Publication:
Pion-kaon scattering amplitude constrained with forward dispersion relations up to 1.6 GeV

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-04-20
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
In this work we provide simple and precise parametrizations of the existing πK scattering data from threshold up to 1.6 GeV, which are constrained to satisfy forward dispersion relations as well as three additional threshold sum rules. We also provide phenomenological values of the threshold parameters and of the resonance poles that appear in elastic scattering.
Description
© 2016 American Physical Society. J. R. P. and A. R. are supported by Spanish Projects No. FPA2011-27853-C02-02 and No. FPA2014-53375-C2-2 and Red de Excelencia de Física Hadrónica FIS2014-57026-REDT. We are very grateful to B. Moussallam for kindly providing us with his parametrizations as well as for his instructive comments and discussions.
Unesco subjects
Keywords
Citation
1. J. Gasser and H. Leutwyler, Chiral perturbation theory: Expansions in the mass of the strange quark, Nucl. Phys. B250, 465 (1985). 2. V. Bernard, N. Kaiser, and U. G. Meissner, πK scattering in chiral perturbation theory to one loop, Nucl. Phys. B357, 129 (1991). 3. J. Bijnens, P. Dhonte, and P. Talavera, πK scattering in three flavor ChPT, J. High Energy Phys. 05 (2004) 036. 4. B. Ananthanarayan, P. Büttiker, and B. Moussallam, πK sum rules and the SU(3) chiral expansion, Eur. Phys. J. C 22, 133 (2001); B. Ananthanarayan and P. Büttiker, Comparison of pion kaon scattering in SU(3) chiral perturbation theory and dispersion relations, 19, 517 (2001). 5. A. Dobado and J. R. Pelaez, A global fit of ππ and πK elastic scattering in ChPT with dispersion relations, Phys. Rev. D 47, 4883 (1993); A. G. Nicola and J. R. Pelaez, Meson-meson scattering within one-loop chiral perturbation theory and its unitarization, 65, 054009 (2002). 6. J. R. Pelaez, Light scalars as tetraquarks or two-meson states from large Nc and unitarized chiral perturbation theory, Mod. Phys. Lett. A 19, 2879 (2004). 7. J. A. Oller and E. Oset, Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the σ, f0(980), a0(980) scalar mesons, Nucl. Phys.A620, 438 (1997); A652, 407(E) (1999); N/D description of two meson amplitudes and chiral symmetry, Phys. Rev. D 60, 074023 (1999); J. A. Oller, E. Oset, and J. R. Pelaez, Nonperturbative Approach to Effective Chiral Lagrangians and Meson Interactions, Phys. Rev. Lett. 80, 3452 (1998); Meson-meson interaction in a nonperturbative chiral approach, Phys. Rev. D 59, 074001 (1999); 60, 099906(E) (1999); 75, 099903(E) (2007). 8. S. R. Beane, P. F. Bedaque, T. C. Luu, K. Orginos, E. Pallante, A. Parreño, and M. J. Savage, πK scattering in full QCD with domain-wall valence quarks, Phys. Rev. D 74, 114503 (2006); J. Nagata, S. Muroya, and A. Nakamura, Lattice study of Kπ scattering in I=3/2 and 1/2, Phys. Rev. C 80, 045203 (2009); 84, 019904(E) (2011); Z. Fu, Lattice study on πK scattering with moving wall source, Phys. Rev. D 85, 074501 (2012); K. Sasaki, N. Ishizuka, M. Oka, and T. Yamazaki (PACS-CS Collaboration), Scattering lengths for two pseudoscalar meson systems, 89, 054502 (2014). 9. C. B. Lang, L. Leskovec, D. Mohler, and S. Prelovsek, Kπ scattering for isospin 1/2 and 3/2 in lattice QCD, Phys. Rev. D 86, 054508 (2012); S. Prelovsek, L. Leskovec, C. B. Lang, and D. Mohler, Kπ scattering and the K∗ decay width from lattice QCD, 88, 054508 (2013); Z. Fu and K. Fu, Lattice QCD study on K∗(892)meson decay width, 86, 094507 (2012); J. J. Dudek, R. G. Edwards, C. E. Thomas, and D. J. Wilson (Hadron Spectrum Collaboration), Resonances in Coupled πK−ηK Scattering from Quantum Chromodynamics, Phys. Rev. Lett. 113, 182001 (2014); D. J. Wilson, J. J. Dudek, R. G. Edwards, and C. E. Thomas, Resonances in coupled πK,ηK scattering from lattice QCD, Phys. Rev. D 91, 054008 (2015). 10. M. Doring and U. G. Meissner, Finite volume effects in pion-kaon scattering and reconstruction of the κ(800) resonance, J. High Energy Phys. 01 (2012) 009;M. Doring, U. G. Meissner, E. Oset, and A. Rusetsky, Scalar mesons moving in a finite volume and the role of partial wave mixing, Eur. Phys. J. A 48, 114 (2012). 11. R. L. Jaffe, Multiquark hadrons. I. Phenomenology of Q2Q−2 mesons, Phys. Rev. D 15, 267 (1977); M. D. Scadron, Spontaneous breakdown and the scalar nonet, 26, 239 (1982); E. van Beveren, T. A. Rijken, K. Metzger, C. Dullemond, G. Rupp, and J. E. Ribeiro, A low lying scalar meson nonet in a unitarized meson model, Z. Phys. C 30, 615 (1986); R. Kaminski, L. Lesniak, and B. Loiseau, Three channel model of meson meson scattering and scalar meson spectroscopy,Phys. Lett. B 413, 130 (1997); D. Black, A. H. Fariborz, F. Sannino, and J. Schechter, Putative light scalar nonet, Phys. Rev. D 59, 074026 (1999); F. E. Close and N. A. Tornqvist, Scalar mesons above and below 1 GeV, J. Phys. G 28, R249 (2002); A. H. Fariborz, E. Pourjafarabadi, S. Zarepour, and S. M. Zebarjad, Chiral nonet mixing in πK scattering, Phys. Rev. D 92, 113002 (2015); T. Wolkanowski, M. Soltysiak, and F. Giacosa, K∗0(800) as a companion pole of K∗0(1430),arXiv:1512.01071. 12. S. N. Cherry and M. R. Pennington, There is no κ(900), Nucl. Phys. A688, 823 (2001). 13. S. Descotes-Genon and B. Moussallam, The K∗0(800) scalar resonance from Roy-Steiner representations of πK scattering, Eur. Phys. J. C 48, 553 (2006). 14. P. Büttiker, S. Descotes-Genon, and B. Moussallam, A new analysis of πK scattering from Roy and Steiner type equations, Eur. Phys. J. C 33, 409 (2004). 15. F. Steiner, Partial wave crossing relations for meson-baryon scattering, Fortschr. Phys. 19, 115 (1971). 16. K. A. Olive (Particle Data Group), Review of particle physics, Chin. Phys. C 38, 090001 (2014) and 2015 update. 17. J. R. Pelaez and F. J. Yndurain, Pion-pion scattering amplitude, Phys. Rev. D 71, 074016 (2005). 18. Y. Cho et al., Study of K−π− scattering using the reaction K−d→K−π−pps, Phys. Lett. B 32, 409 (1970). 19. A. M. Bakker et al., A determination of the I=3/2 Kπ elastic-scattering cross section from the reaction K−n→pK−π− at 3  GeV/c, Nucl. Phys. B24, 211 (1970). 20. B. Jongejans, R. A. van Meurs, A. G. Tenner, H. Voorthuis, P. M. Heinen, W. J. Metzger, H. G. J. M. Tiecke, and R. T. Van de Walle, Study of the I=3/2 K−π−elastic scattering from the reaction K−p→K−π−pπ+ at 4.25  GeV/c incident K− momentum, Nucl. Phys. B67, 381 (1973). 21. D. Linglin et al., K−π− elastic scattering cross-section measured in 14.3  GeV/c K−p interactions, Nucl. Phys. B57, 64 (1973). 22. P. Estabrooks, R. K. Carnegie, A. D. Martin, W. M. Dunwoodie, T. A. Lasinski, and D. W. G. S. Leith, Study of Kπ scattering using the reactions K+−p→K+−π+n and K+−p→K+−π−Δ++ at 13  GeV/c, Nucl. Phys. B133, 490 (1978). 23. R. Mercer et al., Kπ scattering phase shifts determined from the reactions K+p→K+π−δ++ and K0π0Δ++, Nucl. Phys. B32, 381 (1971). 24. D. Aston et al., A study of K−π+ scattering in the reaction K−p→K−π+n at 11  GeV/c, Nucl. Phys. B296, 493 (1988). 25. P. del Amo Sanchez et al. (BABAR Collaboration), Analysis of the D+→K−π+e+νe decay channel, Phys. Rev. D 83, 072001 (2011). 26. M. Ablikim et al. (BESIII Collaboration), Study of D+→K−π+e+νe, arXiv:1512.08627. 27. E. M. Aitala et al. (E791 Collaboration), Model independent measurement of S-wave K−π+ systems using D+→Kππ decays from Fermilab E791, Phys. Rev. D 73, 032004 (2006); 74, 059901(E) (2006). 28. J. M. Link et al. (FOCUS Collaboration), Dalitz plot analysis of the D+→K−π+π+ decay in the FOCUS experiment, Phys. Lett. B 653, 1 (2007); The K−π+ S-wave from the D+→K−π+π+ decay, 681, 14 (2009). 29. G. Bonvicini et al. (CLEO Collaboration), Dalitz plot analysis of the D+→K−π+π+ decay, Phys. Rev. D 78, 052001 (2008). 30. J. P. Lees et al. (BABAR Collaboration), Measurement of the I=1/2 KπS-wave amplitude from Dalitz plot analyses of ηc→KK¯π in two-photon interactions,Phys. Rev. D 93, 012005 (2016). 31. We thank B. Moussallam for kindly providing us with his parametrizations. 32. R. N. Pérez, E. R. Arriola, and J. R. de Elvira, Self-consistent statistical error analysis of ππ scattering, Phys. Rev. D 91, 074014 (2015). 33. D. V. Bugg, Update on the kappa, Phys. Rev. D 81, 014002 (2010). 34. Z. Y. Zhou and H. Q. Zheng, An improved study of the kappa resonance and the non-exotic s wave πK scatterings up to s√=2.1  GeV of LASS data, Nucl. Phys. A775, 212 (2006). 35. S. Ishida, M. Ishida, T. Ishida, K. Takamatsu, and T. Tsuru, Analysis of Kπ scattering phase shift and existence of κ(900) particle, Prog. Theor. Phys. 98, 621 (1997). 36. M. Jamin, J. A. Oller, and A. Pich, S wave Kπ scattering in chiral perturbation theory with resonances, Nucl. Phys. B587, 331 (2000). 37. A. Dobado and J. R. Pelaez, Inverse amplitude method in chiral perturbation theory, Phys. Rev. D 56, 3057 (1997). 38. B. Adeva et al. (DIRAC Collaboration), First πK atom lifetime and πK scattering length measurements, Phys. Lett. B 735, 288 (2014). 39. P. Guo, R. Mitchell, M. Shepherd, and A. P. Szczepaniak, Amplitudes for the analysis of the decay J/ψ→K+K−π0, Phys. Rev. D 85, 056003 (2012). 40. R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira, and F. J. Yndurain, Pion-pion scattering amplitude. IV. Improved analysis with once subtracted Roy-like equations up to 1100 MeV, Phys. Rev. D 83, 074004 (2011). 41. J. P. Ader, C. Meyers, and B. Bonnier, General features of low energy Kπ scattering from physical region method, Phys. Lett. B 46B, 403 (1973). 42. F. P. Palou, J. L. Sanchez Gomez, and F. J. Yndurain, Low-energy parameters for scattering of pions and kaons, Z. Phys. A 274, 161 (1975). 43. F. P. Palou and F. J. Yndurain, Low-energy ππ scattering parameters, Nuovo Cimento Soc. Ital. Fis. 19A, 245 (1974). 44. R. Kaminski, J. R. Pelaez, and F. J. Yndurain, Pion-pion scattering amplitude. II. Improved analysis above K¯K threshold, Phys. Rev. D 74, 014001 (2006); 74, 079903(E) (2006). 45. R. Kaminski, J. R. Pelaez, and F. J. Yndurain, Pion-pion scattering amplitude. III. Improving the analysis with forward dispersion relations and Roy equations,Phys. Rev. D 77, 054015 (2008). 46. D. Epifanov et al. (Belle Collaboration), Study of τ−→KSπ−ντ decay at Belle, Phys. Lett. B 654, 65 (2007). 47. V. Bernard, First determination of f+(0)|Vus| from a combined analysis of τ→Kπντ decay and πK scattering with constraints from Kℓ3 decays, J. High Energy Phys. 06 (2014) 082. 48. P. Masjuan and J. J. Sanz-Cillero, Padé approximants and resonance poles, Eur. Phys. J. C 73, 2594 (2013); P. Masjuan, J. Ruiz de Elvira, and J. J. Sanz-Cillero, Precise determination of resonance pole parameters through Padé approximants, Phys. Rev. D 90, 097901 (2014); I. Caprini, P. Masjuan, J. Ruiz de Elvira, and J. J. Sanz-Cillero, On the uncertainty estimates of the σ-pole determination by Padé approximants, 93, 076004 (2016); I. Caprini, Finding the σ pole by analytic extrapolation of ππ scattering data, 77, 114019 (2008).
Collections