Publication:
Phase diagram of a polydisperse soft-spheres model for liquids and colloids

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2007-02-23
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The phase diagram of soft spheres with size dispersion is studied by means of an optimized Monte Carlo algorithm which allows us to equilibrate below the kinetic glass transition for all size distributions. The system ubiquitously undergoes a first-order freezing transition. While for a small size dispersion the frozen phase has a crystalline structure, large density inhomogeneities appear in the highly disperse systems. Studying the interplay between the equilibrium phase diagram and the kinetic glass transition, we argue that the experimentally found terminal polydispersity of colloids is a purely kinetic phenomenon.
Description
© 2007 The American Physical Society. We thank V. Erokhin and F. Zamponi for discussions. We were supported by MEC (Spain), through Contracts No. BFM2003-08532, No. FIS2004-05073, No. FPA2004- 02602, CAM (CAM-910383), and by BSCH—UCM. The CPU time utilized (at BIFI and CINECA) amounts to 10 years of 3 GHz PentiumIV
Unesco subjects
Keywords
Citation
[1] F. Sciortino, P. Tartaglia, Adv. Phys., 54, 471 (2005). [2] M. Fasolo, P. Sollich, Phys. Rev. E, 70, 041410 (2004). [3] P. Chaudhuri, S. Karmakar, C. Dasgupta, H.R. Krishnamurthy, A.K. Sood, Phys. Rev. Lett., 95, 248301 (2005). [4] P. Bartlett, J. Chem. Phys., 109, 10970 (1998). [5] D.A. Kofke, P.G. Bolhuis, Phys. Rev. E, 59, 618 (1999). [6] S. Auer, D. Frenkel, Nature (London), 413, 711 (2001). [7] P.N. Pusey, W. van Megen, Nature (London), 320, 340 (1986). [8] R.P.A. Dullensand, W.K. Kegel, Phys. Rev. Lett., 92, 195702 (2004). [9] P.G. Debenedetti, Metastable Liquids (Princeton University Press, Princeton, NJ, 1997). [10] L.A. Fernández, V. Martín-Mayor, P. Verrocchio, Philos. Mag., 87, 581 (2007). [11] Q. Yan, T.S. Jain, J.J. de Pablo, Phys. Rev. Lett., 92, 235701 (2004). [12] J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic, New York, 1986). [13] L. Santen, W. Krauth, condmat/0107459. [14] L.A. Fernández, V. Martín-Mayor, P. Verrocchio, Phys. Rev. E, 73, 020501(R) (2006). [15] L.A. Fernández, V. Martín-Mayor, P. Verrocchio, Flow Dynamics: The 2nd International Conference on Flow Dynamics, AIP Conf. Proc., No. 832, (AIP, New York, 2005), pp. 128-133. [16] T.S. Grigera, G. Parisi, Phys. Rev. E, 63, 045102(R) (2001). [17] M.S.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B, 34, 1841 (1986). [18] J. Leeand, J.M. Kosterlitz, Phys. Rev. Lett., 65, 137,(1990). [19] M. Falcioni, E. Marinari, M.L. Paciello, G. Parisi, B. Taglienti, Phys. Lett., 108B, 331 (1982). [20] A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett., 63, 1195 (1989). [21] F.H. Stillinger, T.A. Weber, Phys. Rev. A, 28, 2408 (1983). [22] P.R. ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys. Rev. Lett., 75, 2714 (1995). [23] See [27] for recent experiments at low polydispersity. [24] H.J. Schöpe, G. Bryant, W. van Megen, Phys. Rev. Lett., 96, 175701 (2006). [25] N.B. Simeonova, W.K. Kegel, Phys. Rev. Lett., 93, 035701 (2004). [26] W. Götze, L. Sjögren, Rep. Prog. Phys., 55, 241 (1992). [27] V.N. Novikov, A.P. Sokolov, Phys. Rev. E, 67, 031507 (2003). [28] E. Rössler, A.P. Sokolov, A. Kisliuk, D. Quitmann, Phys. Rev. B, 49, 14967 (1994). [29] B. Bernu, J. P. Hansen, Y. Hiwatari, G. Pastore, Phys. Rev. A, 36, 4891 (1987). [35] C.C. Yu, H.M. Carruzzo, Phys. Rev. E, 69, 051201 (2004).
Collections