Publication:
Candida albicans Modifies the Protein Composition and Size Distribution of THP1 macrophages-derived Extracellular Vesicles.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-10-14
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, non-coding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus, we have undertaken the first quantitative proteomic analysis on the protein composition of THP1 macrophages-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity; while in THP1 non-differenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication.
Description
Keywords
Citation
1) Brown, G. D.; Denning, D. W.; Gow, N. A.; Levitz, S. M.; Netea, M. G.; White, T. C. Hidden killers: human fungal infections. Sci. Transl. Med. 2012, 4 (165), 165rv13. (2) Netea, M. G.; Joosten, L. A. Master and commander: epigenetic regulation of macrophages. Cell Res. 2016, 26 (2), 145−6. (3) Bourgeois, C.; Majer, O.; Frohner, I. E.; Tierney, L.; Kuchler, K. Fungal attacks on mammalian hosts: pathogen elimination requires sensing and tasting. Curr. Opin. Microbiol. 2010, 13 (4), 401−8. (4) Denzer, K.; Kleijmeer, M. J.; Heijnen, H. F.; Stoorvogel, W.; Geuze, H. J. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J. Cell Sci. 2000, 113 (Pt 19), 3365− 74. (5) Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200 (4), 373−383. (6) Reales-Calderon, J. A.; Corona, F.; Monteoliva, L.; Gil, C.; Martinez, J. L. Quantitative proteomics unravels that the posttranscriptional regulator Crc modulates the generation of vesicles and secreted virulence determinants of Pseudomonas aeruginosa. J. Proteomics 2015, 127 (Pt B), 352−64. (7) Gil-Bona, A.; Llama-Palacios, A.; Parra, C. M.; Vivanco, F.; Nombela, C.; Monteoliva, L.; Gil, C. Proteomics unravels extracellular vesicles as carriers of classical cytoplasmic proteins in Candida albicans. J. Proteome Res. 2015, 14 (1), 142−53. (8) Brown, L.; Wolf, J. M.; Prados-Rosales, R.; Casadevall, A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 2015, 13 (10), 620−630. (9) Hassani, K.; Olivier, M. Immunomodulatory impact of Leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS Neglected Trop. Dis. 2013, 7 (5), e2185. (10) Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; Gangoda, L.; Mathivanan, S. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428 (4), 688−92. (11) Singh, P. P.; Smith, V. L.; Karakousis, P. C.; Schorey, J. S. Exosomes isolated from mycobacteria-infected mice or cultured macrophages can recruit and activate immune cells in vitro and in vivo. J. Immunol. 2012, 189 (2), 777−85. (12) Wang, J.; Yao, Y.; Xiong, J.; Wu, J.; Tang, X.; Li, G. Evaluation of the inflammatory response in macrophages stimulated with exosomes secreted by Mycobacterium avium-infected macrophages. BioMed Res. Int. 2015, 2015, 658421. (13) Cronemberger-Andrade, A.; Aragao-Franca, L.; de Araujo, C. F.; Rocha, V. J.; Borges-Silva, M. d. C.; Figueiras, C. P.; Oliveira, P. R.; de Freitas, L. A.; Veras, P. S.; Pontes-de-Carvalho, L. Extracellular vesicles from Leishmania-infected macrophages confer an anti-infection cytokine-production profile to naive macrophages. PLoS Neglected Trop. Dis. 2014, 8 (9), e3161. (14) Zhu, Y.; Chen, X.; Pan, Q.; Wang, Y.; Su, S.; Jiang, C.; Li, Y.; Xu, N.; Wu, L.; Lou, X.; Liu, S. A Comprehensive Proteomics Analysis Reveals a Secretory Path- and Status-Dependent Signature of Exosomes Released from Tumor-Associated Macrophages. J. Proteome Res. 2015, 14 (10), 4319−31. (15) Wang, J. J.; Chen, C.; Xie, P. F.; Pan, Y.; Tan, Y. H.; Tang, L. J. Proteomic analysis and immune properties of exosomes released by macrophages infected with Mycobacterium avium. Microbes Infect. 2014, 16 (4), 283−91. (16) Cypryk, W.; Ohman, T.; Eskelinen, E. L.; Matikainen, S.; Nyman, T. A. Quantitative proteomics of extracellular vesicles released from human monocyte-derived macrophages upon beta-glucan stimulation. J. Proteome Res. 2014, 13 (5), 2468−77. (17) Reales-Calderon, J. A.; Sylvester, M.; Strijbis, K.; Jensen, O. N.; Nombela, C.; Molero, G.; Gil, C. Candida albicans induces proinflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics. J. Proteomics 2013, 91, 106−35. (18) Reales-Calderon, J. A.; Aguilera-Montilla, N.; Corbi, A. L.; Molero, G.; Gil, C. Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans. Proteomics 2014, 14 (12), 1503−18. (19) Gillum, A. M.; Tsay, E. Y.; Kirsch, D. R. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 1984, 198 (1), 179−82. (20) Rodrigues, M. L.; Nimrichter, L.; Oliveira, D. L.; Frases, S.; Miranda, K.; Zaragoza, O.; Alvarez, M.; Nakouzi, A.; Feldmesser, M.; Casadevall, A. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal transcell wall transport. Eukaryotic Cell 2007, 6 (1), 48−59. Journal of Proteome Research Article DOI: 10.1021/acs.jproteome.6b00605 J. Proteome Res. XXXX, XXX, XXX−XXX Q (21) Oliveira, D. L.; Nakayasu, E. S.; Joffe, L. S.; Guimaraes, A. J.; Sobreira, T. J.; Nosanchuk, J. D.; Cordero, R. J.; Frases, S.; Casadevall, A.; Almeida, I. C.; Nimrichter, L.; Rodrigues, M. L. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 2010, 5 (6), e11113. (22) Eisenman, H. C.; Frases, S.; Nicola, A. M.; Rodrigues, M. L.; Casadevall, A. Vesicle-associated melanization in Cryptococcus neoformans. Microbiology 2009, 155 (Pt 12), 3860−7. (23) Wessel, D.; Flugge, U. I. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal. Biochem. 1984, 138 (1), 141−3. (24) Vizcaino, J. A.; Cote, R. G.; Csordas, A.; Dianes, J. A.; Fabregat, A.; Foster, J. M.; Griss, J.; Alpi, E.; Birim, M.; Contell, J.; O’Kelly, G.; Schoenegger, A.; Ovelleiro, D.; Perez-Riverol, Y.; Reisinger, F.; Rios, D.; Wang, R.; Hermjakob, H. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 2013, 41 (Database issue), D1063−9. (25) Ramos-Fernandez, A.; Paradela, A.; Navajas, R.; Albar, J. P. Generalized method for probability-based peptide and protein identification from tandem mass spectrometry data and sequence database searching. Mol. Cell. Proteomics 2008, 7 (9), 1748−54. (26) Lopez-Serra, P.; Marcilla, M.; Villanueva, A.; Ramos-Fernandez, A.; Palau, A.; Leal, L.; Wahi, J. E.; Setien-Baranda, F.; Szczesna, K.; Moutinho, C.; et al. A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nat. Commun. 2014, 5, 5. (27) Bhatia, V. N.; Perlman, D. H.; Costello, C. E.; McComb, M. E. Software tool for researching annotations of proteins: open-source protein annotation software with data visualization. Anal. Chem. 2009, 81 (23), 9819−23. (28) Benito-Martin, A.; Peinado, H. FunRich proteomics software analysis, let the fun begin! Proteomics 2015, 15 (15), 2555−6. (29) Petersen, T. N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8 (10), 785−786. (30) Bendtsen, J. D.; Kiemer, L.; Fausboll, A.; Brunak, S. Nonclassical protein secretion in bacteria. BMC Microbiol. 2005, 5, 58. (31) Keerthikumar, S.; Chisanga, D.; Ariyaratne, D.; Al Saffar, H.; Anand, S.; Zhao, K.; Samuel, M.; Pathan, M.; Jois, M.; Chilamkurti, N.; Gangoda, L.; Mathivanan, S. ExoCarta: A Web-Based Compendium of Exosomal Cargo. J. Mol. Biol. 2016, 428, 688. (32) Diez-Orejas, R.; Molero, G.; Moro, M. A.; Gil, C.; Nombela, C.; Sanchez-Perez, M. Two different NO-dependent mechanisms account for the low virulence of a non-mycelial morphological mutant of Candida albicans. Med. Microbiol. Immunol. 2001, 189 (3), 153−160. (33) Thery, C.; Regnault, A.; Garin, J.; Wolfers, J.; Zitvogel, L.; Ricciardi-Castagnoli, P.; Raposo, G.; Amigorena, S. Molecular characterization of dendritic cell-derived exosomes: Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 1999, 147 (3), 599− 610. (34) Ung, T. H.; Madsen, H. J.; Hellwinkel, J. E.; Lencioni, A. M.; Graner, M. W. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci. 2014, 105 (11), 1384−92. (35) Martínez-Solano, L.; Reales-Calderón, J. A.; Nombela, C.; Molero, G.; Gil, C. Proteomics of RAW 264.7 macrophages upon interaction with heat-inactivated Candida albicans cells unravel an antiinflammatory response. Proteomics 2009, 9 (11), 2995−3010. (36) Reales-Calderon, J. A.; Martinez-Solano, L.; Martinez-Gomariz, M.; Nombela, C.; Molero, G.; Gil, C. Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus. J. Proteomics 2012, 75 (15), 4734−46. (37) Mizoguchi, E. Chitinase 3-like-1 exacerbates intestinal inflammation by enhancing bacterial adhesion and invasion in colonic epithelial cells. Gastroenterology 2006, 130 (2), 398−411. (38) Volck, B.; Price, P. A.; Johansen, J. S.; Sorensen, O.; Benfield, T. L.; Nielsen, H. J.; Calafat, J.; Borregaard, N. YKL-40, a mammalian member of the Chitinase family, is a matrix protein of specific granules in human neutrophils. Proc. Assoc. Am. Physicians 1998, 110 (4), 351− 360. (39) Rehli, M.; Niller, H. H.; Ammon, C.; Langmann, S.; Schwarzfischer, L.; Andreesen, R.; Krause, S. W. Transcriptional regulation of CHI3L1, a marker gene for late stages of macrophage differentiation. J. Biol. Chem. 2003, 278 (45), 44058−67. (40) Lee, J. H.; Kim, S. S.; Kim, I. J.; Song, S. H.; Kim, Y. K.; In Kim, J.; Jeon, Y. K.; Kim, B. H.; Kwak, I. S. Clinical implication of plasma and urine YKL-40, as a proinflammatory biomarker, on early stage of nephropathy in type 2 diabetic patients. J. Diabetes Complications 2012, 26 (4), 308−12. (41) Di Rosa, M.; Malaguarnera, G.; De Gregorio, C.; Drago, F.; Malaguarnera, L. Evaluation of CHI3L-1 and CHIT-1 expression in differentiated and polarized macrophages. Inflammation 2013, 36 (2), 482−92. (42) Johansen, J. S. Studies on serum YKL-40 as a biomarker in diseases with inflammation, tissue remodelling, fibroses and cancer. Dan. Med. Bull. 2006, 53 (2), 172−209. (43) Cario, E.; Gerken, G.; Podolsky, D. K. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007, 132 (4), 1359−74. (44) Heimesaat, M. M.; Fischer, A.; Siegmund, B.; Kupz, A.; Niebergall, J.; Fuchs, D.; Jahn, H. K.; Freudenberg, M.; Loddenkemper, C.; Batra, A.; Lehr, H. A.; Liesenfeld, O.; Blaut, M.; Gobel, U. B.; Schumann, R. R.; Bereswill, S. Shift towards proinflammatory intestinal bacteria aggravates acute murine colitis via Toll-like receptors 2 and 4. PLoS One 2007, 2 (7), e662. (45) Barone, R.; Simpore, J.; Malaguarnera, L.; Pignatelli, S.; Musumeci, S. Plasma chitotriosidase activity in acute Plasmodium falciparum malaria. Clin. Chim. Acta 2003, 331 (1−2), 79−85. (46) Soria, G.; Ben-Baruch, A. The inflammatory chemokines CCL2 and CCL5 in breast cancer. Cancer Lett. 2008, 267 (2), 271−285. (47) Devalaraja, M. N.; Richmond, A. Multiple chemotactic factors: fine control or redundancy? Trends Pharmacol. Sci. 1999, 20 (4), 151− 156. (48) Mantovani, A. The chemokine system: redundancy for robust outputs. Immunology Today 1999, 20 (6), 254−257. (49) Renkema, G. H.; Boot, R. G.; Muijsers, A. O.; Donkerkoopman, W. E.; Aerts, J. M. F. G. Purification and Characterization of Human Chitotriosidase, a Novel Member of the Chitinase Family of Proteins. J. Biol. Chem. 1995, 270 (5), 2198−2202. (50) Cozzarini, E.; Bellin, M.; Norberto, L.; Polese, L.; Musumeci, S.; Lanfranchi, G.; Paoletti, M. G. CHIT1 and AMCase expression in human gastric mucosa: correlation with inflammation and Helicobacter pylori infection. Eur. J. Gastroenterol. Hepatol. 2009, 21 (10), 1119−26. (51) Nair, M. G.; Gallagher, L. J.; Taylor, M. D.; Loke, P.; Coulson, P. S.; Wilson, R. A.; Maizels, R. M.; Allen, J. E. Chitinase and Fizz family members are a generalized feature of nematode infection with selective Upregulation of Ym1 and F10.1 by antigen-presenting cells. Infect. Immun. 2005, 73 (1), 385−394. (52) Di Rosa, M.; De Gregorio, C.; Malaguarnera, G.; Tuttobene, M.; Biazzo, F.; Malaguarnera, L. Evaluation of AMCase and CHIT-1 expression in monocyte macrophages lineage. Mol. Cell. Biochem. 2013, 374 (1−2), 73−80. (53) Shen, C. R.; Juang, H. H.; Chen, H. S.; Yang, C. J.; Wu, C. J.; Lee, M. H.; Hwang, Y. S.; Kuo, M. L.; Chen, Y. S.; Chen, J. K.; Liu, C. L. The Correlation between Chitin and Acidic Mammalian Chitinase in Animal Models of Allergic Asthma. Int. J. Mol. Sci. 2015, 16 (11), 27371−27377. (54) Boulland, M. L.; Marquet, J.; Molinier-Frenkel, V.; M?ller, P.; Guiter, C.; Lasoudris, F.; Copie-Bergman, C.; Baia, M.; Gaulard, P.; Leroy, K.; Castellano, F. Human IL4I1 is a secreted L-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood 2007, 110 (1), 220−227. (55) Marquet, J.; Lasoudris, F.; Cousin, C.; Puiffe, M. L.; Martin- Garcia, N.; Baud, V.; Chereau, F.; Farcet, J. P.; Molinier-Frenkel, V.; Castellano, F. Dichotomy between factors inducing the immunosuppressive enzyme IL-4-induced gene 1 (IL4I1) in B lymphocytes and mononuclear phagocytes. Eur. J. Immunol. 2010, 40 (9), 2557−2568. Journal of Proteome Research Article DOI: 10.1021/acs.jproteome.6b00605 J. Proteome Res. XXXX, XXX, XXX−XXX R (56) Yue, Y. P.; Huang, W.; Liang, J. J.; Guo, J.; Ji, J.; Yao, Y. L.; Zheng, M. Z.; Cai, Z. J.; Lu, L. R.; Wang, J. L. IL4I1 Is a Novel Regulator of M2Macrophage Polarization That Can Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production. PLoS One 2015, 10 (11), e0142979. (57) Benes, P.; Maceckova, V.; Zdrahal, Z.; Konecna, H.; Zahradnickova, E.; Muzik, J.; Smarda, J. Role of vimentin in regulation of monocyte/macrophage differentiation. Differentiation 2006, 74 (6), 265−276. (58) Mor-Vaknin, N.; Punturieri, A.; Sitwala, K.; Markovitz, D. M. Vimentin is secreted by activated macrophages. Nat. Cell Biol. 2002, 5 (1), 59−63. (59) Perlson, E.; Michaelevski, I.; Kowalsman, N.; Ben-Yaakov, K.; Shaked, M.; Seger, R.; Eisenstein, M.; Fainzilber, M. Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J. Mol. Biol. 2006, 364 (5), 938−44. (60) Mor-Vaknin, N.; Punturieri, A.; Sitwala, K.; Faulkner, N.; Legendre, M.; Khodadoust, M. S.; Kappes, F.; Ruth, J. H.; Koch, A.; Glass, D.; Petruzzelli, L.; Adams, B. S.; Markovitz, D. M. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol. Cell. Biol. 2006, 26 (24), 9484−9496. (61) Saha, A. K.; Kappes, F.; Mundade, A.; Deutzmann, A.; Rosmarin, D. M.; Legendre, M.; Chatain, N.; Al-Obaidi, Z.; Adams, B. S.; Ploegh, H. L.; Ferrando-May, E.; Mor-Vaknin, N.; Markovitz, D. M. Intercellular trafficking of the nuclear oncoprotein DEK. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (17), 6847−6852. (62) Etienne-Manneville, S.; Hall, A. Rho GTPases in cell biology. Nature 2002, 420 (6916), 629−35. (63) Medrano-Fernandez, I.; Reyes, R.; Olazabal, I.; Rodriguez, E.; Sanchez-Madrid, F.; Boussiotis, V. A.; Reche, P. A.; Cabanas, C.; Lafuente, E. M. RIAM (Rap1-interacting adaptor molecule) regulates complement-dependent phagocytosis. Cell. Mol. Life Sci. 2013, 70 (13), 2395−410. (64) Cammas, L.; Wolfe, J.; Choi, S. Y.; Dedhar, S.; Beggs, H. E. Integrin-linked kinase deletion in the developing lens leads to capsule rupture, impaired fiber migration and non-apoptotic epithelial cell
Collections