Universidad Complutense de Madrid
E-Prints Complutense

Recomendador adaptativo y entrenador Pre-Flop para NLHE

Impacto

Downloads

Downloads per month over past year



Marco González, Juan Carlos and Martín Herrero, Iván (2016) Recomendador adaptativo y entrenador Pre-Flop para NLHE. [Trabajo fin de Grado]

[img]
Preview
PDF
3MB


Abstract

El póker en todas sus modalidades, tanto presenciales como online, lleva mucho tiempo siendo uno de los juegos de apuestas y azar más jugados del mundo. Dentro de los diferentes tipos de partidas de póker (Omaha, NLHE, PLHE, etc.) el más jugado es el NLHE, sobre el cual se va a desarrollar estetrabajo de fin de grado; particularmente la versión online de la aplicación PokerStars. Existen herramientas para recoger información de estas partidas (PokerTracker, Holdem Manager), pero de la persona que los maneje depende saber el uso de los datos que nos dan estas herramientas, además de la información de las tablas de rangos de autores como Janda (Janda, 2013), o la clasificación de manos de Sklansky-Chubukov (Muñoz, 2009). Con este trabajo queremos dar un apoyo a las personas que se inicien en el mundo del póker a tomar decisiones acertadas aunque no sean óptimas contra todos los jugadores. Algunos jugadores jugaran peor que la óptima y serán objetivos para ser “explotados” y así aumentar nuestro beneficio. Para saber cuáles son estos jugadores explotables, usaremos los datos que nos proporciona la herramienta PokerTracker 4. A la hora de obtener los datos en el momento de la jugada hemos preparado un reconocedor de imágenes adaptado a PokerStars para recoger los datos que hay en la pantalla en el momento de nuestro turno y así decidir lo que debemos hacer. También se ha implementado un entrenador de jugadas para aprender qué hacer frente a unas jugadas, que utiliza unos datos introducidos por el usuario o generados aleatoriamente, y dentro de las aleatorias se pueden simplificar para jugadores noveles a dos de las situaciones más comunes: Open Raise y 3-bet.

Resumen (otros idiomas)

Poker in all of its variants (both online and offline), has been for a long time one of the most played gambling and chance games in the world. Within the different variants of poker games (Omaha, NLHE, PLHE, etc.) the most played is NLHE, the topic of this Graduate Thesis; particularly the game in the online application PokerStars. There are tools to compile information on these games (PokerTracker, Holdem Manager), but the player must know how to use the information provided by these tools, as well as the different range tables defined by authors such as Janda (Janda, 2013), or the Sklansky-Chubukov rankings (Muñoz, 2009). With this project we want to provide support to new players, for them to take good decisions even if they do not use an optimal strategy. Some opponents will play worse than optimally; they will become targets to be “exploited”, and thus increase our benefit. To know who these exploitable opponents are, we use data provided by PokerTracker 4. In order, to obtain the information of the current hand we have prepared an image recognition tool adapted to PokerStars that captures the information on screen when the user must decide their next play. We have also implemented a trainer to learn what to do against a series of hands, using data that can be input by the user or randomly generated, and among the latter, it can be simplified for amateur players to two of the most common situations: Open Raise and 3-bet.

Item Type:Trabajo fin de Grado
Additional Information:

Trabajo de Fin de Grado en Ingeniería Informática (Universidad Complutense, Facultad de Informática, curso 2015/2016)

Directors:
DirectorsDirector email
Núñez García, Manuel
Uncontrolled Keywords:Póker online, Entrenador, PokerStars, NLHE, PokerTracker
Palabras clave (otros idiomas):Online poker, Trainer, PokerStars, NLHE, PokerTracker
Subjects:Sciences > Computer science > Expert systems (Computer science)
Sciences > Computer science > Software
Sciences > Mathematics > Combinatorial analysis
Sciences > Mathematics > Probabilities
Título de Grado:Grado en Ingeniería Informática
ID Code:38508
Deposited On:12 Jul 2016 07:38
Last Modified:12 Jul 2016 07:38

Origin of downloads

Repository Staff Only: item control page