Publication:
A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory

Research Projects
Organizational Units
Journal Issue
Abstract
The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierre Auger Observatory since the start of regular operations in 2004, and includes a discussion of the impact of these measurements oil air shower reconstructions. Between 10(18) and 10(20) eV, the systematic Uncertainties due to all atmospheric effects increase from 4% to 8% in measurements of shower energy, and 4 g cm(-2) to 8 g cm(-2) in measurements of the shower maximum. (C) 2010 Elsevier B.V. All rights reserved.
Description
© 2010 Elsevier Science BV. Autoría conjunta: The Pierre Auger Collaboration. Artículo firmado por más de 10 autores. The successful installation and commissioning of the Pierre Auger Observatory would not have been possible without the Strong commitment and effort from the technical and administrative staff in Malargue.We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Fundacion Antorchas, Gobierno De La Provincia de Mendoza, Municipalidad de Malargue, NDM Holdings and Valle Las Lenas, in gratitude for their continuing cooperation over land access, Argentina; the Australian Research Council; Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundacao de Amparo a Pesquisa do Estado de Rio de Janeiro (FAPERJ), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), Ministerio de Ciencia e Tecnologia (MCT), Brazil: AVCR AV0Z10100502 and AV0Z10100522, GAAV KJB300100801 and KJB100100904, MSMT-CR LA08016, LC527, 1M06002, and MSM0021620859, Czech Republic; Centre de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique (CNRS), Conseil Regional Ile-de-France, Departement Physique Nucleaire et Corpusculaire (PNC-IN2P3/CNRS), Departement Sciences de l'Univers (SDU-INSU/CNRS), France; Bundesministerium fur Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft (DFG), Finanzministerium Baden-Wurttemberg, Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Ministerium fur Wissenschaft und Forschung, Nordrhein-Westfalen, Ministerium fur Wissenschaft, Forschung und Kunst, Baden-Wurttemberg, Germany; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), Italy; Consejo Nacional de Ciencia y Tecnologia (CONACYT), Mexico; Ministerie van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel Onderzoek der Materie (FOM), Netherlands; Ministry of Science and Higher Education, Grant Nos. I P03 D 014 30, N202 090 31/0623, and PAP/218/2006, Poland; Fundacao para a Ciencia e a Tecnologia, Portugal; Ministry for Higher Education, Science, and Technology, Slovenian Research Agency, Slovenia: Comunidad de Madrid, Consejeria de Educacion de la Comunidad de Castilla La Mancha, FEDER funds, Ministerio de Ciencia e Innovacion, Xunta de Galicia, Spain; Science and Technology Facilities Council, United Kingdom; Department of Energy, Contract No. DE-AC02-07CH11359, National Science Foundation, Grant No. 0450696, The Grainger Foundation USA; ALFA-EC I HELEN, European Union 6th Framework Program, Grant No. MEIF-CT-2005-025057, European Union 7th Framework Program, Grant No. PIEF-GA-2008-220240. and UNESCO.
UCM subjects
Keywords
Citation
[1] A. Bunner, Cosmic Ray Detection by Atmospheric Fluorescence, Ph.D. Thesis, Cornell University, Ithaca, New York, 1967. [2] F. Arqueros, J.R. Hörandel, B. Keilhauer Nucl. Instrum. Methods, A597 (2008), pp. 1–22 [3] R.M. Baltrusaitis, et al. The Utah fly’s eye detector Nucl. Instrum. Methods, A240 (1985), pp. 410–428 [4] M. Unger, B.R. Dawson, R. Engel, F. Schussler, R. Ulrich. Reconstruction of longitudinal profiles of ultra-high energy cosmic ray showers from fluorescence and Cherenkov light measurements Nucl. Instrum. Methods, A588 (2008), pp. 433–441 [5] J. Linsley, in: Proceedings of 15th ICRC, vol. 12, Plovdiv, Bulgaria, 1977, p. 89. [6] T.J.L. McComb, K.E. Turver. The average depth of cascade maximum in large cosmic ray showers from particle measurements J. Phys., G8 (1982), pp. 871–877 [7] B. Keilhauer et al., Atmospheric profiles at the southern Pierre Auger Observatory and their relevance to air shower measurement, in: Proceedings of 29th ICRC, vol. 7, Pune, India, 2005, pp. 123–127. [8] The British Atmospheric Data Centre. [9] B. Wilczyńska, et al. Variation of atmospheric depth profile on different time scales Astropart. Phys., 25 (2006), pp. 106–117 [10] B. Keilhauer, et al. Impact of varying atmospheric profiles on extensive air shower observation: fluorescence light emission and energy reconstruction Astropart. Phys., 25 (2006), pp. 259–268 [11] I. Tegen, A.A. Lacis. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol J. Geophys. Res., 101 (D14) (1996), pp. 19,237–19,244 [12] U. Baltensperger, S. Nyeki, M. Kalberer. Atmospheric particulate matter C.N. Hewitt, A.V. Jackson (Eds.), Handbook of Atmospheric Science, Blackwell (2003), pp. 228–254 [13] S. Kinne, et al. An AeroCom initial assessment – optical properties in aerosol component modules of global models Atmos. Chem. Phys., 6 (2006), pp. 1815–1834 [14] I. Allekotte, et al. The surface detector system of the Pierre Auger Observatory Nucl. Instrum. Methods, A586 (2008), pp. 409–420 [15] J. Abraham et al., The fluorescence detector of the Pierre Auger Observatory, Nucl. Instrum. Methods A, submitted for publication. [16] P. Sommers. Capabilities of a giant hybrid air shower detector Astropart. Phys., 3 (1995), pp. 349–360 [17] T. Abu-Zayyad, et al. Measurement of the cosmic ray energy spectrum and composition from View the MathML source to View the MathML source using a hybrid fluorescence technique Ap. J., 557 (2001), pp. 686–699 [18] M. Mostafá Hybrid activities of the Pierre Auger Observatory Nucl. Phys. Proc. Suppl., 165 (2007), pp. 50–58 [19] B.R. Dawson, Hybrid performance of the Pierre Auger Observatory, in: Proceedings of 30th ICRC, vol. 4, Mérida, México, 2007, pp. 425–428. [20] B. Fick, et al. The central laser facility at the Pierre Auger Observatory JINST, 1 (2006), p. P11003 [21] S.Y. BenZvi, et al. The lidar system of the Pierre Auger Observatory Nucl. Instrum. Methods, A574 (2007), pp. 171–184 [22] S.Y. BenZvi, et al. Measurement of the aerosol phase function at the Pierre Auger Observatory Astropart. Phys., 28 (2007), pp. 312–320 Available from: <arXiv:0704.0303[astro-ph]> [23] S.Y. BenZvi et al., Measurement of aerosols at the Pierre Auger Observatory, in: Proceedings of 30th ICRC, vol. 4, Mérida, México, 2007, pp. 355–358. Available from: <arXiv:0706.3236[astro-ph]>. [24] S.Y. BenZvi et al., New method for atmospheric calibration at the Pierre Auger Observatory using FRAM, a robotic astronomical telescope, in: Proceedings of 30th ICRC, vol. 4, Mérida, México, 2007, pp. 347–350. Available from: <arXiv:0706.1710[astro-ph]>. [25] L. Valore, Atmospheric aerosol measurements at the Pierre Auger Observatory, in: Proceedings of 31st ICRC, Łódź, Poland, 2009. Available from: <arXiv:0906.2358[astro-ph]>. [26] F. Kakimoto, et al. A measurement of the air fluorescence yield Nucl. Instrum. Methods, A372 (1996), pp. 527–533 [27] M. Nagano, K. Kobayakawa, N. Sakaki, K. Ando New measurement on photon yields from air and the application to the energy estimation of primary cosmic rays Astropart. Phys., 22 (2004), pp. 235–248 Available from: <arXiv:astro-ph/0406474> [28] R. Abbasi, et al. The FLASH thick-target experiment Nucl. Instrum. Methods, A597 (2008), pp. 37–40 [29] M. Bohacova, et al. A novel method for the absolute fluorescence yield measurement by AIRFLY Nucl. Instrum. Methods, A597 (2008), pp. 55–60 Available from: <arXiv:0812.3649> [30] F. Arqueros, J.R. Hoerandel, B. Keilhauer Air fluorescence relevant for cosmic-ray detection – review of pioneering measurements Nucl. Instrum. Methods, A597 (2008), pp. 23–31 Available from: <arXiv:0807.3844> [31] M. Ave, et al. Measurement of the pressure dependence of air fluorescence emission induced by electrons Astropart. Phys., 28 (2007), p. 41 Available from: <arXiv:astro-ph/0703132> [32] B. Keilhauer, J. Bluemer, R. Engel, H.O. Klages Altitude dependence of fluorescence light emission by extensive air showers Nucl. Instrum. Methods, A597 (2008), pp. 99–104 Available from: <arXiv:0801.4200[astro-ph]> [33] J.H. Seinfeld, S.N. Pandis Atmospheric Chemistry and Physics: From Air Pollution to Climate Change Wiley (2006) [34] D.K. Killinger, N. Menyuk Laser remote sensing of the atmosphere Science, 235 (1987), pp. 37–45 [35] J. Burris, T.J. McGee, W. Heaps UV Raman cross sections in nitrogen Appl. Spec., 46 (1992), p. 1076 [36] A. Bucholtz Rayleigh-scattering calculations for the terrestrial atmosphere Appl. Opt., 34 (1995), pp. 2765–2773 [37] H. Naus, W. Ubachs Experimental verification of rayleigh scattering cross sections Opt. Lett., 25 (2000), pp. 347–349 [38] G. Mie Contribution to the optics of turbid media, especially colloidal metallic suspensions Ann. Phys., 25 (1908), pp. 377–445 [39] A. Ångstrøm On the atmospheric transmission of sun radiation and on dust in the air Geographical Anal., 12 (1929), pp. 130–159 [40] E.J. McCartney Optics of the Atmosphere Wiley (1976) [41] G.L. Schuster, O. Dubovik, B.N. Holben Angstrom exponent and bimodal aerosol size distributions J. Geophys. Res., 111 (D10) (2006), p. 7207 [42] T.F. Eck, et al. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols J. Geophys. Res., 104 (D24) (1999), pp. 31333–31350 [43] D.C.B. Whittet, M.F. Bode, P. Murdin The extinction properties of Saharan dust over La Palma Vistas Astron., 30 (1987), pp. 135–144 [44] E.S. Fishburne, M.E. Neer, G. Sandri, Voice Communication Via Scattered Ultraviolet Radiation, ARAP 274, Aeronautical Research Associates, Princeton, New Jersey, 1976. [45] F. Riewe, A.E.S. Green Ultraviolet aureole around a source at a finite distance Appl. Opt., 17 (1978), pp. 1923–1929 [46] L.G. Henyey, J.L. Greenstein Diffuse radiation in the Galaxy Astrophys. J., 93 (1941), pp. 70–83 [47] M.D. Roberts The role of atmospheric multiple scattering in the transmission of fluorescence light from extensive air showers J. Phys., G31 (2005), pp. 1291–1301 [48] J. Pe¸kala, D. Góra, P. Homola, B. Wilczyńska, H. Wilczyński, Contribution of multiple scattering of cherenkov photons to shower optical image, in: Proceedings of 28th ICRC, Tsukuba, Japan, 2003, pp. 551–554. [49] M. Giller, A. Smialkowski, Multiple scattering of the fluorescence light from EAS, in: Proceedings of 29th ICRC, vol. 7, Pune, India, 2005, pp. 195–198. [50] J. Pekala, P. Homola, B. Wilczynska, H. Wilczynski Atmospheric multiple scattering of fluorescence and Cherenkov light emitted by extensive air showers Nucl. Instrum. Methods, A605 (2009), pp. 388–398 Available from: <arXiv:0904.3230[astro-ph]> [51] Campbell Scientific, Inc., Weather Stations. <http://www.campbellsci.com/>. [52] C. Bleve, Weather induced effects on extensive air showers observed with the surface detector of the Pierre Auger Observatory, in: Proceedings of 30th ICRC, vol. 4, Mérida, México, 2007, pp. 319–322. Available from: <arXiv:0706.1491[astro-ph]>. [53] J. Abraham, et al. Atmospheric effects on extensive air showers observed with the surface detector of the pierre auger observatory Astropart. Phys, 32 (2009), pp. 89–99 [54] Graw Radiosondes GmbH, <http://www.graw.de/>. [55] L. Wiencke Extracting first science measurements from the southern detector of the Pierre Auger Observatory Nucl. Instrum. Methods, A572 (2007), pp. 508–510 Available from: <arXiv:astro-ph/0607449> [56] R. Abbasi, et al. Techniques for measuring atmospheric aerosols at the high resolution fly’s eye experiment Astropart. Phys., 25 (2006), pp. 74–83 Available from: <arXiv:astro-ph/0512423> [57] A. Filipčič, et al. Scanning lidar based atmospheric monitoring for fluorescent detectors of cosmic showers Astropart. Phys., 18 (2003), pp. 501–512 [58] E. Andrews, et al. Comparison of methods for deriving the aerosol asymmetry parameter J. Geophys. Res., 111 (D10) (2006), p. D05S04 [59] D.G. Kaskaoutis, et al. On the characterization of aerosols using the angstrom exponent in the Athens area J. Atmos. Solar-Terr. Phys., 68 (2006), p. 2147 [60] J. Allen, et al. The Pierre Auger Observatory offline software J. Phys. Conf. Ser., 119 (2008), p. 032002 http://dx.doi.org/10.1088/1742-6596/119/3/032002) [61] F. Schüssler, Measurement of the cosmic ray energy spectrum above View the MathML source with the Pierre Auger Observatory, in: Proceedings 31st ICRC, Łódź, Poland, 2009. [62] C. Di Giulio, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory, in: Proceedings of 31st ICRC, Łódź, Poland, 2009. [63] J. Bellido, Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory, in: Proceedings of 31st ICRC, Łódź, Poland, 2009. [64] US Standard Atmosphere, COESA Report, US Government Printing Office, Washington, DC, 1976. [65] A. Morozov, et al. Eur. Phys. J., D33 (2005), p. 207 [66] T. Waldenmaier, J. Bluemer, H. Klages Spectral resolved measurement of the nitrogen fluorescence emissions in air induced by electrons Astropart. Phys., 29 (2008), pp. 205–222 Available from: arXiv:0709.1494[astro-ph] [67] M. Prouza, in: Proceedings of 30th ICRC, vol. 4, Mérida, México, 2007, pp. 351–354. [68] J. Abraham, et al. Observation of the suppression of the flux of cosmic rays above View the MathML source Phys. Rev. Lett., 101 (2008), p. 061101 Avaiilable from: [69] B. Keilhauer, Rapid monitoring of the atmosphere at the Pierre Auger Observatory, in: Proceedings of 31st ICRC, Łódź, Poland, 2009.
Collections