Publication:
Universal critical behavior of the two-dimensional Ising spin glass

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-07-01
Authors
Marinari, E.
Parisi, G.
Ruiz Lorenzo, J. J.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We use finite size scaling to study Ising spin glasses in two spatial dimensions. The issue of universality is addressed by comparing discrete and continuous probability distributions for the quenched random couplings. The sophisticated temperature dependency of the scaling fields is identified as the major obstacle that has impeded a complete analysis. Once temperature is relinquished in favor of the correlation length as the basic variable, we obtain a reliable estimation of the anomalous dimension and of the thermal critical exponent. Universality among binary and Gaussian couplings is confirmed to a high numerical accuracy.
Description
©2016 American Physical Society. This work was partially supported by the Ministerio de Economía y Competitividad (MINECO, Spain) through Grants No. FIS2012-35719-C02 and No. FIS2013-42840-P, and by the Junta de Extremadura (Spain), with partial contribution by the European Union (FEDER) through Grant No. GRU10158.
Unesco subjects
Keywords
Citation
1. S. F. Edwards and P. W. Anderson, J. Phys. F 5, 965 (1975). 2. K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986). 3. M. Mézard, G. Parisi, and M. Virasoro, Spin-Glass Theory and Beyond (World Scientific, Singapore, 1987). 4. K. Fisher and J. Hertz, Spin Glasses (Cambridge University Press, Cambridge, England, 1991). 5. A. P. Young, Spin Glasses and Random Fields (World Scientific, Singapore, 1998). 6. M. Mézard and A. Montanari, Information, Physics, and Computation (Oxford University Press, Oxford, UK, 2009). 7. K. Binder and W. Kob, Glassy Materials and Disordered Solids. An Introduction to Their Statistical Mechanics (World Scientific, Singapore, 2011). 8. S. Kirkpatrick, Phys. Rev. B 16, 4630 (1977). 9. I. Morgenstern and K. Binder, Phys. Rev. B 22, 288 (1980). 10. J. A. Blackman, Phys. Rev. B 26, 4987 (1982). 11. W. L. McMillan, Phys. Rev. B 28, 5216 (1983). 12. H. F. Cheung and W. L. McMillan, J. Phys. C 16, 7027 (1983). 13. R. N. Bhatt and A. P. Young, in Heidelberg Colloquium on Glassy Dynamics, Lecture Notes in Physics No. 275, edited by J. L. van Hemmen and I. Morgenstern (Springer, Berlin, 1987). 14. R. R. P. Singh and S. Chakravarty, Phys. Rev. Lett. 57, 245 (1986). 15. J.-S. Wang and R. H. Swendsen, Phys. Rev. B 38, 4840 (1988). 16. H. Freund and P. Grassberger, J. Phys. A 21, L801 (1988). 17. H. Freund and P. Grassberger, J. Phys. A 22, 4045 (1989). 18. J. A. Blackman and J. Poulter, Phys. Rev. B 44, 4374 (1991). 19. B. A. Berg and T. Celik, Phys. Rev. Lett. 69, 2292 (1992). 20. L. Saul and M. Kardar, Phys. Rev. E 48, R3221 (1993). 21. L. Saul and M. Kardar, Nucl. Phys. B 432, 641 (1994). 22. H. Rieger, L. Santen, U. Blasum, M. Diehl, M. Jünger, and G. Rinaldi, J. Phys. A 29, 3939 (1996). 23. H. Rieger, L. Santen, U. Blasum, M. Diehl, and M. Jünger, J. Phys. A 30, 8795 (1997). 24. A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 180404 (2001). 25. A. C. Carter, A. J. Bray, and M. A. Moore, Phys. Rev. Lett. 88, 077201 (2002). 26. C. Amoruso, E. Marinari, O. C. Martin, and A. Pagnani, Phys. Rev. Lett. 91, 087201 (2003). 27. J. Lukic, A. Galluccio, E. Marinari, O. C. Martin, and G. Rinaldi, Phys. Rev. Lett. 92, 117202 (2004). 28. T. Jörg, J. Lukic, E. Marinari, and O. C. Martin, Phys. Rev. Lett. 96, 237205 (2006). 29. J. Lukic, E. Marinari, O. C. Martin, and S. Sabatini, J. Stat. Mech. (2006) L10001. 30. F. Liers, J. Lukic, E. Marinari, A. Pelissetto, and E. Vicari, Phys. Rev. B 76, 174423 (2007). 31. H. G. Katzgraber, L. W. Lee, and I. A. Campbell, Phys. Rev. B 75, 014412 (2007). 32. F. Parisen Toldin, A. Pelissetto, and E. Vicari, Phys. Rev. E 82, 021106 (2010). 33. C. K. Thomas, D. A. Huse, and A. A. Middleton, Phys. Rev. Lett. 107, 047203 (2011). 34. F. Parisen Toldin, A. Pelissetto, and E. Vicari, Phys. Rev. E 84, 051116 (2011). 35. T. Jörg and F. Krzakala, J. Stat. Mech. (2012) L01001. 36. P. H. Lundow and I. A. Campbell, Phys. Rev. E 93, 022119 (2016). 37. S. Guchhait and R. Orbach, Phys. Rev. Lett. 112, 126401 (2014). 38. S. Guchhait, G. G. Kenning, R. L. Orbach, and G. F. Rodriguez, Phys. Rev. B 91, 014434 (2015). 39. S. Guchhait and R. L. Orbach, Phys. Rev. B 92, 214418 (2015). 40. N. G. Fytas and V. Martín-Mayor, Phys. Rev. Lett. 110, 227201 (2013). 41. F. Belletti, M. Cotallo, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, A. M. Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schifano, D. Sciretti, A. Tarancon, R. Tripiccione, J. L. Velasco, and D. Yllanes (Janus Collaboration), Phys. Rev. Lett. 101, 157201 (2008). 42. F. Belletti, A. Cruz, L. A. Fernandez, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, J. Monforte, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schifano, D. Sciretti, A. Tarancon, R. Tripiccione, and D. Yllanes (Janus Collaboration), J. Stat. Phys. 135, 1121 (2009). 43. L. A. Fernández and V. Martín-Mayor, Phys. Rev. B 91, 174202 (2015). 44. M. Hasenbusch, A. Pelissetto, and E. Vicari, J. Stat. Mech. (2008) L02001. 45. When the critical temperature Tc is nonzero the problems caused by the nonlinear scaling fields can be bypassed using a standard analysis [50, 68, 69]. In fact in 3D spin glasses [70] one compares data from different system sizes at the same temperature, namely Tc, which cures most of the problems. 46. C. K. Thomas and A. A. Middleton, Phys. Rev. E 87, 043303 (2013). 47. F. Cooper, B. Freedman, and D. Preston, Nucl. Phys. B 210, 210 (1982). 48. M. Palassini and S. Caracciolo, Phys. Rev. Lett. 82, 5128 (1999). 49. H. G. Ballesteros, A. Cruz, L. A. Fernandez, V. Martín-Mayor, J. Pech, J. J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C. L. Ullod, and C. Ungil, Phys. Rev. B 62, 14237 (2000). 50. D. J. Amit and V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd ed. (World Scientific, Singapore, 2005). 51. J. Salas and A. D. Sokal, J. Stat. Phys. 98, 551 (2000). 52. The universality of the scaling functions in D=3 spatial dimensions was carefully analyzed in[71]. 53. G. Parisi, J. Stat. Phys. 23, 49 (1980). 54. S. Caracciolo, R. G. Edwards, S. J. Ferreira, A. Pelissetto, and A. D. Sokal, Phys. Rev. Lett.74, 2969 (1995). 55. S. Caracciolo, R. G. Edwards, A. Pelissetto, and A. D. Sokal, Phys. Rev. Lett. 75, 1891 (1995). 56. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon, Oxford, 1999). 57. The elementary Monte Carlo step consisted of ten Metropolis sweeps at fixed temperature, followed by a cluster update [60] and by a parallel tempering step [61, 62]. We consider two sets of two real replicas for each temperatures. The cluster updates are performed only within each set (overlaps are computed by taking a pair of statistically independent configurations, each from one set). We performed a stringent equilibration test that takes into account the statistical correlation when comparing the last logarithmic bins [72]. 58. Data for the Gaussian model can be fit as well with a subleading correction term L−2ω, rather than with the L−2 term we use in Eq. (9). With either subleading term we found that the leading corrections to the Gaussian data vanish within numerical accuracy. 59. The tentative estimate of Ref. [22] was later found to be problematic [23] . 60. J. Houdayer, Eur. Phys. J. B 22, 479 (2001). 61. K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604 (1996). 62. E. Marinari, in Advances in Computer Simulation, edited by J. Kerstész and I. Kondor (Springer, Berlin, 1998). 63. Another general solution is to use a discrete approximation to the Gaussian distribution, such as the Gaussian-Hermite quadrature [73]. For instance, in Refs. [74, 75] a Gaussian-distributed magnetic field was simulated in this way. 64. This situation is not desirable [76], but it is almost automatically enforced by the standard thermalization tests for spin glasses [72] . 65. R. Alvarez Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A. Gordillo-Guerrero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, and D. Yllanes (Janus Collaboration), J. Stat. Mech. (2010) P06026. 66. M. Baity-Jesi, R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A. Maiorano, F. Mantovani, E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, M. Pivanti, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, and D. Yllanes, J. Stat. Mech. (2014) P05014. 67. For Lmin=32, the automated selection of T2max,ξL/L for the fits discussed in Appendix pp1-s2does not result into a good data collapse. For instance, for Gaussian couplings, ξL/L=0.1 and Lmin≥32 one needs to chose T2max,ξL/L=0.53 (rather than 0.8, as we choose for smaller Lmin). 68. M. Nightingale, Physica A 83, 561 (1976). 69. H. G. Ballesteros, L. A. Fernandez, V. Martín-Mayor, and A. Muñoz Sudupe, Phys. Lett. B 378, 207 (1996). 70. M. Baity-Jesi, R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A. Gordillo-Guerrero, D. Iniguez, A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, M. Pivanti, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, and D. Yllanes (Janus Collaboration),Phys. Rev. B 88, 224416 (2013). 71. T. Jörg, Phys. Rev. B 73, 224431 (2006). 72. L. A. Fernandez, A. Maiorano, E. Marinari, V. Martín-Mayor, D. Navarro, D. Sciretti, A. Tarancon, and J. L. Velasco, Phys. Rev. B 77, 104432 (2008). 73. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables., 9th ed. (Dover, New York, 1972). 74. L. Leuzzi, G. Parisi, F. Ricci-Tersenghi, and J. J. Ruiz-Lorenzo, Phys. Rev. Lett. 103, 267201 (2009). 75. M. Baity-Jesi, R. A. Baños, A. Cruz, L. A. Fernandez, J. M. Gil-Narvion, A. Gordillo-Guerrero, D. Iñiguez, A. Maiorano, M. Mantovani, E. Marinari, V. Martin-Mayor, J. Monforte-Garcia, A. Muñoz Sudupe, D. Navarro, G. Parisi, S. Perez-Gaviro, M. Pivanti, F. Ricci-Tersenghi, J. J. Ruiz-Lorenzo, S. F. Schifano, B. Seoane, A. Tarancon, R. Tripiccione, and D. Yllanes, Phys. Rev. E 89, 032140 (2014). 76. H. G. Ballesteros, L. A. Fernandez, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, and J. J. Ruiz-Lorenzo, Nucl. Phys. B 512, 681 (1998).
Collections