Publication:
A Review of ENSO Influence on the North Atlantic. A Non-Stationary Signal

Research Projects
Organizational Units
Journal Issue
Abstract
The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.
Description
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license. We thank the Climatic Research Unit (CRU), the National Centers for Environmental Prediction (NCEP), the Met Office Hadley Centre and the US National Hurricane Center (NHC) for the Land Precipitation, reanalysis, SST and HURDAT2 datasets, respectively. Belen Rodríguez-Fonseca, Roberto Suárez-Moreno, Jorge López-Parages, Iñigo Gómara, Elsa Mohino, Teresa Losada and Antonio Castaño-Tierno are supported by the research projects PREFACE (EUFP7/2007-2013 Grant Agreement 603521) and MULCLIVAR (CGL2012-38923-C02-01-Spanish Ministry of Economy and Competitiveness). Blanca Ayarzagüena is supported by the Natural Environment Research Council (grant number NE/M006123/1). Julián Villamayor is granted through a scholarship from the MICINN—Spanish government (BES-2013-063821). Finally, we would like to thank the two anonymous reviewers for their pertinent comments and suggestions, which have contributed to improve this manuscript.
UCM subjects
Unesco subjects
Keywords
Citation
1. Brönnimann, S. Impact of El Niño–Southern Oscillation on European climate. Rev. Geophys. 2007, 45. 2. Hurrell, J.W.; Deser, C. North Atlantic climate variability: The role of the North Atlantic Oscillation. J. Mar. Syst. 2010,79, 231–244. 3. García-Serrano, J.; Rodríguez-Fonseca, B.; Bladé, I.; Zurita-Gotor, P.; Cámara, A. Rotational atmospheric circulation during North Atlantic-European winter: The influence of ENSO. Clim. Dyn. 2011, 37, 1727–1743. 4. Bladé, I.; Liebmann, B.; Fortuny, D.; van Oldenborgh, G.J. Observed and simulated impacts of the summer NAO in Europe: Implications for projected drying in the Mediterranean region. Clim. Dyn. 2012, 39, 709–727. 5. Baldwin, M.P.; Dunkerton, T.J. Stratospheric harbingers of anomalous weather regimes. Science 2001, 294, 581–584. PubMed 6. Alheit, J.; Bakun, A. Population synchronies within and between ocean basins: Apparent teleconnections and implications as to physical–biological linkage mechanisms. J. Mar. Syst. 2010, 79, 267–285. 7. Franzke, C.; Lee, S.; Feldstein, S.B. Is the North Atlantic Oscillation a breaking wave? J. Atmos. Sci. 2004, 61, 145–160. 8. Woollings, T.; Hoskins, B.; Blackburn, M.; Berrisford, P. A New Rossby Wave-breaking Interpretation of the North Atlantic Oscillation. J. Atmos. Sci. 2008, 65, 609–626. 9. Strong, C.; Magnusdottir, G. Tropospheric Rossby wave breaking and the NAO/NAM. J. Atmos. Sci. 2008, 65, 2861–2876. 10. Trenberth, K.E. The Definition of El Niño. Bull. Am. Meteorol. Soc. 1997, 78, 2771–2777. 11. Van Loon, H.; Madden, R.A. The Southern Oscillation. Part I: Global associations with pressure and temperature in northern winter. Mon. Weather Rev. 1981, 109, 1150–1162. 12. Hamilton, K. A detailed examination of the extratropical response to tropical El Niño/Southern Oscillation events. J. Climatol. 1988, 8, 67–86. 13. Kiladis, G.N.; Diaz, H.F. Global climatic anomalies associated with extremes in the Southern Oscillation. J. Clim. 1989,2, 1069–1090. 14. Fraedrich, K.; Müller, K. Climate anomalies in Europe associated with ENSO extremes. Int. J. Climatol. 1992, 12, 25–31. 15. Fraedrich, K. An ENSO impact on Europe? Tellus A 1994, 46, 541–552. 16. Moron, V.; Plaut, G. The impact of El Nino–southern oscillation upon weather regimes over Europe and the North Atlantic during boreal winter. Int. J. Climatol. 2003, 23, 363–379. 17. Van Loon, H.; Labitzke, K. The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Weather Rev. 1987, 115, 357–369. 18. Manzini, E.; Giorgetta, M.A.; Esch, M.; Kornblueh, L.; Roeckner, E. The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Clim. 2006, 19, 3863–3881. 19. García-Herrera, R.; Calvo, N.; García, R.R.; Giorgetta, M.A. Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis-data. J. Geophys. Res. 2006, 111. 20. López-Parages, J.; Rodríguez-Fonseca, B. Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys. Res. Lett. 2012, 39. 21. López-Parages, J.; Rodríguez-Fonseca, B.; Terray, L. A mechanism for the multidecadal modulation of ENSO teleconnection with Europe. Clim. Dyn. 2014, 45, 867–880. 22. López-Parages, J.; Rodríguez-Fonseca, B.; Dommenget, D.; Frauen, C. ENSO influence on the North Atlantic European climate: A non-linear and non-stationary approach. Clim. Dyn. 2015. 23. Luksch, U.; Raible, C.C.; Blender, R.; Fraedrich, K. Decadal cyclone variability in the North Atlantic. Meteorol. Z. 2005,14, 747–753. 24. Raible, C.C.; Lehner, F.; Gonzalez-Rouco, J.F.; Fernandez-Donado, L. Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. Clim. Past 2014, 10, 537–550. 25. Hertig, E.; Beck, C.; Wanner, H.; Jacobeit, J. A review of non-stationarities in climate variability of the last century with focus on the North Atlantic–European sector. Earth-Science Rev. 2015, 147, 1–17. 26. Gómara, I.; Rodríguez-Fonseca, B.; Zurita-Gotor, P.; Ulbrich, S.; Pinto, J.G. Abrupt transitions in the NAO control of explosive North Atlantic cyclone development. Clim. Dyn. 2016. 27. Mohino, E.; Rodríguez-Fonseca, B.; Losada, T.; Gervois, S.; Janicot, S.; Bader, J.; Ruti, P.; Chauvin, F. Changes in the interannual SST-forced signals on West African rainfall. AGCM intercomparison. Clim. Dyn. 2011, 37, 1707–1725. 28. Rodríguez-Fonseca, B.; Janicot, S.; Mohino, E.; Losada, T.; Bader, J.; Caminade, C.; Voldoire, A. Interannual and decadal SST- forced responses of the West African monsoon. Atmos. Sci. Lett. 2011, 12, 67–74. 29. Rodríguez-Fonseca, B.; Mohino, E.; Mechoso, C.R.; Caminade, C.; Biasutti, M.; Gaetani, M.; García-Serrano, J.; Vizy, E.K.; Cook, K.; Xue, Y.; et al. Variability and Predictability of West African Droughts. A review on the role of Sea Surface Temperature Anomalies. J. Clim. 2015. 30. Philander, S.G. El Niño, la Niña, and the Southern Oscillation; Academic Press: San Diego, CA, USA, 1989. 31. Cry, G.W. Effects of Tropical Cyclone Rainfall on the Distribution of Precipitation Over the Eastern and Southern United States; Professional Paper 1; United States Department of Commerce, Environmental Sciences Services Administration: Washington, DC, USA, 1967; p. 67. 32. Emanuel, K.A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 2005, 436, 686–688. PubMed 33. Rappaport, E. Inland Flooding. National Hurricane Center website 2008. Available online: http://www.nhc.noaa.gov/HAW2/english/inland_flood.shtml (accessed on 10 July 2008). 34. Barlow, M. Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett. 2011,38. 35. Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. 36. Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108. 37. Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format.Mon. Weather Rev. 2013, 141, 3576–3592. 38. Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. 39. Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2006. 40. Suárez-Moreno, R.; Rodríguez-Fonseca, B. S4CAST v2.0: Sea surface temperature based statistical seasonal forecast model. Geosci. Model Dev. 2015, 8, 3639–3658. 41. Villamayor, J.; Mohino, E. Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations.Geophys. Res. Lett. 2015, 42, 1214–1222. 42. Folland, C.K.; Palmer, T.N.; Parker, D.E. Sahel rainfall and worldwide sea temperatures, 1901-1985. Nature 1986, 320, 602–607. 43. Palmer, T.N. Influence of the Atlantic, Pacific and Indian oceans on Sahel rainfall. Nature 1986, 322, 251–253. 44. Janicot, S.; Moron, V.; Fontaine, B. Sahel droughts and ENSO dynamics. Geophys. Res. Lett. 1996, 23, 515–518. 45. Janicot, S.; Harzallah, A.; Fontaine, B.; Moron, V. West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970-1988). J. Clim. 1998, 11, 1874–1882. 46. Janicot, S.; Trzaska, S.; Poccard, I. Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Clim. Dyn. 2001, 18, 303–320. 47. Fontaine, B.; Trzaska, S.; Janicot, S. Evolution of the relationship between near global and Atlantic SST modes and the rainy season in West Africa: Statistical analyses and sensitivity experiments. Clim. Dyn. 1998, 14, 353–368. 48. Rowell, D.P. Teleconnections between the tropical Pacific and the Sahel. Q. J. R. Meteorol. Soc. 2001, 127, 1683–1706. 49. Joly, M.; Voldoire, A. Influence of ENSO on the West African monsoon: Temporal aspects and atmospheric processes.J. Clim. 2009, 22, 3193–3210. 50. Mohino, E.; Rodríguez-Fonseca, B.; Mechoso, C.R.; Gervois, S.; Ruti, P.; Chauvin, F. Impacts of the tropical Pacific/Indian Oceans on the seasonal cycle of the West African monsoon. J. Clim. 2011, 24, 3878–3891. 51. Losada, T.; Rodriguez-Fonseca, B.; Mohino, E.; Bader, J.; Janicot, S.; Mechoso, C.R. Tropical SST and Sahel rainfall: A non-stationary relationship. Geophys. Res. Lett. 2012, 39. 52. Giannini, A.; Saravannan, R.; Chang, P. Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Clim. Dyn. 2005, 25, 517–535. 53. Cook, K.H.; Vizy, E.K. Coupled model simulations of the West African monsoon system: Twentieth and twenty-first century simulations. J. Clim. 2006, 19, 3681–3703. 54. Rodríguez-Fonseca, B.; Polo, I.; García-Serrano, J.; Losada, T.; Mohino, E.; Mechoso, C.R.; Kucharski, F. Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett. 2009, 36. 55. Landsea, C.W.; Pielke, R.A., Jr.; Mestas-Nunez, A.M.; Knaff, J.A. Atlantic basin hurricanes: Indices of climatic changes. Clim. Chang. 1999, 42, 89–129. 56. Emanuel, K.A. Tropical Cyclones. Annu. Rev. Earth Planet. Sci. 2003, 31, 75–104. 57. Blake, E.S.; Rappaport, E.N.; Landsea, C.W. The Deadliest, Costliest, and Most Intense United States Tropical Cyclones from 1851 to 2006 (and Other Frequently Requested Hurricane Facts); NOAA Technical Memorandum NWS TPC-5; National Hurricane Center: Miami, FL, USA, 2007. 58. Gray, W.M. Global view of the origins of tropical disturbances and storms. Mon. Weather Rev. 1968, 96, 669–700. 59. Landsea, C.W. A climatology of intense (or major) Atlantic hurricanes. Mon. Weather Rev. 1993, 121, 1703–1713. 60. Goldenberg, S.B.; Shapiro, L.J. Physical mechanisms for the association of El Niño and West African rainfall with Atlantic major hurricane activity. J. Clim. 1996, 9, 1169–1187. 61. Saunders, M.A.; Harris, A.R. Statistical evidence links exceptional 1995 Atlantic hurricane season to record sea warming. Geophys. Res. Lett. 1997, 24, 1255–1258. 62. Gray, W.M. Atlantic seasonal hurricane frequency, Part I: El Niño and 30 mb quasi-biennial oscillation influences.Mon. Weather Rev. 1984, 115, 1649–1668. 63. Aiyyer, A.; Thorncroft, C. Climatology of vertical shear over the tropical Atlantic. J. Clim. 2006, 19, 2969–2983. 64. Bove, M.C.; Elsner, J.B.; Landsea, C.W.; Niu, X.; O’Brien, J.J. Effect of El Niño on U.S. landfalling hurricanes, revisited.Bull. Am. Meteorol. Soc. 1998, 79, 2477–2482. 65. Elsner, J.B.; Bossak, B.H.; Nui, X.F. Secular changes to the ENSO-U.S. hurricane relationship. Geophys. Res. Lett. 2001,28, 4123–4126. 66. Smith, S.R.; Brolley, J.; Tartaglione, C.A. ENSO’s impact on regional U.S. hurricane activity. J. Clim. 2007, 20, 1404–1414. 67. Shapiro, L.J. Hurricane climatic fluctuations. Part II: Relation to large-scale circulation. Mon. Weather Rev. 1982, 110, 1014–1023. 68. Gray, W.M. Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Mon. Weather Rev. 1984, 112, 1669–1683. 69. Tartaglione, C.A.; Smith, S.R.; O’Brien, J.J. ENSO Impact on Hurricane Landfall Probabilities for the Caribbean. J. Clim. 2003, 16, 2925–2931. 70. Gray, W.M.; Sheaffer, J.D.; Landsea, C.W. Climate Trends Associated with Multidecadal Variability of Atlantic Hurricane Activity. Hurricanes, Climate and Socioeconomic Impacts; Diaz, H.F., Pulwarty, R.S., Eds.; Springer: Berlin, Germany, 1997; pp. 15–53. 71. Goldenberg, S.B.; Landsea, C.W.; Mestas-Nunez, A.M.; Gray, W.M. The recent increase in Atlantic hurricane activity: Causes and implications. Science 2001, 293, 474–479. PubMed 72. Bell, G.D.; Chelliah, M. Leading tropical modes associated with interannual and multidecadal fluctuations in North Atlantic hurricane activity. J. Clim. 2006, 19, 590–612. 73. Nogueira, R.C.; Keim, B.D.; Brown, D.P.; Robbins, K.D. Variability of rainfall from tropical cyclones in the eastern USA and its association to the AMO and ENSO. Theor. Appl. Climatol. 2013, 112, 273–283. 74. Vecchi, G.A.; Soden, B.J. Global warming and the weakening of the tropical circulation. J. Clim. 2007, 20, 4316–4340. 75. Emanuel, K.A.; Sundararajan, R.; Williams, J. Hurricanes and global warming: Results from downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 2008, 89, 347–367. 76. Bender, M.A.; Knutson, T.R.; Tuleya, R.E.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.T.; Held, I.M. Modeled Impact of Anthropogenic Warming on the Frequency of Intense Atlantic Hurricanes. Science 2010, 327, 454–458. PubMed 77. Knight, J.R.; Allan, R.J.; Folland, C.K.; Vellinga, M.; Mann, M.E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 2005, 32. 78. Randel, W.J.; Wu, F. Biases in stratospheric and tropospheric temperature trends derived from historical radiosonde data. J. Clim. 2006, 19, 2094–2104. 79. Landsea, C.W. Hurricanes and global warming: Arising from Emanuel 2005a. Nature 2005, 438, E11–E13. PubMed 80. Chan, J.C.L. Comment on “Changes in tropical cyclone number, duration, and intensity in a warming environment”.Science 2006, 311. PubMed 81. Giannini, A.; Cane, M.; Kushnir, Y. Interdecadal Changes in the ENSO Teleconnection to the Caribbean Region and the North Atlantic Oscillation. J. Clim. 2001, 14, 2867–2879. 82. Ruiz-Barradas, A.; Carton, J.A.; Nigam, S. Role of the Atmosphere in Climate Variability of the Tropical Atlantic. J. Clim. 2003, 16, 2052–2065. 83. Wang, C.; Picaut, J. Understanding ENSO physics—A review. Earth Clim. 2004. 84. Mathieu, P.-P.; Sutton, R.T.; Dong, B.; Collins, M. Predictability of Winter Climate over the North Atlantic European Region during ENSO Events. J. Clim. 2004, 17, 1953–1974. 85. Pozo-Vázquez, D.; Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Díez, Y. A study of NAO variability and its possible non-linear influences on European surface temperature. Clim. Dyn. 2001, 17, 701–715. 86. Gouirand, I.; Moron, V. Variability of the impact of El Niño-Southern Oscillation on sea-level pressure anomalies over the North Atlantic in January to March(1874–1996). Int. J. Climatol. 2003, 23, 1549–1566. 87. Sutton, R.T.; Hodson, D.L.R. Influence of the Ocean on North Atlantic Climate Variability 1871–1999. J. Clim. 2003, 16, 3296–3313. 88. Sung, M.-K.; Kim, B.-M.; An, S.-I. Altered atmospheric responses to eastern Pacific and central Pacific El Niños over the North Atlantic region due to stratospheric interference. Clim. Dyn. 2014, 42, 159–170. 89. Ham, Y.-G.; Sung, M.-K.; An, S.-I.; Schubert, S.D.; Kug, J.-S. Role of tropical atlantic SST variability as a modulator of El Niño teleconnections. Asia Pac. J. Atmos. Sci. 2014, 50, 247–261. 90. Honda, M.; Nakamura, H.; Ukita, J.; Kousaka, I.; Takeuchi, K. Interannual Seesaw between the Aleutian and Icelandic Lows. Part I: Seasonal Dependence and Life Cycle. J. Clim. 2001, 14, 1029–1042. 91. Seager, R.; Naik, N.; Ting, M.; Cane, M.A.; Harnik, N.; Kushnir, Y. Adjustment of the atmospheric circulation to tropical Pacific SST anomalies: Variability of transient eddy propagation in the Pacific–North America sector. Q. J. R. Meteorol. Soc. 2010, 136, 277–296. 92. Li, Y.; Lau, N.C. Impact of ENSO on the atmospheric variability over the North Atlantic in late winter-Role of transient eddies. J. Clim. 2012, 25, 320–342. 93. Li, Y.; Lau, N.C. Contributions of downstream eddy development to the teleconnection between ENSO and the atmospheric circulation over the North Atlantic. J. Clim. 2012, 25, 4993–5010. 94. Drouard, M.; Rivière, G.; Arbogast, P. The North Atlantic Oscillation response to large-scale atmospheric anomalies in the northeastern Pacific. J. Atmos. Sci. 2013, 70, 2854–2874. 95. Drouard, M.; Rivière, G.; Arbogast, P. The Link between the North Pacific Climate Variability and the North Atlantic Oscillation via Downstream Propagation of Synoptic Waves. J. Clim. 2015, 28, 3957–3976. 96. Mo, K.C.; Livezey, R.E. Tropical-Extratropical Geopotential Height Teleconnections during the Northern Hemisphere Winter. Mon. Weather Rev. 1986, 114, 2488–2515. 97. Barnston, A.G.; Livezey, R.E. Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Weather Rev. 1987, 115, 1083–1126. 98. Livezey, R.E.; Mo, K.C. Tropical-extratropical teleconnections during the Northern Hemisphere winter. Part II: Relationships between monthly mean Northern Hemisphere circulation patterns and proxies for tropical convection.Mon. Weather Rev. 1987, 115, 3115–3132. 99. Yu, B.; Zhang, X.; Lin, H.; Yu, J.Y. Comparison of Wintertime North American Climate Impacts Associated with Multiple ENSO Indices. Atmos. Ocean. 2015, 53, 426–445. 100. Bladé, I.; Newman, M.; Alexander, M.A.; Scott, J.D. The late fall extratropical response to ENSO: Sensitivity to coupling and convection in the tropical West Pacific. J. Clim. 2008, 21, 6101–6118. 101. Karoly, D.J.; Plumb, R.A.; Ting, M. Examples of the Horizontal Propagation of Quasi-stationary Waves. J. Atmos. Sci.1989, 46, 2802–2811. 102. Greatbatch, R.J.; Lu, J.; Peterson, K.A. Nonstationary impact of ENSO on Euro-Atlantic winter climate. Geophys. Res. Lett. 2004, 31. 103. Kang, I.-S.; No, H.-H.; Kucharski, F. ENSO Amplitude Modulation Associated with the Mean SST Changes in the Tropical Central Pacific Induced by Atlantic Multidecadal Oscillation. J. Clim. 2014, 27, 7911–7920. 104. Fedorov, A.V.; Philander, S.G. Is El Niño changing? Science 2000, 288, 1997–2002. PubMed 105. Wang, B.; An, S.I. A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim. Dyn. 2002, 18, 475–486. 106. Larkin, N.K.; Harrison, D.E. Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys. Res. Lett. 2005, 32. 107. An, S.-I.; Ye, Z.; Hsieh, W.W. Changes in the leading ENSO modes associated with the late 1970s climate shift: Role of surface zonal current. Geophys. Res. Lett. 2006, 33. 108. Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnections. J. Geophys. Res. 2007, 112. 109. Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. PubMed 110. Choi, J.; An, S.I.; Kug, J.S.; Yeh, S.W. The role of mean state on changes in El Niño’s flavor. Clim. Dyn. 2011, 37, 1205–1215. 111. Graf, H.-F.; Zanchettin, D. Central Pacific El Niño, the “subtropical bridge”, and Eurasian climate. J. Geophys. Res.2012, 117. 112. Sanders, F.; Gyakum, J.R. Synoptic-dynamic climatology of the “bomb”. Mon. Weather Rev. 1980, 108, 1589–1606. 113. Folland, C.K.; Knight, J.; Linderholm, H.W.; Fereday, D.; Ineson, S.; Hurrel, J.W. The summer North Atlantic Oscillation: Past, present and future. J. Clim. 2009, 22, 1082–1103. 114. Wu, Z.; Lin, H. Interdecadal variability of the ENSO-North Atlantic Oscillation connection in boreal summer. Q. J. R. Meteorol. Soc. 2012, 138, 1668–1675. 115. Wang, H.; Wang, B.; Huang, F.; Ding, Q.; Lee, J.Y. Interdecadal change of the boreal summer circumglobal teleconnection (1858–2010). Geophys. Res. Lett. 2012, 39. 116. Saeed, S.; van Lipzig, N.; Müller, W.A.; Saeed, F.; Zanchettin, D. Influence of the circumglobal wave-train on European summer precipitation. Clim. Dyn. 2014, 43, 503–515. 117. Capa-Morocho, M.; Rodríguez-Fonseca, B.; Ruiz-Ramos, M. Crop yield as a bioclimatic index of El Niño impact in Europe: Crop forecast implications. Agric. For. Meteorol. 2014, 198, 42–52. 118. Rozas, V.; Camarero, J.J.; Sangüesa-Barreda, G.; Souto, M.; García-Gonzalez, I. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agric. For. Meteorol.2015, 201, 153–164. 119. Garfinkel, C.I.; Hartmann, D.L. Different ENSO teleconnections and their effects on the stratospheric polar vortex. J. Geophys. Res. 2008, 113. 120. Garfinkel, C.I.; Hartmann, D.L.; Sassi, F. Tropospheric precursors of anomalous Northern Hemisphere stratospheric polar vortices. J. Clim. 2010, 23, 3282–3299. 121. Taguchi, M.; Hartmann, D.L. Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Clim. 2006, 19, 324–332. 122. Labitzke, K.; van Loon, H. The Stratosphere: Phenomena, History, and Relevance; Springer: Berlin, Germany, 1999; p. 179. 123. Butler, A.H.; Polvani, L.M. El Niño, La Niña, and stratospheric sudden warmings: A reevaluation in light of the observational record. Geophys. Res. Lett. 2011, 38. 124. Garfinkel, C.I.; Butler, A.H.; Waugh, D.W.; Hurwitz, M.M.; Polvani, L.M. Why might stratospheric sudden warmings occur with similar frequency in El Niño and La Niña winters? J. Geophys. Res. 2012, 117. 125. Brönimann, S.; Luterbacher, J.; Staehelin, J.; Svendby, T.M.; Hansen, G.; Svenoe, T. Extreme climate of the global troposphere and stratosphere in 1940–1942 related to El Niño. Nature 2004, 431, 971–974. PubMed 126. Bell, C.J.; Gray, L.J.; Charlton-Perez, A.J.; Joshi, M.M. Stratospheric communication of El Niño teleconnections to European winter. J. Clim. 2009, 22, 4083–4096. 127. Cagnazzo, C.; Manzini, E. Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European region. J. Clim. 2009, 22, 1223–1238. 128. Butler, A.H.; Polvani, L.M.; Deser, C. Separating the stratospheric and the tropospheric pathways of El Niño-Southern Oscillation teleconnections. Environ. Res. Lett. 2014, 9. 129. Zubiaurre, I.; Calvo, N. The El Niño-Southern Oscillation (ENSO) Modoki signal in the stratosphere. J. Geophys. Res.2012, 117. 130. Hurwitz, M.M.; Calvo, N.; Garfinkel, C.I.; Butler, A.H.; Ineson, S.; Cagnazzo, C.; Manzini, E.; Peña-Ortiz, C. Extra-tropical atmospheric response to ENSO in the CMIP5 models. Clim. Dyn. 2014. 131. Iza, M.; Calvo, N. Role of stratospheric sudden warmings on the response to Central Pacific El Niño. Geophys. Res. Lett. 2015, 42, 2482–2489. 132. Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation, Climatic Significance and Environmental Impact; Hurrell, J.W., Kushnir, Y., Ottersen, G., Visbeck, M., Eds.; American Geophysical Union: Washington, DC, USA, 2003. 133. Ineson, S.; Scaife, A.A. The role of the stratosphere in the European climate response to El Niño. Nat. Geosci. 2009, 2, 32–36. 134. Mariotti, A.; Zeng, N.; Lau, K.M. Euro-Mediterranean rainfall and ENSO—A seasonally varying relationship.Geophys. Res. Lett. 2002, 29. 135. Knippertz, P.; Ulbrich, U.; Marques, F.; Corte-Real, J. Decadal changes in the link between El Niño and springtime North Atlantic Oscillation and European–North African rainfall. Int. J. Climatol. 2003, 23, 1293–1311. 136. Zanchettin, D.; Franks, S.W.; Traverso, P.; Tomasino, M. On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi-decadal variability described through the PDO index. Int. J. Climatol. 2008, 28, 995–1006. 137. Ting, M.; Hoerling, M.P.; Xu, T.; Kumar, A. Northern Hemisphere teleconnection patterns during extreme phases of the zonal-mean circulation. J. Clim. 1996, 9, 2614–2633. 138. Martín-Rey, M.; Rodríguez-Fonseca, B.; Polo, I. Atlantic opportunities for ENSO prediction. Geophys. Res. Lett. 2015,42, 6802–6810. 139. Losada, T.; Rodriguez-Fonseca, B.; Kucharski, F. Tropical influence on the summer Mediterranean climate. Atmos. Sci. Lett. 2012, 13, 36–42.
Collections