Publication:
Diketonylpyridinium cations as a support of new ionic liquid crystals and ion-conductive materials: analysis of counter-ion effects

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-05
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI AG
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Ionic liquid crystals (ILCs) allow the combination of the high ionic conductivity of ionic liquids (ILs) with the supramolecular organization of liquid crystals (LCs). ILCs salts were obtained by the assembly of long-chained diketonylpyridinium cations of the type [HOO^(R(n)pyH)] + and BF_(4)^(-) , ReO_(4)^(-), NO_(3)^(-), CF_(3)SO_(3)^(-), CuCl_(4)^(2-) counter-ions. We have studied the thermal behavior of five series of compounds by differential scanning calorimetry (DSC) and hot stage polarized light optical microscopy (POM). All materials show thermotropic mesomorphism as well as crystalline polymorphism. X-ray diffraction of the [HOO^(R(12)pyH)][ReO_(4)] crystal reveals a layered structure with alternating polar and apolar sublayers. The mesophases also exhibit a lamellar arrangement detected by variable temperature powder X-ray diffraction. The CuCl_(4)^(2-) salts exhibit the best LC properties followed by the ReO_(4)^(-) ones due to low melting temperature and wide range of existence. The conductivity was probed for the mesophases in one species each from the ReO_(4)^(-) , and CuCl_(4)^(2-) families, and for the solid phase in one of the non-mesomorphic Cl^(-) salts. The highest ionic conductivity was found for the smectic mesophase of the ReO_(4)^(-) containing salt, whereas the solid phases of all salts were dominated by electronic contributions. The ionic conductivity may be favored by the mesophase lamellar structure.
Description
© 2016 by the authors, licensee MDPI, Basel, Switzerland. Mercedes Cano thanks the Spanish Ministerio de Economía y Competitividad (project CTQ2011-25172 and CTQ2015-63858) and Complutense University (GR3/14-910300), for funding. María Jesús Pastor acknowledges the Ministerio de Economía y Competitividad for her FPI scholarship. Cristián Cuerva is grateful to the Programa de Financiación de Universidad Complutense de Madrid-Santander Universidades (Spain), for his predoctoral contract. María Jesús Pastor, Cristián Cuerva, José A. Campo and Mercedes Cano thank to Dra. Paloma Ovejero for her help with the synthesis and characterization of the compounds. Rainer Schmidt wishes to express his gratitude to Alberto Rivera-Calzada, Carlos León and Jacobo Santamaría for allowing the use and assistance with the dielectric spectroscopy.
Unesco subjects
Keywords
Citation
1. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B., Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater., 2009, 8, 621–629. 2. Plechkova, N.V., Seddon, K.R., Applications of ionic liquids in the chemical industry, Chem. Soc. Rev., 2008, 37, 123–150. 3. Gordon, C.M., New developments in catalysis using ionic liquids, Appl. Cat. A Gen., 2001, 222, 101–117. 4. Sheldon, R., Catalytic reactions in ionic liquids, Chem. Commun., 2001. 5. Wasserscheid, P., Ionic Liquids in Synthesis, Wiley VCH: Weinheim, Germany, 2003. 6. Bowlas, C.J., Bruce, D.W., Seddon, K.R., Liquid crystalline ionic liquids, Chem. Commun., 1996, 1625–1626. 7. Yamanaka, N., Kawano, R., Kubo, W., Masaki, N., Kitamura, T., Wada, Y., Watanabe, M., Yanagida, S., Dye Sensitized TiO2 Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytes, J. Phys. Chem. B, 2007, 111, 4763–4769. 8. Sakuda, J., Yoshio, M., Ichikawa, T., Ohno, H., Kato, T., 2D assemblies of ionic liquid crystals based on imidazolium moieties: Formation of ion-conductive layers, New J. Chem., 2015, 39, 4471–4477. 9. Yoshio, M., Mukai, T., Ohno, H., Kato, T., One dimensional ion transport in self-organized columnar ionic liquids, J. Am. Chem. Soc., 2004, 126, 994–995. 10. Yoshio, M., Kagata, T., Mukai, T., Ohno, H., Kato, T., One-dimensional ion-conductive polymer films: Alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals, J. Am. Chem. Soc., 2006, 128, 5570–5577. 11. Yazaki, S., Kamikawa, Y., Yoshio, M., Hamasaki, A., Mukai, T., Ohno, H., Kato, T., Ionic liquid crystals: Self-assembly of imidazolium salts containing and L-glutamic acid moiety, Chem. Lett., 2008, 37, 538–539. 12. Tanabe, K., Yasuda, T., Kato, T., Luminescent ionic liquid crystals based on tripodal pyridinium salts, Chem. Lett., 2008, 37, 1208–1209. 13. Kato, T., Yasuda, T., Kamikawa, Y., Yoshio, M., Self assembly of functional columnar liquid crystals, Chem. Commun. 2009, 729–739. 14. Frise, A.E., Ichikawa, T., Yoshio, M., Ohno, H., Dvinskilch, S.V., Kato, T., Furó, I., Ion-conductive behaviour in a confined nanostructure: NMR observation of self-diffusion in a liquid-crystalline bicontinous cubic phase, Chem. Commun., 2010, 46, 728–730. 15. Kato, T., From nanostructured liquid crystals to polymer-based electrolytes, Angew. Chem. Int. Ed., 2010, 49, 7847–7848. 16. Tanabe, K., Suzui, Y., Hasegawa, M., Kato, T., Full color tunable photoluminescent ionic liquid crystals based on tripodal pyridinium, pyrimidinium and quinolinium salts, J. Am. Chem. Soc., 2012, 134, 5652–5661. 17. Soberats, B., Uchida, E., Yoshio, M., Kagimoto, J., Ohno, H., Kato, T., Macroscopic photocontrol of ion transporting pathways of a nanostructural imidazolium based photoresponsive liquid crystal, J. Am. Chem. Soc., 2014, 136, 9552–9555. 18. Soberats, B., Yoshio, M., Ichikawa, T., Taguchi, S., Ohno, H., Kato, T., 3D Anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid, J. Am. Chem. Soc., 2014, 136, 15286–15289. 19. Högberg, D., Soberats, B., Uchida, S., Yoshio, M., Kloo, L., Segawa, H., Kato, T., Nanostructured two component liquid-crystalline electrolytes for high temperature dye-sensitized solar cells, Chem. Mat., 2014, 26, 6496–6502. 20. Cho, B.-K., Nanostructured organic electrolytes, RSC Adv., 2014, 4, 395–405. 21. Sergeyev, S., Pisula, W., Geerts, Y.H., Discotic liquid crystals: A new generation of organic semiconductors, Chem. Soc. Rev., 2007, 36, 1902–1929. 22. Wang, X., Vogel, C.S., Heinemann, F.W., Wasserscheid, P., Meyer, K., Solid-State Structures of Double-Long-Chain Imidazolium Ionic Liquids: Influence of Anion Shape on Cation Geometry and Crystal Packing, Cryst. Growth Des., 2011, 11, 1974–1988. 23. Wang, X., Heinemann, F.W., Yang, M., Melcher, B.U., Fekete, M., Mudring, A.-V., Wasserscheid, P., Meyer, K., A new class of double alkyl-substituted, liquid crystalline imidazolium ionic liquids-a unique combination of structural features, viscosity effects, and thermal properties, Chem. Commun., 2009, 7405–7407. 24. Dobbs, W., Douce, L., Allouche, L., Louati, A., Malbosc, F., Welter, R., New ionic liquid crystals based on imidazolium salts, New J. Chem., 2006, 30, 528–532. 25. Stappert, K., Mudring, A.V., Triazolium based ionic liquid crystals: Effect of asymmetric substitution, RSC Adv., 2015, 5, 16886–16896. 26. Stappert, K., Unal, D., Mallick, B., Mudring, A.-V., New triazolium based ionic liquid crystals, J. Mater. Chem. C, 2014, 2, 7976–7986. 27. Causin, V., Saielli, G., Effect of a structural modification of the bipyridinium core on the phase behavior of viologen-based bistriflimide salts, J. Mol. Liq., 2009, 145, 41–47. 28. Sudholter, E.J.R., Engberts, J.B.F.N., De Jeu, W.H., Thermotropic liquid-crystalline behavior of some singleand double-chained pyridinium amphiphiles, J. Phys. Chem., 1982, 86, 1908–1913. 29. Lava, K., Binnemans, K., Cardinaels, T., Piperidinium, Piperazinium and Morpholinium Ionic Liquid Crystals, J. Phys. Chem. B, 2009, 113, 9506–9511. 30. Yang, M., Stappert, K., Mudring, A.-V., Bis-cationic ionic liquid crystals, J. Mater. Chem. C, 2014, 2, 458 473. 31. Yang, M., Mallick, B., Mudring, A.-V., A Systematic Study on the Mesomorphic Behavior of Asymmetrical 1-Alkyl 3-dodecylimidazolium Bromides, Cryst. Growth Des., 2014, 14, 1561–1571. 32. Yang, M., Mallick, B., Mudring, A.-V., On the Mesophase Formation of 1,3-Dialkylimidazolium Ionic Liquids, Cryst. Growth Des., 2013, 13, 3068–3077. 33. Neve, F., Francescangeli, O., Crispini, A., Crystal architecture and mesophase structure of long-chain N-alkylpyridinium tetrachlorometallates, Inorg. Chim. Acta, 2002, 338, 51–58. 34. Neve, F., Crispini, A., Francescangeli, O., Structural Studies on Layered Alkylpyridinium Iodopalladate Networks, Inorg. Chem., 2000, 39, 1187–1194. 35. Getsis, A., Mudring, A.V., Imidazolium based ionic liquid crystals: Structure, photophysical and thermal behavior of [Cnmim]Br.xH2O (n = 12, 14; x = 0, 1), Cryst. Res. Technol., 2008, 43, 1187–1196. 36. Downard, A., Earle, M.J., Hardacre, C., McMath, S.E.J., Nieuwenhuyzen, M., Teat, S.J., Structural Studies of Crystalline 1-Alkyl-3-Methylimidazolium Chloride Salts, Chem. Mater., 2004, 16, 43–48. 37. Holbrey, J.D., Seddon, K.R., The phase behavior of 1 alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals, J. Chem. Soc. Dalton Trans., 1999. 38. Stappert, K., Ünal, D., Spielberg, E.T., Mudring, A. V., Influence of the Counteranion on the Ability of 1-Dodecyl-3-methyltriazolium Ionic Liquids to Form Mesophases, Cryst. Growth Des., 2015, 15, 752–758. 39. Axenov, K.V., Laschat, S., Thermotropic Ionic Liquid Crystals, Materials, 2011, 4, 206–259. 40. Sánchez, I., Campo, J.A., Heras, J.V., Torres, M.R., Cano, M., Pyrazolium salts as a new class of ionic liquid crystals, J. Mater. Chem., 2012, 22, 13239–13251. 41. Mayoral, M.J., Ovejero, P., Campo, J.A., Heras, J.V., Pinilla, E., Torres, M.R., Cano, M., Ionic liquid crystals from β-diketonyl containing pyridinium cations and tetrachlorozincate anions, Inorg. Chem. Commun., 2009, 12, 214–218. 42. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A: Theory and Applications in Inorganic Chemistry, 6th ed., Wiley: Hoboken, NJ, USA, 2009. 43. Barsukov, E., Macdonald, J., Impedance Spectroscopy: Theory, Experiment and Applications, John Wiley & Sons Inc.: Hoboken, NJ, USA, 2005. 44. Prado-Gonjal, J., Schmidt, R., Espíndola-Canuto, J., Ramos-Álvarez, P., Morán, E., Increased ionic conductivity in microwave hydrothermally synthesized rare-earth doped ceria Ce_(1-x)RE_(x)O_(2-(x/2)), J. Power Sources, 2012, 209, 163–171. 45. Prado-Gonjal, J., Heuguet, R., Muñoz-Gila, D., Rivera Calzada, A., Marinel, S., Morán, E., Schmidt, R., Microwave synthesis & sintering of Sm and Ca co-doped ceria ceramics, Int. J. Hydrogen Energy, 2015, 40, 15640 15651. 46. Irvine, J.T.S., Sinclair, D.C., West, A.R., Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater., 1990, 2, 132–138. 47. Funke, K., Hoppe, R., Jump-relaxation model yields Kohlrausch-Williams-Watts behavior, Solid State Ionics, 1990, 40–41, 200–204. 48. Boukamp, B.A., Electrochemical impedance spectroscopy in solid state ionics: Recent advances, Solid State Ionics, 2004, 169, 65–73. 49. Schmidt, R., Impedance spectroscopy of nanomaterials, In CRC Concise Encyclopedia of Nanotechnology -- Kharisov, B.I., Kharissova, O.V., Ortiz-Mendez, U., Eds., CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015. 50. Jonscher, A.K., Dielectric Relaxation in Solids, Chelsea Dielectrics Press: London, UK, 1983. 51. Gainaru, C., Rivera, A., Putselyk, S., Eska, G., Rössler, E.A., Low-temperature dielectric relaxation of molecular glasses: Crossover from the nearly constant loss to the tunneling regime, Phys. Rev. B, 2005, 72. 52. Sheldrick, G.M., Program for Refinement of Crystal Structure, SHELX97, University of Göttingen: Göttingen, Germany, 1997. 53. The Cambridge Crystallographic Data Centre (CCDC), Available online: http://www.ccdc.cam.ac.uk/data_request/cif (accessed on 10 May 2016).
Collections