Publication:
Analysis of metallic nanoantennas for solar energy conversion

Research Projects
Organizational Units
Journal Issue
Abstract
Recently thermo-electrical nanoantennas, also known as Seebeck nanoantennas, have been proposed as an alternative for solar energy harvesting applications. In this work we present the optical and thermal analysis of metallic nanoantennas operating at infrared wavelengths, this study is performed by numerical simulations using COMSOL Multiphysics. Several different nanoantenna designs were analyzed including dipoles, bowties and square spiral antennas. Results show that metallic nanoantennas can be tuned to absorb electromagnetic energy at infrared wavelengths, and that numerical simulation can be useful in optimizing the performance of these types of nanoantennas at optical and infrared wavelengths.
Description
ISSN: 0277-786X Copyright 2015. Society of Photo Optical Instrumentation Engineers. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Keywords
Citation
1. Garret M. and Sachit G., "Rectenna Solar Cells", New York: Springer, pp. 231-257, (2013). 2. Kotter D., Novack S., Slafer W., and Pinhero P., "Theory and manufacturing processes of Solar Nanoantenna Electromagnetic Collectors, " J. Sol. Energy Eng., vol. 132(1), pp.011014(9 pages), (2010). 3. Novotny L. and van Hulst N., "Antennas for light", Nat. Photonics,vol. 5, pp. 83-90, (2011). 4. Biagioni P, Huang JS, Hecht B., "Nanoantennas for visible and infrared radiation", Reports on Progress in Physics 75.2: 024402, (2012). 5. González F. J. and Boreman G., "Comparison of dipole, bowtie, spiral and log-periodic IR antennas," Infrared Phys. Technol. 46(5), 418–428, (2005). 6. Hagerty J. A., Helmbrecht F. B., McCalpin W. H., Zane R., and Popovic Z. B., "Recycling ambient microwave energy with broad-band rectenna arrays," IEEE Trans. Microw. Theory Tech. 52(3), 1014–1024, (2004). 7. Bean J.A., Tiwari B., Bernstein G.H., Fay P. and Porod W., "Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes," J. Vac. Sci. Technol. B, vol. 27(1), pp. 11-14, (2009). 8. Zhu Z., Joshi S., Grover S., and Moddel G., "Graphene Geometric Diodes for Terahertz Rectennas," J. Phys. D: Appl. Phys., vol. 46, pp. 185101 (2013). 9. B. Edgar, Alda Javier and G.Francisco J., "Conversion efficiency of broad-band rectenas for solar energy harvesting applications", Optics Express, vol. 21, Issue S3, pp. A412-A418 (2013). 10. Vandenbosch G. A. E. and Ma Z., "Upper bounds for the solar energy harvesting efficiency of nano-antennas," Nano Energy 1(3), 494–502 (2012). 11. Ma Z. and Vandenbosch G. A. E., "Optimal solar energy harvesting efficiency of nano-rectenna systems," Sol. Energy 88, 163–174 (2013). 12. Briones, E., et al, "Seebeck nanoantennas for the detection and characterization of infrared radiation," Optics express, 22(106), A1538-A1546 (2014). 13. Graf A., Arndt M., Sauer M. and Gerlach G., "Review of micromachined thermopiles for infrared detection," Meas. Sci. Technol., vol. 18, pp. R59–R75, (2007). 14. krenz P.M., Tiwari B.T., Szakmany G.P., Orlov A.O., Gonzalez F.G. and Boreman G.D., "Response Increase of IR Antenna-Coupled Thermocouple Using Impedance Matching," J. Quantum Electron., vol. 48(5), pp. 659-664, May (2012). 15. Szakmany G.P., Krenz P.M., Orlov A.O., Bernstein G.H. and Porod W., "Antenna-Coupled Nanowire Thermocouples for Infrared Detection," IEEE Trans. Nanotechnol., vol. 12(2), pp. 163-167, March (2013). 16. Gonzalez F. J., Alda J., Simon J., Ginn J., and Boreman G., "The effect of metal dispersion on the resonance of antennas at infrared frequencies," Infrared Physics and Technology, vol. 52, no. 1, pp. 48-51, (2009). 17. Palik, Edward D. Handbook of optical constants of solids. Vol. 3. Academic press, (1998). 18. Ordal, Mark A., et al. "Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W." Applied optics 24.24: 4493-4499 (1985). 19. Ordal, Mark A., et al. "Optical properties of Au, Ni, and Pb at submillimeter wavelengths." Applied Optics 26.4:744-752 (1987). 20. Kovetz A., "The Principles of Electromagnetic Theory", Cambridge University Press, Cambridge, UK (1990). 21. Incropera F. P. and De Witt D. P., "Fundamentals of Heat and Mass Transfer", 4th ed., John Wiley & Sons, New York (1996). 22. Cuadrado, Alda, J., and González, F. J., "Multiphysics simulation for the optimization of optical nanoantennas working as distributed bolometers in the infrared", Journal of Nanophotonics, 7(1), 073093-073093, (2013). 23. Ioffe, Abraham Fedorovich. "Semiconductor thermoelements and thermoelectric cooling." (1957). 24. Rowe, David Michael, ed. "Thermoelectrics handbook: macro to nano". CRC press, (2005). 25. Graf A., Arndt M., Sauer M., and Gerlach G., "Review of micromachined thermopiles for infrared detection," Meas. Sci. Technol. 18(7), R59–R75 (2007).