Publication:
Energy estimation of cosmic rays with the Engineering Radio Array of the Pierre Auger Observatory

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-06-14
Authors
Minaya Flores, Ignacio Andrés
Vázquez Peñas, José Ramón
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30-80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy-corrected for geometrical effects-is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.
Description
© 2016 American Physical Society. Autoría conjunta: Pierre Auger collaboration. Artículo publicado por más de 10 autores. The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Gobierno de la Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council (DP150101622); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Sao Paulo Research Foundation (FAPESP) Grants No. 2010/07359-6 and No. 1999/05404-3, Ministerio de Ciencia e Tecnologia (MCT), Brazil; Grants No. MSMT-CR LG13007, No. 7AMB14AR005, and the Czech Science Foundation Grant No. 14-17501S, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), Institut Lagrange de Paris (ILP) Grant No. LABEX ANR-10-LABX-63, within the Investissements d'Avenir Programme Grant No. ANR-11-IDEX-0004-02, France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz Alliance for Astroparticle Physics (HAP), Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Istituto Nazionale di Astrofisica (INAF), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Gran Sasso Center for Astroparticle Physics (CFA), CETEMPS Center of Excellence, Ministero degli Affari Esteri (MAE), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; National Centre for Research and Development, Grants No. ERA-NET-ASPERA/01/11 and No. ERA-NET-ASPERA/02/11, National Science Centre, Grants No. 2013/08/M/ST9/00322, No. 2013/08/M/ST9/00728 and No. HARMONIA 5-2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER funds within Programa Operacional Factores de Competitividade through Fundacao para a Ciencia e a Tecnologia (COMPETE), Portugal; Romanian Authority for Scientific Research ANCS, CNDI-UEFISCDI partnership projects Grants No. 20/2012 and No. 194/2012, Grants No. 1/ASPERA2/2012 ERA-NET, No. PN-IIRU-PD-2011-3-0145-17 and No. PN-II-RU-PD-2011-30062, the Minister of National Education, Programme Space Technology and Advanced Research (STAR), Grant No. 83/2013, Romania; Slovenian Research Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio de Educacion y Ciencia, Xunta de Galicia, European Community 7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contracts No. DE-AC0207CH11359, No. DE-FR02-04ER41300, No. DE-FG0299ER41107 and No. DE-SC0011689, National Science Foundation, Grant No.; 0450696, The Grainger Foundation, USA; NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle Physics Latin American Network, European Union 7th Framework Program, Grant No. PIRSES-2009-GA-246806; and UNESCO.
UCM subjects
Keywords
Citation
1. A. Aab et al. (Pierre Auger Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 798, 172 (2015). 2. H. Kawai et al. (Telescope Array Collaboration), Nucl. Phys. B, Proc. Suppl. 175–176, 221 (2008). 3. H. Falcke et al. (LOPES Collaboration), Nature (London) 435, 313 (2005). 4. D. Ardouin et al. (Codalema Collaboration), Astropart. Phys. 26, 341 (2006). 5. T. Huege, Braz. J. Phys. 44, 520 (2014). 6. P. Abreu et al., J. Instrum. 7, P11023 (2012). 7. P. A. Bezyazeekov et al. (Tunka-Rex Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 802, 89 (2015). 8. C. Glaser for the Pierre Auger Collaboration, AIP Conf. Proc. 1535, 68 (2013). 9. W. Apel et al. (LOPES Collaboration), Phys. Rev. D 90, 062001 (2014). 10. S. Buitink et al., Phys. Rev. D 90, 082003 (2014). 11. D. Ardouin et al. (Codalema Collaboration), Astropart. Phys. 31, 192 (2009). 12. J. H. Hough and J. R. Prescott, in Proceedings of the VI Interamerican Seminar on Cosmic Rays, Universidad Mayor de San Andres, La Paz, Bolivia, 1970, Vol. 2, p. 527. 13. J. R. Prescott, J. H. Hough, and J. K. Pidcock, Nature (London) Phys. Sci. 233, 109 (1971). 14. V. Marin for the Codalema Collaboration, in Proceedings of the 32nd International Cosmic Ray Conference, Beijing, China (Curran Associates, Inc., Red Hook, New York, 2014), Vol. 1, p. 291. 15. A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D 89, 052002 (2014). 16. K. Werner and O. Scholten, Astropart. Phys. 29, 393 (2008). 17. M. Ludwig and T. Huege, Astropart. Phys. 34, 438 (2011). 18. J. Alvarez-Muñiz, W. R. Carvalho, and E. Zas, Astropart. Phys. 35, 325 (2012). 19. A. Nelles, S. Buitink, H. Falcke, J. R. Hörandel, T. Huege, and P. Schellart, Astropart. Phys. 60, 13 (2015). 20. T. Huege, R. Ulrich, and R. Engel, Astropart. Phys. 30, 96 (2008). 21. A. Aab et al. (Pierre Auger Collaboration), preceding Letter, Phys. Rev. Lett. 116, 241101 (2016). 22. P. Abreu et al. (Pierre Auger Collaboration), J. Instrum. 7, P10011 (2012). 23. T. Huege, M. Ludwig, and C. W. James, AIP Conf. Proc. 1535, 128 (2013). 24. K. Weidenhaupt for the Pierre Auger Collaboration, Acta Polytechnica 53, 825 (2013). 25. J. Maller for the Pierre Auger Collaboration, in Proceedings of the 6th International Conference on Acoustic Radio EeV Neutrino Detection, 2014 (unpublished). 26. J. L. Kelley for the Pierre Auger Collaboration, Nucl. Instrum. Methods Phys. Res., Sect. A 725, 133 (2013). 27. The Hilbert envelope is the instantaneous amplitude. 28. A. Schulz for the Pierre Auger Collaboration, in Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2013, http://www.cbpf.br/~icrc2013/papers/icrc2013-0769.pdf. 29. S. Argirò, S. L. C. Barroso, J. Gonzalez, L. Nellen, T. Paul, T. A. Porter, L. Prado Jr., M. Roth, R. Ulrich, and D. Veberič, Nucl. Instrum. Methods Phys. Res., Sect. A 580, 1485 (2007). 30. I. Mariş for the Pierre Auger Collaboration, in Proceedings of the 32nd International Cosmic Ray Conference, Beijing, China, 2011 (Curran Associates, Inc., Red Hook, New York, 2014), Vol. 1, p. 267. 31. P. Abreu et al. (Pierre Auger Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 635, 92 (2011). 32. G. A. Askaryan, Sov. Phys. JETP 14, 441 (1962). 33. F. D. Kahn and I. Lerche, Proc. R. Soc. A 289, 206 (1966). 34. O. Scholten, K. D. de Vries, and K. Werner, Nucl. Instrum. Methods Phys. Res., Sect. A 662, S80 (2012). 35. P. Schellart et al., J. Cosmol. Astropart. Phys. 10 (2014) 014. 36. S. Fliescher, Ph. D. thesis, RWTH Aachen University, 2011. 37. M. Stephan, Pierre Auger Collaboration, Antennas, filters and preamplifiers designed for the radio detection of ultra-high-energy cosmic rays, in Proceedings of Asia-Pacific-Microwave Conference, Yokohama, 2010, pp. 1455–1458, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5728536&tag;=1. 38. K. D. de Vries, A. M. van den Berg, O. Scholten, and K. Werner, Astropart. Phys. 34, 267 (2010). 39. M. Ender et al., Radio emission of extensive air showers during thunderstorms, in (Curran Associates, Inc., Red Hook, New York, 2009), Vol. 1, p. 219. 40. P. Schellart et al., Phys. Rev. Lett. 114, 165001 (2015). 41. S. Nehls, Ph.D. thesis, Institut für Kernphysik, Universität Karlsruhe, 2008. 42. K. Weidenhaupt, Ph. D. thesis, RWTH Aachen University, 2014. 43. S. Buitink et al., Nature (London) 531, 70 (2016). 44. I. Mariş for the Pierre Auger Collaboration, Proc. Sci., EPS-HEP2013 (2013) 405. 45. A. Aab et al. (Pierre Auger Collaboration), Phys. Rev. D 91, 032003 (2015). 46. H. P. Dembinski, B. Kégl, I. C. Mariş, M. Roth, and D. Veberič, Astropart. Phys. 73, 44 (2016). 47. G. Farrar for the Pierre Auger Collaboration, in , p. 1108, http://www.cbpf.br/~icrc2013/papers/icrc2013-1108.pdf. 48. V. Verzi for the Pierre Auger Collaboration, in Proceedings of the 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil, 2013, p. 0928, http://www.cbpf.br/~icrc2013/papers/icrc2013-0928.pdf. 49. D. Heck, G. Schatz, T. Thouw, J. Knapp, and J. Capdevielle, Report No. FZKA 6019, 1998. 50. A. Nelles et al., Astropart. Phys. 65, 11 (2015).
Collections