, P., Vidal-Sanz, M., 2009a. Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol. Vis. 15, 2578–2598. Salinas-Navarro, M., Mayor-Torroglosa, S., Jimenez-Lopez, M., Aviles-Trigueros, M., Holmes, T.M., Lund, R.D., Villegas-Perez, M.P., Vidal-Sanz, M., 2009b. A computerized analysis of the entire retinal ganglion cell population and its spatial distribution in adult rats. Vision Res. 49, 115–126. Schlamp, C.L., Li, Y., Dietz, J.A., Janssen, K.T., Nickells, R.W., 2006. Progressive ganglion cell loss and optic nerve degeneration in DBA/2J mice is variable and asymmetric. BMC Neurosci. 7, 66. Seitz, R., Ohlmann, A., Tamm, E.R., 2013. The role of Mu ̈ller glia and microglia in glaucoma. Cell Tissue Res. 353, 339–345. Sivron, T., Schwartz, M., 1995. Glial cell types, lineages, and response to injury in rat and fish: implications for regeneration. Glia 13, 157–165. Sobrado-Calvo, P., Vidal-Sanz, M., Villegas-Perez, M.P., 2007. Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J. Comp. Neurol. 501, 866–878. Stasi, K., Nagel, D., Yang, X., Wang, R.F., Ren, L., Podos, S.M., Mittag, T., Danias, J., 2006. Complement component 1Q (C1Q) upregulation in retina of murine, primate, and human glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 47, 1024–1029. Stein-Streilein, J., 2012. Local and distant trauma upsets ocular immune regulation. In: ARVO: Annual Meeting of The Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Miami. http://www.abstractsonline.com/Plan/SessionPrintView.aspx?mID1⁄42866&sKey1⁄42db83593-0ce3-4d8a-a71a-62ab80a55c9e. Streilein, J.W., 2003. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 3, 879–889. Tezel, G., 2013. Immune regulation toward immunomodulation for neuroprotection in glaucoma. Curr. Opin. Pharmacol. 13, 23–31. Tezel, G., The Fourth ARVO/Pfizer Ophthalmics Research Institute Conference Working Group, 2009. The role of glia, mitochondria, and the immune system in glaucoma. Invest. Ophthalmol. Vis. Sci. 50, 1001–1012. Tezel, G., Seigel, G., Wax, M., 1998. Autoantibodies to small heat shock proteins in glaucoma. Invest. Ophthalmol. Vis. Sci. 39, 2277–2287. Tezel, G., Edward, D.P., Wax, M.B., 1999. Serum autoantibodies to optic nerve head glycosaminoglycans in patients with glaucoma. Arch. Ophthalmol. 117, 917–924. Thanos, S., 1999. Genesis, neurotrophin responsiveness, and apoptosis of a pronounced direct connection between the two eyes of the chick embryo: a natural error or a meaningful developmental event? J. Neurosci. 19, 3900–3917. Toth, P., Straznicky, C., 1989. Retino-retinal projections in three anuran species. Neurosci. Lett. 104, 43–47. Valiente-Soriano, F., Salinas-Navarro, M., Jiménez-López, M., Ortín-Martínez, A., Alarcón-Martínez, L., Cánovas, I., Bernal, J.M., Avilés-Trigueros, M., Vidal-Sanz, M., 2008. Effects of elevated intraocular pressure on the retinal ganglion cell population in adult pigmented mice. Invest. Ophthalmol. Vis. Sci. 49, E-Abstract 5486. Vidal-Sanz, M., Lafuente, M., Sobrado-Calvo, P., Selles-Navarro, I., Rodriguez, E., Mayor-Torroglosa, S., Villegas-Perez, M.P., 2000. Death and neuroprotection of retinal ganglion cells after different types of injury. Neurotox Res. 2, 215–227. Wang, X., Tay, S., Ng, Y.K., 2000. An immunohistochemical study of neuronal and glial cell reactions in retinae of rats with experimental glaucoma. Exp. Brain Res. 132, 476. Wax, M.B., Tezel, G., Edward, P.D., 1998. Clinical and ocular histopathological findings in a patient with normal-pressure glaucoma. Arch. Ophthalmol. 116, 993–1001. Xue, L.P., Lu, J., Cao, Q., Hu, S., Ding, P., Ling, E.A., 2006. Mu ̈ller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience 139, 723–732. Yang, J., Patil, R.V., Yu, H., Gordon, M., Wax, M.B., 2001a. T cell subsets and sIL-2R/IL-2 levels in patients with glaucoma. Am. J. Ophthalmol. 131, 421–426. Yang, J., Tezel, G., Patil, R.V., Romano, C., Wax, M.B., 2001b. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Invest. Ophthalmol. Vis. Sci. 42, 1273–1276. Yew, D.T., Yang, Q.D., Mak, N.Y., Au, C.Y., Li, W.W., Liu, W.K., 1990. Bilateral retinal responses after traumatic injury of one eye in mice. A histopathologic and immunohisto-chemical study. Ophthalmic Res. 22, 67–72. Yucel, Y.H., Zhang, Q., Weinreb, R.N., Kaufman, P.L., Gupta, N., 2003. Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma. Prog. Retin. Eye Res. 22, 465–481.