Publication:
Charged-current inclusive neutrino cross sections in the SuperScaling model

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016
Authors
Ivanov, M. V.
Megías, G. D.
González Jiménez, R.
Moreno, O.
Bárbaro, M. B.
Caballero, J. A.
Donnelly, T. W.
Antonov, A. N.
Moya de Guerra, Elvira
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
SuperScaling model (SuSA) predictions to neutrino-induced charged-current pi(+) production in the Delta-resonance region are explored under MiniBooNE experimental conditions. The SuSA charged-current pi(+) results are in good agreement with data on neutrino flux-averaged double-differential cross sections. The SuSA model for quasielastic scattering and its extension to the pion production region are used for predictions of charged-current inclusive neutrino-nucleus cross sections. Results are also compared with the T2K experimental data for inclusive scattering.
Description
© 2016 AIP Publishing LLC. ISSN: 0094-243X International Physics Conference of the Balkan-Physical-Union (BPU)(9. 2015. Estambul, Turquía). This work was partially supported by INFN under project MANYBODY, by Spanish DGI and FEDER funds (FIS2011-28738-C02-01, FPA2013-41267), by the Junta de Andalucia, by the Spanish Consolider-Ingenio 2000 program CPAN (CSD2007-00042), by the Campus of Excellence International (CEI) of Moncloa project (Madrid) and Andalucia Tech, by the Bulgarian National Science Fund under contracts No. DFNI-T02/19 and DFNI-E02/6. R.G.J. acknowledges financial help from the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.
UCM subjects
Keywords
Citation
[1] K. Abe et al. (T2K Collaboration), Phys. Rev. D 87, p. 092003 (2013). [2] J. E. Amaro et al., Phys. Rev. C 71, p. 015501 (2005). [3] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. D 83, p. 052007 (2011). [4] T. W. Donnelly and I. Sick, Phys. Rev. Lett. 82, p. 3212 (1999). [5] T. W. Donnelly and I. Sick, Phys. Rev. C 60, p. 065502 (1999). [6] W. M. Alberico et al., Phys. Rev. C 38, p. 1801 (1988). [7] M. B. Barbaro, R. Cenni, A. D. Pace, T. W. Donnelly, and A. Molinari, Nucl. Phys. A 643, p. 137 (1998). [8] J. Jourdan, Nucl. Phys. A 603, p. 117 (1996). [9] M. B. Barbaro, J. A. Caballero, T. W. Donnelly, , and C. Maieron, Phys. Rev. C 69, p. 035502 (2004). [10] C. Maieron et al., Phys. Rev. C 80, p. 035504 (2009). [11] M. V. Ivanov et al., Phys. Lett. B 711, p. 178 (2012). [12] C. Maieron, T. W. Donnelly, and I. Sick, Phys. Rev. C 65, p. 025502 (2002). [13] Y. Umino and J. M. Udias, Phys. Rev. C 52, p. 3399 (1995). [14] L. Alvarez-Ruso, S. K. Singh, and M. J. V. Vacas, Phys. Rev. C 59, p. 3386 (1999). [15] E. A. Paschos, J.-Y. Yu, and M. Sakuda, Phys. Rev. D 69, p. 014013 (2004). [16] G. D. Megias et al., Phys. Rev. D 89, p. 093002 (2014).