Publication:
High On/Off ratio memristive switching of manganite/cuprate bilayer by interfacial magnetoelectricity

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-08-19
Authors
Shen, Xiao
Pennycook, Timothy J.
Hernández Martín, David
Pérez, Ana
Varela del Arco, María
Puzyrev, Yevgeniy S.
Sefrioui, Zouhair
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-Blackwell
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Memristive switching serves as the basis for a new generation of electronic devices. Memristors are two-terminal devices in which the current is turned on and off by redistributing point defects, e.g., vacancies, which is difficult to control. Memristors based on alternative mechanisms have been explored, but achieving both the high On/Off ratio and the low switching energy desirable for use in electronics remains a challenge. Here we report memristive switching in a La_(0.7)Ca_(0.3)MnO_(3)/PrBa_(2)Cu_(3)O_(7) bilayer with an On/Off ratio greater than 103 and demonstrate that the phenomenon originates from a new type of interfacial magnetoelectricity. Using results from firstprinciples calculations, we show that an external electric-field induces subtle displacements of the interfacial Mn ions, which switches on/off an interfacial magnetic “dead” layer, resulting in memristive behavior for spin-polarized electron transport across the bilayer. The interfacial nature of the switching entails low energy cost about of a tenth of atto Joule for write/erase a “bit”. Our results indicate new opportunities for manganite/cuprate systems and other transition-metal-oxide junctions in memristive applications.
Description
© 2016 WILEY-VCH Verlag GmbH & Co. The work at Vanderbilt was supported by National Science Foundation grant DMR- 1207241, by Department of Energy grant DE-FG02-09ER46554, and by the McMinn Endowment at Vanderbilt University. Computational support was provided by the NSF XSEDE under Grant # TG-DMR130121. Research at UCM was supported by Spanish MICINN through grants MAT2011-27470-C02 and Consolider Ingenio 2010-CSD2009- 00013 (Imagine), by CAM through grant S2014/MAT-PHAMA II. Research at SuperSTEM, the UK National Facility for Aberration-Corrected STEM was supported by the EPSRC.
Unesco subjects
Keywords
Citation
[1] Chua, L., Memristor - the missing circuit element, IEEE Trans. Circuit Theory, 18, 507 (1971). [2] Pershin, Y. V., Di Ventra, M., Memory effects in complex materials and nanoscale systems, Advances in Physics, 60, 145 (2011). [3] Jo, S. H., et al., Nanoscale memristor device as synapse in neuromorphic systems, Nano Lett., 10, 1297 (2010). [4] Yang, J. J., Strukov, D. B., Stewart, D. R., Memristive devices for computing, Nature Nanotech., 8, 13 (2013). [5] Strukov, D. B., Snider, G. S., Stewart, D. R., Williams, R. S., The missing memristor found, Nature, 453, 80 (2008). [6] Asamitsu, A., Tomioka, Y., Kuwahara H., Tokura, Y., Current switching of resistive states in magnetoresistive manganites, Nature, 388, 50 (1997). [7] R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-based resistive switching memories - Nanoionic mechanisms, prospects, and challenges", Adv. Mater., 21, 2632-2663 (2009). [8] Jo. S. H., Lu, W., CMOS compatible nanoscale nonvolatile resistance switching memory, Nano Lett., 8, 392 (2008). [9] Goux, L., Lisoni, J. G., Wang, X. P., Jurczak, M., Wouters, D. J., Optimized Ni oxidation in 80-nm contact holes for integration of forming-free and low-power Ni/NiO/Ni memory cells, IEEE Tran. Elec. Dev., 56, 2363 (2009). [10] Blum, A. S., et al., Molecularly inherent voltage-controlled conductance switching, Nature Materials, 4, 167 (2005). [11] Chanthbouala, A., et al., A ferroelectric memristor, Nat. Mater., 11, 860 (2012). [12] Wang, X., Chen, Y., Xi, H., Li, H., Spintronic memristor through spin-torque-induced magnetization motion, IEEE Electron Dev. Lett., 30, 294 (2009). [13] Yamada, H., et al., Giant Electroresistance of Super-tetragonal BiFeO3-Based Ferroelectric Tunnel Junctions, ACS Nano, 7, 5385 (2013). [14] Wang, W. G., Li, M., Hageman, S., Chien, C. L., Electric-field-assisted switching in magnetic tunnel junctions, Nature Mater., 11, 64 (2012). [15] Chu, Y.-H., et al., Electric-field control of local ferromagnetism using a magnetoelectric multiferroic, Nature Mater., 7, 478 (2008). [16] García, V., Ferroelectric Control of Spin Polarization, Science, 327, 5969 (2010). [17] Valencia, S., et al., Interface-induced room-temperature multiferroicity in BaTiO3, Nature Mater., 10, 753 (2011). [18] Luo, W., Pennycook, S. J., Pantelides, S. T., Magnetic "dead" layer at a complex oxide interface, Phys. Rev. Lett., 101, 247204 (2008). [19] Varela, M., Sefrioui, Z., Arias, D., Santamaría, J., Intracell Changes in Epitaxially Strained YBa2Cu3O7-x Ultrathin Layers in YBa2Cu3O7-x/PrBa2Cu3O7 Superlattices, Phys. Rev. Lett., 83, 3936 (1999). [20] Cuellar, F. A., et al., Reversible electric-field control of magnetization at oxide interfaces, Nature Commun., 5, 4215 (2014). [21] Strukov, D., Alibart, F., Stanley Williams, R., Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal-oxide-metal memristors, Appl. Phys. A, 107, 509 (2012). [22] Vengalis, B., et al., Oxygen diffusion in La2/3Ga1/3MnO3 and Sr2FeMoO6 thin films, J. Phys. IV France, 11, Pr11-209 (2001). [23] Warnick, K. H., Puzyrev, Y. S., Roy, T., Fleetwood, D. M., Schrimpf & Pantelides, S. T., Room-temperature diffusive phenomena in semiconductors: The case of AlGaN, Phys. Rev. B, 84, 214109 (2011). [24] Lang, D. V., Recombination-Enhanced Reactions in Semiconductors, Ann. Rev. of Mater. Sci., 12, 377 (1982). [25] Itoh, N., Stoneham, A. M., Materials modification by electronic excitation (Cambridge Univ. Press, Cambridge, 2001). [26] Shen, X., Puzyrev, Y. S., Pantelides, S. T., “Vacancy breathing by grain boundaries – a mechanism of memristive switching in polycrystalline oxides”, MRS Commun., 3, 167 (2013). [27] Wang, D. S., Wu, R., Freeman, A. J., First-principles theory of surface magnetocrystalline anisotropy and the diatomic-pair model, Phys. Rev. B, 47, 14932–14947 (1993). [28] Ikeda, S., et al., Tunnel magnetoresistance of 604% at 300 K by suppression of Ta diffusion in CoFeB/MgO/CoFeB pseudo-spin-valves annealed at high temperature, Appl. Phys. Lett., 93, 082508 (2008). [29] Tokura, Y., et al., Competing instabilities and metastable states in (Nd,Sm)1/2Sr1/2MnO3, Phys. Rev. Lett., 76, 3186 (1996). [30] Schiffer, P., Ramírez, A. P., Bao, W., Cheong, S.-W., “Low temperature magnetoresistance and the magnetic phase diagram of La1-xCaxMnO3”, Phys. Rev. Lett., 75, 3337 (1995). [31] Hoffmann, A., Velthuis, S. G. E. te, Sefrioui, Z., Santamaría, J., Fitzsimmons, M. R., Park, S., Varela, M., Suppressed magnetization in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices, Phys. Rev. B, 72, 140407R (2005). [32] Cohn, J. L., Peterca, M., Neumeier J. J., “Low-temperature permittivity of insulating perovskite manganites”, Phys. Rev. B, 70, 214433 (2004). [33] Hirst. P. J., Humphreys. R. G., Handbook of Superconducting Materials, Cardwell, D. A., Ginley D. S., eds., (CRC press, 2003) vol I, p828. [34] Liu, Y., Cuéllar, F. A., Sefrioui, Z., Freeland, J. W., Fitzsimmons, M. R., León, C., Santamaría, J., Velthuis, S. G. E. te, Emergent Spin Filter at the Interface between Ferromagnetic and Insulating Layered Oxides, Phys. Rev. Lett., 111, 247203 (2013). [35] Wei, J. Y. T., Yeh, N.-C, Vasquez, R. P., Gupta, A., Tunneling evidence of half-metallicity in epitaxial films of ferromagnetic perovskite manganites and ferrimagnetic magnetite, J. Appl. Phys., 83, 7366 (1998). [36] He, J., Borisevich, A., Kalinin, S. V., Pennycook, S. J., Pantelides, S. T., Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry, Phys. Rev. Lett., 105, 227203 (2010). [37] Radaelli, G., et al., Electric control of magnetism at the Fe/BaTiO3 interface, Nature Comm., 5, 3404 (2014). [38] Ravindran, P., Vidya, R. Kjekshus, A., Fjellvag, H., Eriksson, O., Theoretical investigation of magnetoelectric behavior in BiFeO3, Phys. Rev. B, 74, 224412 (2006). [39] Strachan, J. P., Torrezan A. C., Medeiros-Ribeiro G., Williams R. S., Measuring the switching dynamics and energy efficiency of tantalum oxide memristors, Nanotechnology, 22, 505402 (2011). [40] Perna, P., et al., High Curie temperature for La0.7Sr0.3MnO3 thin films deposited on CeO2/YSZ-based buffered silicon substrates, J. Phys.: Condens. Matter, 21, 306005 (2009). [41] Perdew, J. P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865-3868 (1996). [42] Kresse, G., Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59, 1758-1775 (1999). [43] Kresse, G., Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54, 11169-11186 (1996). [44] Liechtenstein, A. I., Anisimov, V. I., Zaane, J., Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators, Phys. Rev. B, 52, R5467 (1995). [45] Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., A. P. Sutton, Electronenergy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B, 57, 1505 (1998).
Collections