Publication:
Insulator-to-metal transition in vanadium supersaturated silicon: variable-range hopping and Kondo effect signatures

Research Projects
Organizational Units
Journal Issue
Abstract
We report the observation of the insulator-to-metal transition in crystalline silicon samples supersaturated with vanadium. Ion implantation followed by pulsed laser melting and rapid resolidification produce high quality single-crystalline silicon samples with vanadium concentrations that exceed equilibrium values in more than 5 orders of magnitude. Temperature-dependent analysis of the conductivity and Hall mobility values for temperatures from 10K to 300K indicate that a transition from an insulating to a metallic phase is obtained at a vanadium concentration between 1.1 × 10^(20) and 1.3 × 10^(21) cm^(−3) . Samples in the insulating phase present a variable-range hopping transport mechanism with a Coulomb gap at the Fermi energy level. Electron wave function localization length increases from 61 to 82 nm as the vanadium concentration increases in the films, supporting the theory of impurity band merging from delocalization of levels states. On the metallic phase, electronic transport present a dispersion mechanism related with the Kondo effect, suggesting the presence of local magnetic moments in the vanadium supersaturated silicon material.
Description
© 2016 IOP Publishing Ltd. Authors would like to acknowledge the CAI de Técnicas Físicas of the Universidad Complutense de Madrid for the ion implantation procees and metallic evaporations. This work was partially supported by the Project MADRID-PV (Grant No. 2013/MAE-2780) funded by the Comunidad de Madrid, by the Spanish MINECO (Economic and Competitiviness Ministery) under grant TEC 2013-41730-R and by the Universidad Complutense de Madrid (Programa de Financiación de Grupos de Investigación UCM-Banco Santander) under grant 910173-2014. D Montero acknowledge the Spanish MINECO (Economic and Competitiviness Ministery) for financial support under contract BES-2014-067585.
UCM subjects
Electricidad, Electrónica (Física)
Unesco subjects
2202.03 Electricidad
Keywords
Citation
[1] Zheng, H., Wagner, L. K., 2015, Phys. Rev. Lett., 114, 176401. [2] Brzezicki, W., Noce, C., Romano, A., Cuoco, M., 2015, Phys. Rev. Lett., 114, 247002. [3] Fuhr, J. D., Avignon, M., Alascio, B., 2008, Phys. Rev. Lett., 100, 216402. [4] Shlimak, I., Kaveh, M., 1998, Phys. Rev. B, 58, 15333. [5] Hammer, D., Wu, J., Leighton, C., 2004, Phys. Rev. B, 69, 134407. [6] Seo, Y,, Qin, Y., Vicente, C. L., Choi, K. S., Yoon, J., 2006, Phys. Rev. Lett., 97, 057005. [7] Edwards, P. P., Sienko, M. J., 1978, Phys. Rev. B, 17, 2575. [8] Neamen, D. A., 1997, Semiconductor Physics and Devices, (Irwin). [9] Rosenbaum, T. F., Milligan, R. F., Paalanen, M. A., Thomas, G. A., Bhatt, R. N., Lin, W., 1983, Phys. Rev. B, 27, 7509. [10] Luque, A., Martí, A., Antolín, E., Tablero, C., 2006, Phys. B: Condens. Matter, 382, 320. [11] Pastor, D., Olea, J., del Prado, A., García-Hemme, E., García Hernánsanz, R., González-Díaz, G., 2012, Sol. Energy Mater. Sol. Cells, 104, 159. [12] Winkler, M. T., Recht, D., Sher, M-J., Said, A. J., Mazur, E., Aziz, M. J., 2011, Phys. Rev. Lett., 106, 178701. [13] Olea, J., Toledano-Luque, M., Pastor, D., González-Díaz, G., Mártil, I., 2008, J. Appl. Phys., 104. [14] Tabbal, M., Kim, T., Woolf, D. N., Shin, B., Aziz, M. J., 2010, Appl. Phys. A, 98, 589. [15] García-Hemme, E., García-Hernánsanz, R., Olea, J., Pastor, D., del Prado, A., Mártil, I., González-Díaz, G., 2014, Appl. Phys. Lett., 104, 211105. [16] García-Hemme, E., García-Hernánsanz, R., Olea, J., Pastor, D., del Prado, A., Mártil, I., González-Díaz, G., 2013, Appl. Phys. Lett., 103, 032101. [17] Luque, A., Martí, A., 1997, Phys. Rev. Lett., 78, 5014. [18] Luque, A., Martí, A., Stanley, C., 2012, Nat. Photon., 6, 146. [19] Pastor, D., Olea, J., del Prado, A., García-Hemme, E., García-Hernánsanz, R., Mártil, I., González-Díaz, G., 2013, J. Phys. D: Appl. Phys., 46. [20] Olea, J., Pastor, D., Toledano-Luque, M., Mártil, I., González-Díaz, G., 2011, J. Appl. Phys., 110, 064501. [21] Narayan, J., White, C. W., Aziz, M. J., Stritzker, B., Walthuis, A., 1985, J. Appl. Phys., 57, 564. [22] Tsouroutas, P., Tsoukalas, D., Zergioti, I., Cherkashin, N., Claverie, A., 2009, J. Appl. Phys., 105, 094910. [23] Pastor, D., Olea, J., Muñoz-Martín, A., Climent-Font, A., Mártil, I., González-Díaz, G., 2012, J. Appl. Phys., 112, 113514. [24] Sriranganathan, R., Wollkind, D. J., Oulton, D. B., 1983, J. Cryst. Growth, 62, 265. [25] Cullis, A. G., Hurle, D. T. J., Webber, H. C., Chew, N. G., Poate, J. M., Baeri, P., Foti, G., 1981, Appl. Phys. Lett., 38, 642. [26] Akey, A. J., Recht, D., Williams, J. S., Aziz, M. J., Buonassisi, T., 2015, Adv. Funct. Mater., 25, 4642. [27] Pastor, D., Olea, J., del Prado, A., García-Hemme, E., Mártil, I., González-Díaz, G., Ibáñez, J., Cusco, R., Artús, L., 2011, Semicond. Sci. Technol., 26. [28] Luque, A., Martí, A., 2011, Nat. Photon., 5, 137. [29] Dai, P. H., Zhang, Y. Z., Sarachik, M. P., 1992, Phys. Rev. B, 45, 3984. [30] Castner, T. G., 1991, Hopping Transport in Solids (Amsterdam: Elsevier). [31] Zabrodskii, A. G., Zinoveva, K. N., 1983, J. Exp. Theor. Phys. Lett., 37, 436. [32] Lee, P. A., Ramakrishnan, T. V., 1985, Rev. Mod. Phys., 57, 287. [33] Altshuler, B. L., Aronov, A. G., 1979, J. Exp. Theor. Phys. Lett., 30, 482. [34] Efros, A. L., Shklovskii, B. I., 1975, J. Phys. C: Solid State Phys., 8, L49. [35] Mott, N. F., 1968, Rev. Mod. Phys., 40, 677. [36] Ishida, S., Takaoka, S., Murase, K., Shirai, S., Serikawa, T., 1994, J. Phys. Soc. Japan, 63, 1254. [37] Hewson, A. C., 1993, The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press). [38] Feng, X. G., Popovic, D., Washburn, S., Dobrosavljevic, V., 2001, Phys. Rev. Lett., 86, 2625. [39] Kondo, J., 1964, Prog. Theor. Phys., 32, 37.
Collections