Publication:
Broadband anti-reflection coating using dielectric Si3N4 nanostructures. Application to amorphous-Si-H solar cells

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2017-01-07
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Science BV
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Absorption of amorphous-Si hydrogenated (aSi-H) solar cells can be enhanced by using dielectric nanostructures made of Si3N4 that work like antireflection coatings. The analysis focus on the short-circuit current delivered by the cell under solar irradiance, and it is made taking into account every layer and structure of an aSi-H cell. A customized design of the antireflection coating in the form of nanostructured dielectric layers, produces a short-circuit current enhancement of 15.2% with respect to the reference flat solar cell, and a lower reflectivity of the cell. Three different geometries of linear nanostructures have been analyzed and compared with quite similar results among them. An improvement in performance has been also obtained for realizable geometrical dimensions that could be fabricated while maintaining electric conductivity of the front contact.
Description
Received 24 October 2016, Revised 17 November 2016, Accepted 26 December 2016, Available online 7 January 2017
Keywords
Citation
[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop Solar cell efficiency tables (version 45) Prog. Photovolt.: Res. Appl., 23 (1) (2015), pp. 1–9 http://dx.doi.org/10.1002/pip.2573 [2] M.K. Siddiki, J. Li, D. Galipeau, Q. Qiao A review of polymer multijunction solar cells Energy Environ. Sci., 3 (7) (2010), pp. 867–883 http://dx.doi.org/10.1039/B926255P [3] Y. Abdulraheem, I. Gordon, T. Bearda, H. Meddeb, J. Poortmans Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by pecvd AIP Adv., 4 (5) (2014), p. 057122 http://dx.doi.org/10.1063/1.4879807 [4] K. Hattori, H. Okamoto, Y. Hamakawa Theory of the steady-state-photocarrier-grating technique for obtaining accurate diffusion-length measurements in amorphous silicon Phys. Rev. B, 45 (3) (1992), p. 1126 http://dx.doi.org/10.1103/PhysRevB.45.1126 [5] W.-C. Hsu, J.K. Tong, M.S. Branham, Y. Huang, S. Yerci, S.V. Boriskina, G. Chen Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells Opt. Commun., 377 (2016), pp. 52–58 (〈http://dx.doi.org/10.1016/j.optcom.2016.04.055〉 URL 〈http://www.sciencedirect.com/science/article/pii/S0030401816303303〉) [6] J. Hao, Y. Xu, S. Chen, Y. Zhang, J. Mai, T.-K. Lau, R. Zhang, Y. Mei, L. Wang, X. Lu, W. Huang Broadband plasmon-enhanced polymer solar cells with power conversion efficiency of 9.26% using mixed au nanoparticles Opt. Commun., 362 (2016), pp. 50–58 (polymer Photonics and Its Applications. 〈http://dx.doi.org/10.1016/j.optcom.2015.07.032〉URL 〈http://www.sciencedirect.com/science/article/pii/S0030401815006276〉) [7] K. Huang, Q. Wang, X. Yan, K. Hu, M. Yu, X. Shen Demonstration of enhanced absorption in thin film si solar cells with periodic microhemisphere hole arrays Opt. Commun., 315 (2014), pp. 79–82 (〈http://dx.doi.org/10.1016/j.optcom.2013.10.014〉URL 〈http://www.sciencedirect.com/science/article/pii/S0030401813009188〉) [8] D. Staebler, C. Wronski Reversible conductivity changes in discharge-produced amorphous si Appl. Phys. Lett., 31 (4) (1977), pp. 292–294 http://dx.doi.org/10.1063/1.89674 [9] E. Radziemska The effect of temperature on the power drop in crystalline silicon solar cells Renew. Energy, 28 (1) (2003), pp. 1–12 http://dx.doi.org/10.1016/S0960-1481(02)00015-0 [10] M. Pathak, J.M. Pearce, S. Harrison Effects on amorphous silicon photovoltaic performance from high-temperature annealing pulses in photovoltaic thermal hybrid devices Sol. Energy Mater. Sol. Cells, 100 (2012), pp. 199–203 http://dx.doi.org/10.1016/j.solmat.2012.01.015 [11] J.N. Munday, H.A. Atwater Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings Nano Lett., 11 (6) (2010), pp. 2195–2201 http://dx.doi.org/10.1021/nl101875t [12] J. Zhao, M.A. Green Optimized antireflection coatings for high-efficiency silicon solar cells IEEE Trans. Electron Devices, 38 (8) (1991), pp. 1925–1934 http://dx.doi.org/10.1109/16.119035 [13] P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals Opt. Express, 15 (25) (2007), pp. 16986–17000 http://dx.doi.org/10.1364/OE.15.016986 [14] M. Kroll, S. Fahr, C. Helgert, C. Rockstuhl, F. Lederer, T. Pertsch Employing dielectric diffractive structures in solar cells-a numerical study Physica Status Solidi (a), 205 (12) (2008), pp. 2777–2795 http://dx.doi.org/10.1002/pssa.200880453 [15] P.N. Saeta, V.E. Ferry, D. Pacifici, J.N. Munday, H.A. Atwater How much can guided modes enhance absorption in thin solar cells? Opt. Express, 17 (23) (2009), pp. 20975–20990 http://dx.doi.org/10.1364/OE.17.020975 [16] K. Islam, A. Alnuaimi, H. Ally, A. Nayfeh, Ito, si3n4 and zno: Al–simulation of different anti-reflection coatings (arc) for thin film a- si: H solar cells, in: Proceedings of the IEEE on Modelling Symposium (EMS), European, 2013, pp. 673–676 http://dx.doi.org/10.1109/EMS.2013.112. [17] I. Massiot, C. Colin, N. Péré-Laperne, P.R.i. Cabarrocas, C. Sauvan, P. Lalanne, J.-L. Pelouard, S. Collin Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells Appl. Phys. Lett., 101 (16) (2012), p. 163901 http://dx.doi.org/10.1063/1.4758468 [18] K.C. Sahoo, E.Y. Chang, Y. Li, M.-K. Lin, J.-H. Huang Fabrication and configuration development of silicon nitride sub-wavelength structures for solar cell application J. Nanosci. Nanotechnol., 10 (9) (2010), pp. 5692–5699 http://dx.doi.org/10.1166/jnn.2010.2553 [19] J. Buencuerpo, J. Llorens, M. Dotor, J. Ripalda Broadband antireflective nano-cones for tandem solar cells Opt. Express, 23 (7) (2015), pp. A322–A336 http://dx.doi.org/10.1364/OE.23.00A322 [20] K.C. Sahoo, M.-K. Lin, E.-Y. Chang, T.B. Tinh, Y. Li, J.-H. Huang Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application Jpn. J. Appl. Phys., 48 (12R) (2009), p. 126508 http://dx.doi.org/10.1143/JJAP.48.126508 [21] Y. Li, M.-Y. Lee, H.-W. Cheng, Z.-L. Lu 3d simulation of morphological effect on reflectance of si3n4 sub-wavelength structures for silicon solar cells Nanoscale Res. Lett., 7 (1) (2012), pp. 1–6 http://dx.doi.org/10.1186/1556-276X-7-196 [22] S. Saravanan, R. Dubey Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes Opt. Commun., 377 (2016), pp. 65–69 (〈http://dx.doi.org/10.1016/j.optcom.2016.05.028〉URL〈http://www.sciencedirect.com/science/article/pii/S0030401816303807〉) [23] A.J. Haider, A.A. Najim, M.A. Muhi Tio2/ni composite as antireflection coating for solar cell application Opt. Commun., 370 (2016), pp. 263–266 http://dx.doi.org/10.1016/j.optcom.2016.03.034 http://www.sciencedirect.com/science/article/pii/S0030401816301985. [24] A. Vora, J. Gwamuri, J.M. Pearce, P.L. Bergstrom, D.Ö. Güney Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for staebler-wronski effect compensation J. Appl. Phys., 116 (9) (2014), p. 093103 http://dx.doi.org/10.1063/1.4895099 [25] SOPRA, Refractive Index Libirary, URL 〈http://www.sspectra.com/sopra.html〉. [26] Refractive info database, Refractive Index Libirary, URL 〈http://refractiveindex.info〉. [27] Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, C. Ballif Current losses at the front of silicon heterojunction solar cells IEEE J. 2 Photovolt., 1 (2012), pp. 7–15 (〈http://dx.doi.org/Currentlossesatthefrontofsiliconheterojunctionsolarcells〉) [28] R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, D. Lane Optical design and fabrication of fully sputtered cdte/cds solar cells J. Phys.: Conf. Ser., 286 (2011), p. 012038 http://dx.doi.org/10.1088/1742-6596/286/1/012038 [29] A. Belfar The role of p+-layer dopant concentration, p+-layer band gap and p+-layer thickness in the performances of a-si: H n-i-p-p+ solar cells with double layer window nanocrystalline silicon Opt.-Int. J. Light Electron Opt., 126 (24) (2015), pp. 5688–5693 http://dx.doi.org/10.1016/j.ijleo.2015.09.026 [30] S. Singh, S. Kumar, N. Dwivedi Band gap optimization of p-i-n layers of a-si: H by computer aided simulation for development of efficient solar cell Sol. Energy, 86 (5) (2012), pp. 1470–1476 http://dx.doi.org/10.1016/j.solener.2012.02.007 [31] M. Sharma, S. Juneja, S. Sudhakar, D. Chaudhary, S. Kumar Optimization of a-si: H absorber layer grown under a low pressure regime by plasma-enhanced chemical vapor deposition: revisiting the significance of the p/i interface for solar cells Mater. Sci. Semicond. Process., 43 (2016), pp. 41–46 http://dx.doi.org/10.1016/j.mssp.2015.10.021 [32] NERL, Spectral Solar Irriadiance, URL 〈http://rredc.nrel.gov/solar/spectra/am1.5/〉. [33] E.-J. Guo, H. Guo, H. Lu, K. Jin, M. He, G. Yang Structure and characteristics of ultrathin indium tin oxide films Appl. Phys. Lett., 98 (1) (2011), p. 011905 http://dx.doi.org/10.1063/1.3536531 [34] J. Gwamuri, A. Vora, J. Mayandi, D.Ö. Güney, P.L. Bergstrom, J.M. Pearce A new method of preparing highly conductive ultra-thin indium tin oxide for plasmonic-enhanced thin film solar photovoltaic devices Sol. Energy Mater. Sol. Cells, 149 (2016), pp. 250–257 http://dx.doi.org/10.1016/j.solmat.2016.01.028 [35] B.-R.D. Association, Blu-ray disc format, White paper, 3rd. edition, Blu-Ray Disc Association, 2012.
Collections