Publication:
Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-02-23
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Since 2001, when our research group proposed for the first time MCM-41 as a drug release system, the scientific community has demonstrated a growing interest in mesoporous silica nanoparticles (MSNs) for their revolutionary potential in nanomedicine. Among the diverse pathologies that can be treated with MSNs, cancer has received increasing attention. MSNs can be loaded with large amounts of therapeutic cargoes and once intravenously administrated preferentially accumulate in solid tumours via the enhanced permeation and retention (EPR) effect. Herein we report the recent developments achieved by our research group as a pioneer in this field, highlighting: the design of sophisticated MSNs as stimuli-responsive drug delivery systems to release the entrapped cargo upon exposure to a given stimulus while preventing the premature release of highly cytotoxic drugs before reaching the target; transporting non-toxic prodrugs and the enzyme responsible for its conversion into cytotoxic agents into the same MSNs; improving the selectivity and cellular uptake by cancer cells by active targeting of MSNs; increasing the penetration of MSNs within the tumour mass, which is one of the major challenges in the use of NPs to treat solid tumours.
Description
RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí) RESEARCHER ID M-3316-2014 (Alejandro Baeza García) ORCID 0000-0002-8408-3389 (Alejandro Baeza García) RESEARCHER ID K-3719-2014 (Miguel Manzano García) RESEARCHER ID M-3378-2014 (Miguel Manzano García) ORCID 0000-0001-6238-6111 (Miguel Manzano García)
Keywords
Citation
1 S. Parveen, R. Misra and S. K. Sahoo, Nanomed.: Nanotechnol., Biol. Med., 2012, 8, 147–166. 2 O. C. Farokhzad and R. Langer, ACS Nano, 2009, 3, 16–20. 3 B. Y. S. Kim, J. T. Rutka and W. C. W. Chan, N. Engl. J. Med., 2010, 363, 2434–2443. 4 S. Mura, J. Nicolas and P. Couvreur, Nat. Mater., 2013, 12, 991–1003. 5 R. Misra, S. Acharya and S. K. Sahoo, Drug Discovery Today, 2010, 15, 842–850. 6 F. Danhier, O. Feron and V. Préat, J. Controlled Release, 2010, 148, 135–146. 7 Y. Matsumura and H. Maeda, Cancer Res., 1986, 46, 6387– 6392. 8 R. K. Jain and T. Stylianopoulos, Nat. Rev. Clin. Oncol., 2010, 7, 653–664. 9 M. Colilla, B. Gonzalez and M. Vallet-Regi, Biomater. Sci., 2013, 1, 114–134. 10 J. H. Adair, M. P. Parette, E. İ. Altınoğlu and M. Kester, ACS Nano, 2010, 4, 4967–4970. 11 A. Baeza and M. Vallet-Regí, in Bio- and Bioinspired Nanomaterials, Wiley-VCH Verlag GmbH & Co. KGaA, 2014, pp. 23–48, DOI: 10.1002/9783527675821.ch02. 12 W. H. De Jong and P. J. A. Borm, Int. J. Nanomed., 2008, 3, 133–149. 13 M. Vallet-Regi, A. Ramila, R. P. del Real and J. Perez-Pariente, Chem. Mater., 2001, 13, 308–311. 14 M. Vallet-Regí, F. Balas and D. Arcos, Angew. Chem., Int. Ed., 2007, 46, 7548–7558. 15 A. Baeza, M. Colilla and M. Vallet-Regí, Expert Opin. Drug Delivery, 2014, 12, 319–337. 16 P. Yang, S. Gai and J. Lin, Chem. Soc. Rev., 2012, 41, 3679– 3698. 17 F. Tang, L. Li and D. Chen, Adv. Mater., 2012, 24, 1504– 1534. 18 Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart and J. I. Zink, Chem. Soc. Rev., 2012, 41, 2590–2605. 19 M. Colilla, A. Baeza and M. Vallet-Regí, in The Sol–Gel Handbook, ed. D. Levy and M. Zayat, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2015, vol. 3, ch. 42, pp. 1309–1344. 20 M. Colilla and M. Vallet-Regi, in Smart Materials for Drug Delivery: Volume 2, ed. C. Alvarez-Lorenzo and A. Concheiro, The Royal Society of Chemistry, Cambridge, United Kingdom, 2013, vol. 2, ch. 15, pp. 63–89. 21 M. Colilla and M. Vallet-Regi, in Chemoresponsive Materials: Stimulation by Chemical and Biological Signals, ed. H. J. Schneider, The Royal Society of Chemistry, Cambridge, United Kingdom, 2015, ch. 6, pp. 136–166, DOI: 10.1039/9781782622420-00136. 22 M. Vallet-Regi, M. Colilla and B. Gonzalez, Chem. Soc. Rev., 2011, 40, 596–607. 23 M. Vallet-Regí, M. Manzano and M. Colilla, Biomedical Applications of Mesoporous Ceramics: Drug Delivery, Smart Materials and Bone Tissue Engineering, CRC Press, Taylor & Francis Group, Boca Raton, US, 2012. 24 F. Hoffmann, M. Cornelius, J. Morell and M. Froeba, Angew. Chem., Int. Ed., 2006, 45, 3216–3251. 25 C. Argyo, V. Weiss, C. Bräuchle and T. Bein, Chem. Mater., 2014, 26, 435–451. 26 S. Giret, M. Wong Chi Man and C. Carcel, Chem. – Eur. J., 2015, 21, 13850–13865. 27 S. K. Natarajan and S. Selvaraj, RSC Adv., 2014, 4, 14328– 14334. 28 S.-H. Wu, C.-Y. Mou and H.-P. Lin, Chem. Soc. Rev., 2013, 42, 3862–3875. 29 M. Vallet-Regi and E. Ruiz-Hernandez, Adv. Mater., 2011, 23, 5177–5218. 30 V. Mamaeva, C. Sahlgren and M. Lindén, Adv. Drug Delivery Rev., 2013, 65, 689–702. 31 I. Slowing, B. G. Trewyn and V. S. Y. Lin, J. Am. Chem. Soc., 2006, 128, 14792–14793. 32 F. Lu, S.-H. Wu, Y. Hung and C.-Y. Mou, Small, 2009, 5, 1408–1413. 33 B. G. Trewyn, J. A. Nieweg, Y. Zhao and V. S. Y. Lin, Chem. Eng. J., 2008, 137, 23–29. 34 Y. Chen, H. Chen and J. Shi, Adv. Mater., 2013, 25, 3144– 3176. 35 S. P. Hudson, R. F. Padera, R. Langer and D. S. Kohane, Biomaterials, 2008, 29, 4045–4055. 36 Z. Tao, M. P. Morrow, T. Asefa, K. K. Sharma, C. Duncan, A. Anan, H. S. Penefsky, J. Goodisman and A.-K. Souid, Nano Lett., 2008, 8, 1517–1526. 37 D.-M. Huang, T.-H. Chung, Y. Hung, F. Lu, S.-H. Wu, C.-Y. Mou, M. Yao and Y.-C. Chen, Toxicol. Appl. Pharmacol., 2008, 231, 208–215. 38 J. Lu, M. Liong, Z. Li, J. I. Zink and F. Tamanoi, Small, 2010, 6, 1794–1805. 39 Y. Zhao, X. Sun, G. Zhang, B. G. Trewyn, I. I. Slowing and V. S. Y. Lin, ACS Nano, 2011, 5, 1366–1375. 40 M. Joglekar, R. A. Roggers, Y. Zhao and B. G. Trewyn, RSC Adv., 2013, 3, 2454–2461. 41 K. S. Butler, P. N. Durfee, C. Theron, C. E. Ashley, E. C. Carnes and C. J. Brinker, Small, DOI: 10.1002/ smll.201502119. 42 Y. Yang and C. Yu, Nanomed.: Nanotechnol., Biol. Med., DOI: 10.1016/j.nano.2015.10.018. 43 S. Baek, R. K. Singh, D. Khanal, K. D. Patel, E.-J. Lee, K. W. Leong, W. Chrzanowski and H.-W. Kim, Nanoscale, 2015, 7, 14191–14216. 44 S. Alberti, G. J. A. A. Soler-Illia and O. Azzaroni, Chem. Commun., 2015, 51, 6050–6075. 45 N. Ž. Knežević and J.-O. Durand, ChemPlusChem, 2015, 80, 26–36. 46 Y. Wang, Q. Zhao, N. Han, L. Bai, J. Li, J. Liu, E. Che, L. Hu, Q. Zhang, T. Jiang and S. Wang, Nanomed.: Nanotechnol., Biol. Med., 2015, 11, 313–327. 47 K.-N. Yang, C.-Q. Zhang, W. Wang, P. C. Wang, J.-P. Zhou and X.-J. Liang, Cancer Biol. Med., 2014, 11, 34–43. 48 Q. He and J. Shi, Adv. Mater., 2014, 26, 391–411. 49 Y.-S. Lin, K. R. Hurley and C. L. Haynes, J. Phys. Chem. Lett., 2012, 3, 364–374. 50 J. M. Rosenholm, V. Mamaeva, C. Sahlgren and M. Lindén, Nanomedicine, 2011, 7, 111–120. 51 D. Tarn, C. E. Ashley, M. Xue, E. C. Carnes, J. I. Zink and C. J. Brinker, Acc. Chem. Res., 2013, 46, 792–801. 52 Y. Zhao, J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn and V. S. Y. Lin, Expert Opin. Drug Delivery, 2010, 7, 1013–1029. 53 K. K. Coti, M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. Khashab and J. F. Stoddart, Nanoscale, 2009, 1, 16–39. 54 A. Baeza, D. Arcos and M. Vallet-Regí, J. Phys.: Condens. Matter, 2013, 25, 484003. 55 C. Boissiere, D. Grosso, A. Chaumonnot, L. Nicole and C. Sanchez, Adv. Mater., 2011, 23, 599–623. 56 D. Arcos, V. Fal-Miyar, E. Ruiz-Hernandez, M. Garcia- Hernandez, M. L. Ruiz-Gonzalez, J. Gonzalez-Calbet and M. Vallet-Regi, J. Mater. Chem., 2012, 22, 64–72. Review Biomaterials Science 812 | Biomater. Sci., 2016, 4, 803–813 This journal is © The Royal Society of Chemistry 2016 57 E. Ruiz-Hernández, A. Baeza and M. Vallet-Regí, ACS Nano, 2011, 5, 1259–1266. 58 R. Jin, G. Wu, Z. Li, C. A. Mirkin and G. C. Schatz, J. Am. Chem. Soc., 2003, 125, 1643–1654. 59 R. Cheng, F. Meng, C. Deng, H.-A. Klok and Z. Zhong, Biomaterials, 2013, 34, 3647–3657. 60 Y.-Z. You, K. K. Kalebaila, S. L. Brock and D. Oupický, Chem. Mater., 2008, 20, 3354–3359. 61 S. Chen, H. Zhong, B. Gu, Y. Wang, X. Li, Z. Cheng, L. Zhang and C. Yao, Mater. Sci. Eng., C, 2012, 32, 2199– 2204. 62 S. Furyk, Y. Zhang, D. Ortiz-Acosta, P. S. Cremer and D. E. Bergbreiter, J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 1492–1501. 63 E. Guisasola, A. Baeza, M. Talelli, D. Arcos, M. Moros, J. M. de la Fuente and M. Vallet-Regí, Langmuir, 2015, 31, 12777–12782. 64 N. K. Mal, M. Fujiwara and Y. Tanaka, Nature, 2003, 421, 350–353. 65 D. P. Ferris, Y.-L. Zhao, N. M. Khashab, H. A. Khatib, J. F. Stoddart and J. I. Zink, J. Am. Chem. Soc., 2009, 131, 1686–1688. 66 J. Yue, S. Liu, R. Wang, X. Hu, Z. Xie, Y. Huang and X. Jing, Mol. Pharmaceutics, 2012, 9, 1919–1931. 67 S. R. Sirsi and M. A. Borden, Adv. Drug Delivery Rev., 2014, 72, 3–14. 68 J. Wang, M. Pelletier, H. J. Zhang, H. S. Xia and Y. Zhao, Langmuir, 2009, 25, 13201–13205. 69 J. Xuan, O. Boissière, Y. Zhao, B. Yan, L. Tremblay, S. Lacelle, H. Xia and Y. Zhao, Langmuir, 2012, 28, 16463– 16468. 70 J. L. Paris, M. V. Cabañas, M. Manzano and M. Vallet-Regí, ACS Nano, 2015, 9, 11023–11033. 71 V. J. Venditto and F. C. Szoka, Adv. Drug Delivery Rev., 2013, 65, 80–88. 72 L. Bildstein, C. Dubernet and P. Couvreur, Adv. Drug Delivery Rev., 2011, 63, 3–23. 73 J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen and J. Savolainen, Nat. Rev. Drug Discovery, 2008, 7, 255–270. 74 A. Baeza, E. Guisasola, A. Torres-Pardo, J. M. González- Calbet, G. J. Melen, M. Ramirez and M. Vallet-Regí, Adv. Funct. Mater., 2014, 24, 4625–4633. 75 M. P. de Melo, T. M. de Lima, T. C. Pithon-Curi and R. Curi, Toxicol. Lett., 2004, 148, 103–111. 76 H. Maeda, H. Nakamura and J. Fang, Adv. Drug Delivery Rev., 2013, 65, 71–79. 77 H. Nakamura, F. Jun and H. Maeda, Expert Opin. Drug Delivery, 2015, 12, 53–64. 78 M. Egeblad, E. S. Nakasone and Z. Werb, Dev. Cell, 2010, 18, 884–901. 79 E. Ruoslahti, S. N. Bhatia and M. J. Sailor, J. Cell Biol., 2010, 188, 759–768. 80 J. M. Maris, N. Engl. J. Med., 2010, 362, 2202–2211. 81 K. K. Matthay, R. E. George and A. L. Yu, Clin. Cancer Res., 2012, 18, 2740–2753. 82 S. Ekelund, P. Nygren and R. Larsson, Biochem. Pharmacol., 2001, 61, 1183–1193. 83 G. Villaverde, A. Baeza, G. J. Melen, A. Alfranca, M. Ramirez and M. Vallet-Regi, J. Mater. Chem. B, 2015, 3, 4831–4842. 84 M. Lundqvist, J. Stigler, T. Cedervall, T. Berggård, M. B. Flanagan, I. Lynch, G. Elia and K. Dawson, ACS Nano, 2011, 5, 7503–7509. 85 N. Bertrand and J.-C. Leroux, J. Controlled Release, 2012, 161, 152–163. 86 A. T. Florence, J. Controlled Release, 2012, 164, 115–124. 87 T. D. McKee, P. Grandi, W. Mok, G. Alexandrakis, N. Insin, J. P. Zimmer, M. G. Bawendi, Y. Boucher, X. O. Breakefield and R. K. Jain, Cancer Res., 2006, 66, 2509–2513. 88 A. Parodi, S. G. Haddix, N. Taghipour, S. Scaria, F. Taraballi, A. Cevenini, I. K. Yazdi, C. Corbo, R. Palomba, S. Z. Khaled, J. O. Martinez, B. S. Brown, L. Isenhart and E. Tasciotti, ACS Nano, 2014, 8, 9874–9883. 89 M. R. Villegas, A. Baeza and M. Vallet-Regí, ACS Appl. Mater. Interfaces, 2015, 7, 24075–24081. 90 E. S. Lee and Y. H. Bae, J. Controlled Release, 2008, 132, 164–170. 91 Y. L. Hu, Y. H. Fu, Y. Tabata and J. Q. Gao, J. Controlled Release, 2010, 147, 154–162. 92 Z. Gao, L. Zhang, J. Hu and Y. Sun, Nanomed.: Nanotechnol., Biol. Med., 2013, 9, 174–184. 93 I. Vegh, M. Grau, M. Gracia, J. Grande, P. de la Torre and A. I. Flores, Cancer Gene Ther., 2013, 20, 8–16. 94 J. L. Paris, P. de la Torre, M. Manzano, M. V. Cabañas, A. I. Flores and M. Vallet-Regí, Acta Biomater., 2016, DOI: 10.1016/j.actbio.2016.01.017.
Collections