Publication:
Toy model to describe the effect of positional blocklike disorder in metamaterials composites

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2012-01
Authors
Rico-García, José María
Aradian, Ashod
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
OSA Publishing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study theoretically the effect of a new type of blocklike positional disorder on the effective electromagnetic properties of one-dimensional chains of resonant, high-permittivity dielectric particles, where particles are arranged into perfectly well-ordered blocks whose relative position is a random variable. This creates a finite order correlation length that mimics the situation encountered in metamaterials fabricated through self-assembled techniques, whose structures often display short-range order between near neighbors but long-range disorder, due to stacking defects. Using a spectral theory approach combined with a principal component statistical analysis, we study, in the long-wavelength regime, the evolution of the electromagnetic response when the composite filling fraction and the block size are changed. Modifications in key features of the resonant response (amplitude, width, etc.) are investigated, showing a regime transition for a filling fraction around 50%.
Description
Received July 29, 2011; revised October 9, 2011; accepted October 14, 2011; posted October 17, 2011 (Doc. ID 151904); published December 9, 2011
Keywords
Citation
1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). 2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). 3. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008). 4. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008). 5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007). 6. E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials 1, 12–18 (2007). 7. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008). 8. K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896–5901 (2004). 9. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Suppression of left-handed properties in disordered metamaterials,” J. Appl. Phys. 97, 113906 (2005). 10. X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005). 11. M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006). 12. D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010). 13. V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine,“Self-assembly and nanochemistry techniques for the fabrication of metamaterials” in Metamaterials Handbook: Applications of Metamaterials, F. Capolino, ed. (CRC Press, 2009), Vol. 2. 14. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonancebased dielectric metamaterials,” Mater. Today 12, 60–69 (2009). 15. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008). 16. R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34, 3541–3543 (2009). 17. C. Noguez and R. G. Barrera, “Disorder effects on the effective dielectric response of a linear chain of polarizable spheres,” Physica A 211, 399–410 (1994). 18. V. N. Astratov J. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004). 19. V. N. Astratov and S. P. Ashili, “Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres,” Opt. Express 15, 17351–17361 (2007). 20. G. S. Blaustein, M. I. Gozman, O. Samoylova, I. Ya. Polishchuk, and A. L. Burin, “Guiding optical modes in chains of dielectric particles” Opt. Express 15, 17380–17391 (2007). 21. C.-S. Deng, H. Xu, and L. Deych, “Effect of size disorder on the optical transport in chains of coupled microspherical resonators,” Opt. Express 19, 6923–6937 (2011). 22. Y. Park and D. Stroud, “Surface-plasmon dispersion relation in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004). 23. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part 3 94, 65–68 (1947). 24. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003). 25. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006). 26. G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003). 27. G. P. Ortiz and W. L. Mochán, “Scaling of light scattered from fractal aggregates at resonance,” Phys. Rev. B 67, 184204 (2003). 28. V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004). 29. M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory,” Phys. Rev. B 60, 17071–17083 (1999). 30. C. Noguez and R. Barrera, “Multipolar and disorder effects in the optical properties of granular composites,” Phys. Rev. B 57, 302–313 (1998). 31. D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. Lett. 22, 3527–3539 (1980). 32. J. Sancho-Parramón, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928 (2010). 33. M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269 (2002). 34. J. M. Rico-García, J. M. López-Alonso, and J. Alda, “Characterization of photonic crystal microcavities with manufacture imperfections,” Opt. Express 13, 3802–3815 (2005). 35. J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002). 36. C. J. Behrend, J. N. Anker, and R. Kopelman, “Brownian modulated optical nanoprobes,” Appl. Phys. Lett. 84, 154–156 (2004). 37. C. Macías-Romero, R. Lim, M. R. Foreman, and P. Török, “Synthesis of structured partially spatially coherent beams,” Opt. Lett. 36, 1638–1640 (2011). 38. D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill, 1990), Chap. 8. 39. T. W. Du Bosq, J. M. Lopez-Alonso, and G. D. Boreman, “Millimeter wave imaging system for land mine detection,” Appl. Opt. 45, 5686–5692 (2006). 40. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. NietoVesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). 41. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies” Phys. Rev. B 73, 045105 (2006). 42. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Threedimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005). 43. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005). 44. B. Ersfeld and B. U. Felderhof, “Retardation correction to the Lorentz–Lorentz formula for the refractive index of a disordered system of polarizable point dipoles,” Phys. Rev. E 57, 1118–1126 (1998). 45. J. Li and J. B. Pendry, “Non-local effective medium of metamaterial,” (2007) arXiv:cond-mat/0701332v1 [cond-mat.mtrl-sci]. 46. R. G. Barrera and R. Fuchs, “Theory of electron energy loss in a random systems of spheres,” Phys. Rev. B 52, 3256–3273 (1995).
Collections