Publication:
Effect of pharmacological pupil dilation on measurements and iol power calculation made using the new swept-source optical coherence tomography-based optical biometer

Research Projects
Organizational Units
Journal Issue
Abstract
Purpose: to determine whether pupil dilation affects biometric measurements and intraocular lens (IOL) power calculation made using the new swept-source optical coherence tomography-based optical biometer (IOLMaster 700©; Carl Zeiss Meditec, Jena, Germany). Procedures: eighty-one eyes of 81 patients evaluated for cataract surgery were prospectively examined using the IOLMaster 700© before and after pupil dilation with tropicamide 1%. The measurements made were: axial length (AL), central corneal thickness (CCT), aqueous chamber depth (ACD), lens thickness (LT), mean keratometry (MK), white-to-white distance (WTW) and pupil diameter (PD). Holladay II and SRK/T formulas were used to calculate IOL power. Agreement between measurement modes (with and without dilation) was assessed through intraclass correlation coefficients (ICC) and Bland-Altman plots. Results: mean patient age was 75.17 ± 7.54 years (range: 57–92). Of the variables determined, CCT, ACD, LT and WTW varied significantly according to pupil dilation. Excellent intraobserver correlation was observed between measurements made before and after pupil dilation. Mean IOL power calculation using the Holladay 2 and SRK/T formulas were unmodified by pupil dilation. Conclusions: the use of pupil dilation produces statistical yet not clinically significant differences in some IOLMaster 700© measurements. However, it does not affect mean IOL power calculation.
Propos Déterminer si la dilatation pupillaire modifie les mesures biométriques et le calcul de la puissance de l’implant intraoculaire obtenus avec un nouveau biomètre optique basé sur la tomographie par cohérence optique swept-source (IOLMaster 700© ; Carl Zeiss Meditec, Jena, Allemagne) Méthodes Nous avons évalué prospectivement 81 yeux de 81 patients prévus pour la chirurgie de la cataracte au moyen du biomètre IOLMaster 700©, avant et après dilatation pupillaire avec tropicamide 1 %. Les mesures réalisées ont été : longueur axiale (AL), épaisseur cornéenne centrale (CCT), profondeur de la chambre antérieure (épaisseur cornéenne exclue) (ACD), épaisseur cristallinienne (LT), kératométrie moyenne (MK), distance blanc à blanc (WTW) et diamètre pupillaire (PD). Les formules Holladay II et SRK/T ont été employées pour calculer la puissance de l’implant intraoculaire. Nous avons évalué la concordance entre les deux méthodes de mesure (sous dilatation pupillaire et sans) au moyen des coefficients de corrélation intraclasse (ICC) et des graphiques de Bland-Altman. Résultats La moyenne d’âge des patients était de 75,17 ± 7,54 ans (intervalle : 57–92). Parmi les variables mesurées, la CCT, l’ACD, la LT et la WTW montraient des variations significatives en fonction de la dilatation pupillaire. On a observé une excellente corrélation intra-observateur entre les mesures réalisées avant et après la dilatation pupillaire. Celle-ci ne modifiait pas la prédiction de la puissance moyenne de l’implant avec Holladay 2 et SKR/T. Conclusions L’emploi de tropicamide 1 % produit des différences significatives du point de vue statistique mais pas clinique sur certaines mesures réalisées avec IOLMaster 700©. Cependant, la mesure de la puissance moyenne de l’implant intraoculaire n’est pas affectée.
Description
Received 11 July 2016, Accepted 2 September 2016, Available online 25 October 2016
Keywords
Citation
[1] Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 2003;85:472—85. [2] Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, et al. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998;126:524—34. [3] Buckhurst PJ, Wolffsohn JS, Shah S, Naroo SA, Davies LN, Berrow EJ. A new optical low coherence reflectometry device for ocular biometry in cataract patients. Br J Ophthalmol 2009;93:949—53. [4] Roher K, Frueh BE, Wälti R, Clemetson IA, Tappeiner C, Goldblum D. Comparison and evaluation of ocular biometry using a new noncontact optical low-coherence reflectometer. Ophthalmology 2009;116:2087—92. [5] Srivannaboon S, Chirapapaisan C, Chonpimai P, Loket S. Clinical comparison of a new swept-source optical coherence tomography-based optical biometer and a time-domain optical coherence tomography-based optical biometer. J Cataract Refract Surg 2015;41:2224—32. [6] Heatley CJ, Whitefield LA, Hugkulstone CE. Effect of pupil dilation on the accuracy of the IOLMaster. J Cataract Refract Surg 2001;28:1993—6. [7] Adler G, Shahar J, Kesner R, Rosenfeld E, Fischer N, Loewenstein A, et al. Effect of pupil size on biometry measurements using the IOLMaster. Am J Ophthalmol 2015;159:940—4. [8] Rodriguez-Raton A, Jimenez-Alvarez M, Arteche-Limousin L, Mediavilla-Pen ̃a E, Larrucea-Martinez I. Effect of pupil dilation on biometry measurements with partial coherence interferometry and its effect on IOL power formula calculation. Eur J Ophthalmol 2015;25:309—14. [9] Bakbak B, Koktekir BE, Gedik S, Guzel H. The effect of pupil dilation on biometric parameters of the Lenstar 900. Cornea 2013;32:e21—4. [10] Arriola-Villalobos P, Díaz-Valle D, Garzón N, Ruiz-Medrano J, Fernández-Perez C, Alejandre-Alba N, et al. Effect of pharmacologic pupil dilation on OLCR optical biometry measurements for IOL predictions. Eur J Ophthalmol 2014;24:53—7. [11] Katz J, Zeger S, Liang K-Y. Appropriate statistical methods to account for similarities in binary outcomes between fellow eyes. Invest Ophthalmol Vis Sci 1994;35:2461—5. [12] Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307—10. [13] Jasvinder S, Khang TF, Sarinder KK, Loo VP, Subrayan V. Agreement analysis of LENSTAR with other techniques of biometry. Eye 2011;25:717—24. [14] Gao L, Fan H, Cheng AC, Wang Z, Lam DS. The effects of eye drops on corneal thickness in adult myopia. Cornea 2006;25:404—7. [15] Saitoh K, Yoshida K, Hamatsu Y, Tazawa Y. Changes in the shape of the anterior and posterior corneal surfaces caused by mydriasis and miosis: detailed analysis. J Cataract Refract Surg 2004;30:1024—30. [16] Marchini G, Babighian S, Tosi R, Perfetti S, Bonomi L. Comparative study of the effects of 2% ibopamine, 10% phenylephrine and 1% tropicamide on the anterior segment. Invest Ophthalmol Vis Sci 2003;44:281—9. [17] Read SA, Collins MJ, Woodman EC, Cheong SH. Axial length changes during accommodation in myopes and emmetropes. Optom Vis Sci 2010;87:656—62. [18] Sun R, Beldavs RA, Gimbel HV, Ferensowicz M. Effect of pharmacological dilation and constriction of pupil on corneal topography. Cornea 1996;15:245—7. [19] Olsen T. Sources of error in intraocular lens power calculation. J Cataract Refract Surg 1992;18:125—9. [20] Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg 1990;16 [Erratum 1990; 16: 528]. [21] Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg 2000;26:1233—7. [22] Olsen T, Olesen H, Thim K, Corydon L. Prediction of postoperative intraocular lens chamber depth. J Cataract Refract Surg 1990;16:587—90.
Collections