Publication:
Electrical characterization of amorphous silicon MIS-based structures for HIT solar cell applications

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-07-16
Authors
García, Héctor
Castán, Helena
Dueñas, Salvador
Bailón, Luis
Prado Millán, Álvaro del
Mártil de la Plaza, Ignacio
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100–150 °C) might be the best choice.
Description
© 2016 The Author(s). The study has been supported by the Spanish TEC2014 under Grant Nos. 52152-C3-3-R and TEC2013-41730-R, funded by the Ministerio de Economía y Competitividad, and the P2013/MAE-2780 funded by the Comunidad de Madrid.
Unesco subjects
Keywords
Citation
1. Meiling H., Brockhoff A.M., Rath J.K., Schropp R.E.I (1998) Hydrogenated amorphous and polycrystalline silicon TFTs by hot-wire CVD, J. Non-Crystalline Solids. doi:10.1016/S0022-3093(98)00298. 2. Tanaka M., Taguchi M., Matsuyama T., Sawada T., Tsuda S., Nakano S., Hanafusa H., Kuwano Y., (1992) Development of new a-Si/ e-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction-heterojunction with intrinsic thin-layer), Jpn. J. Appl. Phys., 31, 3518–22. 3. Masuko K., Shigematsu M., Hashiguchi T., Fujishima D., Kai M., Yoshimura N., Yamaguchi T., Ichihashi Y., Yamanishi T., Takahama T., Taguchi M., Maruyama E., Okamoto S., (2014) Achievement of more than 25 % conversion efficiency with crystalline silicon heterojunction solar cell, IEEE J. Photovoltaics, doi:10.1109/JPHOTOV.2014.2352151. 4. Rech B., Kluth O., Repmann T., Roschek T., Springer J., Müller J., Finger F., Stiebig H., Wagner H., (2002) New materials and deposition techniques for highly efficient silicon thin film solar cells, Sol. Energy Mater. Sol. Cells, 74, 439–42. 5. Santos J.D., Cárabe J., Gandía J.J., (2015) Silicon thin-film solar cells at high growth rate under constant power-to-flow ratio plasma conditions, Thin Solid Films, doi:10.1016/j.tsf.2015.11.011. 6. Flewit A.J., Milne W.I., (2005) Low-temperature deposition of hydrogenated amorphous silicon in an electron cyclotron resonance reactor for flexible displays, Proceed. of the IEEE, doi:10.1109/JPROC.2005.851533. 7. Redondo E., Mártil I., González-Díaz G., Castán H., Dueñas S., (2001) Influence of electron cyclotron resonance nitrogen plasma exposure on the electrical characteristics of SiNx:H/InP structures, J. Vac. Sci. Technol. B, doi:10.1116/1.1339010. 8. García-Hernansanz R., García-Hemme E., Montero D., Olea J., San Andrés E., Del Prado A., Ferrer F.J., Mártil I., González-Díaz G., (2016) Limitations of high pressure sputtering for amorphous silicon deposition, Mater. Res. Express, doi:10.1088/2053-1591/3/3/036401. 9. García-Hernansanz R., García-Hemme E., Montero D., Del Prado A., Mártil I., González-Díaz G., Olea J., (2015) Amorphous/crystalline silicon interface characterization by capacitance and conductance measurements, 10th Spanish Conference on Electron Devices Proceedings (IEEE Conference Publication), INSPEC Accession Number: 15060343, doi:10.1109/CDE.2015.7087502 10. Schulze T.F., Beushausen H.N., Leendertz C., Dobrich A., Rech B., Korte L., (2010) Interplay of amorphous silicon disorder and hydrogen content with interface defects in amorphous/crystalline silicon heterojunctions, Appl. Phys. Lett., doi:10.1063/1.3455900. 11. Kern W., Puotinen D., (1970) Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology, RCA Rev., 31, 187–206. 12. Mahan A.H., Gedvilas L.M., Webb J.D., (2000) Si-H bonding in low hydrogen content amorphous silicon films as probed by infrared spectroscopy and xray diffraction, J. Appl. Phys., doi:10.1063/1.372073. 13. Girginoudi D., Tsiarapas C., Georgoulas N., (2011) Properties of a-Si:H films deposited by RF magnetron sputtering at 95 °C, Appl. Surf. Sci., doi:10.1016/j.apsusc.2010.11.115. 14. Masson P., Autran J.L., Houssa M., Garros X., Leroux C., (2002) Frequency characterization and modeling of interface traps in HfSixOy/HfO2 gate dielectric stack from a capacitance point-of-view, Appl. Phys. Lett., 81, 33924. 15. Stesmans A., Afanas’ev V.V., (2003) Si dangling-bond type defects at the interface of (100)Si with ultrathin HfO2, Appl. Phys. Lett., 82, 4074–6. 16. Dueñas S., Castán H., Barbolla J., Kukli K., Ritala M., Leskelä M., (2003) Conductance transient, capacitance voltage and deep-level transient spectroscopy characterization of atomic layer deposited hafnium and zirconium oxide thin films, Solid State Electron, 47 (2003), 1623–9. 17. García H., Dueñas S., Castán H., Bailón L., Kukli K., Aarik J., Ritala M., Leskelä M., (2008) Identification of spatial localization and energetic position of electrically active defects in amorphous high-k dielectrics for advanced devices, J. Non-Crystalline Solids, 354, 393–8. 18. Dueñas S., Castán H., García H., Gómez A., Bailón L., Kuli K., Aarik J., Ritala M., Leskelä M., (2008) Comparative study of flatband voltage transients on highk dielectric-based metal–insulator–semiconductor capacitors, J. Electrochem. Soc., doi:10.1149/1.2975828. 19. Dueñas S., Castán H., García H., Bailón L., Kukli K., Hatanpää T., Ritala, Leskelä M., (2007) Experimental observations of temperature-dependent flat band voltage transients on high-k dielectrics, Microelectron. Reliab., doi:10.1016/j.microrel.2007.01.080.
Collections