Publication:
Preventing bacterial adhesion on scaffolds for bone tissue engineering

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Whioce Publishing Pte Ltd
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Bone implant infection constitutes a major sanitary concern which is associated to high morbidity and health costs. This manuscript focused on overviewing the main research efforts committed up to date to develop innovative alternatives to conventional treatments, such as those with antibiotics. These strategies mainly rely on chemical modifi-cations of the surface of biomaterials, such as providing it of zwitterionic nature, and tailoring the nanostructure surface of metal implants. These surface modifications have successfully allowed inhibition of bacterial adhesion, which is the first step to implant infection, and preventing long-term biofilm formation compared to pristine materials. These strate-gies could be easily applied to provide three-dimensional (3D) scaffolds based on bioceramics and metals, of which its manufacture using rapid prototyping techniques was reviewed. This opens the gates for the design and development of advanced 3D scaffolds for bone tissue engineering to prevent bone implant infections. Keywords: Antibacterial adhesion, biofilm formation, zwitterionic surfaces, nanostructured surfaces, rapid prototyping 3D scaffolds, bone tissue engineering.
Description
RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí) RESEARCHER ID N-4501-2014 (Sandra Sánchez Salcedo) ORCID 0000-0002-1889-2057 (Sandra Sánchez Salcedo)
Keywords
Citation
1. Nablo B J, Rothrock A R and Schoenfisch M H, 2005, Nitric oxide-releasing sol-gels as antibacterial coatings for orthopedic implants. Biomaterials, vol.26(8): 917–924. http://dx.doi.org/10.1016/j.biomaterials.2004.03.031 2. Costerton J W, Montanaro L and Arciola C R, 2005, Biofilm in implant infections: its production and regula-tion. International Journal of Artificial Organs, vol.28(11): 1062–1068. 3. Bjarnsholt T, 2013, The role of bacterial biofilms in chronic infections. Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol.121(136): 1–51. http://dx.doi.org/10.1111/apm.12099 4. Lebeaux D, Chauhan A, Rendueles O, et al., 2013, From in vitro to in vivo models of bacterial biofilm-related in-fections. Pathogens, vol.2(2): 288–356. http://dx.doi.org/10.3390/pathogens2020288 5. Davies D, 2003, Understanding biofilm resistance to an-tibacterial agents. Nature Reviews Drug Discovery, vol.2(2): 114–122. http://dx.doi.org/10.1038/nrd1008 6. Simchi A, Tamji E, Pishbin F, et al., 2011, Recent pro-gress in inorganic and composite coatings with bacteri-cidal capability for orthopaedic applications. Nanomedi-cine: Nanotechnology, Biology and Medicine, vol.7(1): 22–39. http://dx.doi.org/10.1016/j.nano.2010.10.005 7. Klibanov A M, 2007, Permanently microbicidal mate-rials coatings. Journal of Materials Chemistry, vol.17(24): 2479–2482. http://dx.doi.org/10.1039/B702079A 8. Zheng J, Li L, Tsao H K, et al., 2005, Strong repulsive forces between protein and oligo(ethylene glycol) self- assembled monolayers: a molecular simulation study. Biophysical Journal, vol.89(1): 158–166. Preventing bacterial adhesion on scaffolds for bone tissue engineering 30 International Journal of Bioprinting (2016)–Volume 2, Issue 1 http://dx.doi.org/10.1529/biophysj.105.059428 9. Chen S, Li L, Zhao, et al., 2010, Surface hydration: Principles and applications toward low-fouling/non-fouling biomaterials. Polymer, vol.51(23): 5283–5293. http://dx.doi.org/10.1016/j.polymer.2010.08.022 10. Ostuni E, Chapman R G, Holmlin R E, et al., 2001, A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, vol.17(18): 5605–5020. http://dx.doi.org/10.1021/la010384m 11. Tanaka M, Sato K, Kitakami E, et al., 2015, Design of biocompatible and biodegradable polymers based on in-termediate water concept. Polymer Journal, vol.47: 114–121. http://dx.doi.org/10.1038/pj.2014.129 12. Chung K K, Schumacher J F, Sampson E M, et al., 2007, Impact of engineered surface microtopography on bio-film formation of Staphylococcus aureus. Biointerphas-es, vol.2(2): 89–94. http://dx.doi.org/10.1116/1.2751405 13. Ivanova E P, Hasan J, Webb H K, et al., 2012, Natural bactericidal surfaces: Mechanical rupture of Pseudo-monas aeruginosa by cicada wings. Small, vol.8(16): 2489–2494. http://dx.doi.org/10.1002/smll.201200528 14. Bazaka, K, Crawford R J and Ivanova E P, 2011, Do bacteria differentiate between degrees of nanoscale sur-face roughness? Biotechnology Journal, vol.6(9): 1103– 1114. http://dx.doi.org/10.1002/biot.201100027 15. Truonga V K, Lapovok R, Estrin Y S, et al., 2010, The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, vol.31(13): 3674–3683. http://dx.doi.org/10.1016/j.biomaterials.2010.01.071 16. Campoccia D, Montanaro L and Arciola C R, 2013, A review of the biomaterials technologies for infection- resistant surfaces. Biomaterials, vol.34(34): 8533–5854. http://dx.doi.org/10.1016/j.biomaterials.2013.07.089 17. Puckett S D, Taylor E, Raimondo T, et al., 2010, The relationship between the nanostructure of titanium sur-faces and bacterial attachment. Biomaterials, vol.31(4): 706–713. http://dx.doi.org/10.1016/j.biomaterials.2009.09.081 18. Díaz C, Schilardi P L, Salvarezza R C, et al., 2007, Na-no/microscale order affects the early stages of biofilm formation on metal surface. Langmuir, vol.23(22): 11206–11210. http://dx.doi.org/10.1021/la700650q 19. Jahed Z, Lin P, Seo B B, et al., 2014, Responses of Sta-phylococcus aureus bacterial cells to nanocrystalline nickel nanostructures. Biomaterials, vol.35(14): 4249–4254. http://dx.doi.org/10.1016/j.biomaterials.2014.01.080 20. Tiraferri A, Vecitis C D and Elimelech M, 2011, Cova-lent binding of single-walled carbon nanotubes to po-lyamide membranes for antimicrobial surface properties. ACS Applied Materials and Interfaces, vol.3(8): 2869– 2877. http://dx.doi.org/10.1021/am200536p 21. Knetsch M L W and Koole L H, 2011, New strategies in the development of antimicrobial coatings: The example of increasing usage of silver and silver nanoparticles. Polymers, vol.3(1): 340–366. http://dx.doi.org/10.3390/polym3010340 22. Kelly P J, Lia H, Whitehead K A, et al., 2009, A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings. Surface and Coatings Technology, vol.204(6–7): 1137–1140. http://dx.doi.org/10.1016/j.surfcoat.2009.05.012 23. Sengstock C, Lopian M, Motemani Y, et al., 2014, Structure-related antibacterial activity of a titanium na-nostructured surface fabricated by glancing angle sputter deposition. Nanotechnology, vol.25(19): 195101–195702. http://dx.doi.org/10.1088/0957-4484/25/19/195101 24. Izquierdo-Barba I, García-Martín J M, Álvarez R, et al., 2015, Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus prolifera-tion. Acta Biomaterialia, vol.15: 20–28. http://dx.doi.org/10.1016/j.actbio.2014.12.023 25. Anselme K, 2000, Osteoblast adhesion on biomaterials. Biomaterials, vol.21(7): 667–681. http://dx.doi.org/10.1016/S0142-9612(99)00242-2 26. Hutmacher D W, 2000, Scaffolds in tissue engineering bone and cartilage. Biomaterials, vol.21(24): 2529–2543. http://dx.doi.org/10.1016/S0142-9612(00)00121-6 27. Hollister S J, 2009, Scaffold design and manufacturing: from concept to clinic. Advanced Materials, vol. 21(32–33), 3330–3342. http://dx.doi.org/10.1002/adma.200802977 28. Cheng G, Zhang Z, Chen S, et al., 2007, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, vol.28(29): 4192–4199. http://dx.doi.org/10.1016/j.biomaterials.2007.05.041 29. Cheng G, Xue H, Zhang Z, et al., 2008, A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities. Angewandte Chemie Interna-tional Edition, vol.120(46): 8963–8966. http://dx.doi.org/10.1002/ange.200803570 30. Cheng G, Li G, Xue H, et al., 2009, Zwitterionic car-boxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials, vol.30(28): 5234–5240. http://dx.doi.org/10.1016/j.biomaterials.2009.05.058 31. Jiang S and Cao Z, 2010, Ultralow-fouling, functiona- Sandra Sánchez-Salcedo, Montserrat Colilla, Isabel Izquierdo-Barba, et al. International Journal of Bioprinting (2016)–Volume 2, Issue 1 31 lizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Advanced Materials, vol.22(9): 920–932. http://dx.doi.org/10.1002/adma.200901407 32. Lalani R and Liu L, 2012, Electrospun zwitterionic poly(sulfobetaine methacrylate) for nonadherent, supe-rabsorbent, and antimicrobial wound dressing applica-tions. Biomacromolecules, vol.13(6): 1853–1863. http://dx.doi.org/10.1021/bm300345e 33. Zhang Z, Chen S, Chang Y, et al., 2006, Surface grafted sulfobetaine polymers via atom transfer radical polyme-rization as superlow fouling coatings. Journal of Physi-cal Chemistry B, vol.110(22): 10799–10804. http://dx.doi.org/10.1021/jp057266i 34. Zhang Z, Chao T, Chen S, et al., 2006, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir, vol.22(24): 10072–10077. http://dx.doi.org/10.1021/la062175d 35. Liu Y L, Han C C, Wei T-C, et al., 2010, Surface-initi-ated atom transfer radical polymerization from porous poly(tetrafluoroethylene) membranes using the C-F groups as initiators. Journal of Polymer Science: Part A: Polymer Chemistry, vol.48(10): 2076–2083. http://dx.doi.org/10.1002/pola.23975 36. Yu B Y, Zheng J, Chang Y, et al., 2014, Surface zwitte-rionization of titanium for a general bio-inert control of plasma proteins, blood cells, tissue cells, and bacteria. Langmuir, vol.30(25): 7502–7512. http://dx.doi.org/10.1021/la500917s 37. Sin M C, Sun Y M and Chang Y, 2014, Zwitterio-nic-based stainless steel with well-defined polysulfobe-taine brushes for general bioadhesive control. ACS Ap-plied Materials and Interfaces, vol.6(2): 861–873. http://dx.doi.org/10.1021/am4041256 38. Vallet-Regí M and Ruiz-Hernández E, 2011, Bioceram-ics: from bone regeneration to cancer nanomedicine. Advanced Materials, vol.23(44): 5177–5218. http://dx.doi.org/10.1002/adma.201101586 39. Vallet-Regí M, 2014, Bio-ceramics with clinical applica-tions, John Wiley & Sons Ltd, Chichester, United Kingdom. http://dx.doi.org/10.1002/9781118406748 40. Vallet-Regí M, 2006, Ordered mesoporous materials in the context of drug delivery systems and bone tissue en-gineering. Chemistry–A European Journal, vol.12(23): 5934–5943. http://dx.doi.org/10.1002/chem.200600226 41. Vallet-Regí M, Colilla M and González B, 2011, Medi-cal applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chemical Society Reviews, vol.40(2): 596–607. http://dx.doi.org/10.1039/C0CS00025F 42. Vallet-Regí M, Izquierdo-Barba I and Colilla M, 2012, Structure and functionalization of mesoporous bioce-ramics for bone tissue regeneration and local drug deli-very. Philosophical Transactions of the Royal Society of Chemistry A, vol.370(1963): 1400–1421. http://dx.doi.org/10.1098/rsta.2011.0258 43. Vallet-Regí M, Balas F and Arcos D, 2007, Mesoporous materials for drug delivery. Angewandte Chemie Inter-national Edition, vol.46(40): 7548–7558. http://dx.doi.org/10.1002/anie.200604488 44. Colilla M, Izquierdo-Barba I, Sánchez-Salcedo S, et al., 2010, Synthesis and characterization of zwitterionic SBA-15 nanostructured materials. Chemistry of Mate-rials, vol.22(23): 6459–6466. http://dx.doi.org/10.1021/cm102827y 45. Izquierdo-Barba I, Sánchez-Salcedo S, Colilla M, et al., 2011, Inhibition of bacterial adhesion on biocompatible zwitterionic SBA-15 mesoporous materials. Acta Bio-materialia, vol.7(7): 2977–2985. http://dx.doi.org/10.1016/j.actbio.2011.03.005 46. Colilla M, Martínez-Carmona M, Sanchez-Salcedo S, et al., 2014, A novel zwitterionic bioceramic with dual an-tibacterial capability. Journal of Materials Chemistry B, vol.2(34): 5639–5651. http://dx.doi.org/10.1039/C4TB00690A 47. Vallet-Regí M and Navarrete D A, 2015, Nanoceramics in clinical use: From materials to applications. 2nd ed., Royal Society of Chemistry, Cambridge, United King-dom. http://dx.doi.org/10.1039/9781782622550 48. Dorozhkin S V, 2010, Bioceramics of calcium ortho-phosphates. Biomaterials, vol.31(7): 1465–1485. http://dx.doi.org/10.1016/j.biomaterials.2009.11.050 49. Sánchez-Salcedo S, Colilla M, Izquierdo-Barba I, et al., 2013, Design and preparation of biocompatible zwitte-rionic hydroxyapatite. Journal of Materials Chemistry B, vol.1(11): 1595–1606. http://dx.doi.org/10.1039/C3TB00122A 50. Anselme, K, Davidson P, Popa A M, et al., 2010, The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomaterialia, vol.6(10): 3824–3846. http://dx.doi.org/10.1016/j.actbio.2010.04.001 51. Whitehead K A, Colligon J and Verran J, 2005, Reten-tion of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surfaces B: Biointerfaces, vol.41(2–3): 129–138. http://dx.doi.org/10.1016/j.colsurfb.2004.11.010 52. Campoccia D, Montanaro L, Agheli H, et al., 2006, Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry. Interna-tional Journal of Artificial Organs, vol.29(6): 622–629. 53. Marmur A, 2004, The Lotus effect: Superhydrophobici- Preventing bacterial adhesion on scaffolds for bone tissue engineering 32 International Journal of Bioprinting (2016)–Volume 2, Issue 1 ty and metastability. Langmuir, vol.20(9): 3517–3519. http://dx.doi.org/10.1021/la036369u 54. Su Y, B Ji and Hwang K C, 2010, Nature’s design of hierarchical superhydrophobic surfaces of a water strid-er for low adhesion and low-energy dissipation. Lang-muir, vol.26(24): 18926–18937. http://dx.doi.org/10.1021/la103442b 55. Bhushan B and Jung Y C, 2011, Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science, vol.56(1): 1–108. http://dx.doi.org/10.1016/j.pmatsci.2010.04.003 56. Guo Z, Liu W and Su B L, 2011, Superhydrophobic surfaces: From natural to biomimetic to functional. Journal of Colloid and Interface Science, vol.353(2): 335–355. http://dx.doi.org/10.1016/j.jcis.2010.08.047 57. Webb H K, Hasan J, Truong V K, et al., 2011, Nature inspired structured surfaces for biomedical applications. Current Medicinal Chemistry, vol.18(22): 3367–3375. http://dx.doi.org/10.2174/092986711796504673 58. Gao X, Yan X, Yao X, et al., 2007, The dry-style anti-fogging properties of mosquito compound eyes and ar-tificial analogues prepared by soft lithography. Ad-vanced Materials, vol.19(17): 2213–2217. http://dx.doi.org/10.1002/adma.200601946 59. Bhushan B, Jung Y C, Niemitz A, et al., 2009, Lo-tus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes. Langmuir, vol.25(3): 1659–1666. http://dx.doi.org/10.1021/la802491k 60. Koch K, Bhushan B, Yong C J, et al., 2009, Fabrication of artificial lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion. Soft Matter, vol.5(7): 1386–1393. http://dx.doi.org/10.1039/B818940D 61. Ploux L, Anselme K, Dirani A, et al., 2009, Opposite responses of cells and bacteria to micro/nanopatterned surfaces prepared by pulsed plasma polymerization and UV-irradiation. Langmuir, vol.25(14): 8161–8169. http://dx.doi.org/10.1021/la900457f 62. Mei S, Wang H, Wang W, et al., 2014, Antibacterial ef-fects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Bioma-terials, vol.35(14): 4255–4265. http://dx.doi.org/10.1016/j.biomaterials.2014.02.005 63. Decuzzi P and Ferrari M, 2010, Modulating cellular ad-hesion through nanotopography. Biomaterials, vol.31(1): 173–179. http://dx.doi.org/10.1016/j.biomaterials.2009.09.018 64. Alvarez R, García-Martín J M, Macías-Montero M, et al., 2013, Growth regimes of porous gold thin films de- posited by magnetron sputtering at oblique incidence: From compact to columnar microstructures. Nanotech-nology, vol.24(4): 045604. http://dx.doi.org/10.1088/0957-4484/24/4/045604 65. García-Martín J M, Álvarez R, Romero-Gómez P, et al., 2010, Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures. Applied Physics Letters, vol.97(17): 173103. http://dx.doi.org/10.1063/1.3506502 66. Liu D M, 1996, Fabrication and characterization of porous hydroxyapatite granules. Biomaterials, vol.17(20): 1955–1957. http://dx.doi.org/10.1016/0142-9612(95)00301-0 67. Padilla S, Román J and Vallet-Regí M, 2002, Synthesis of porous hydroxyapatite by combination of gelcasting and foams burn out methods. Journal Materials Science: Materials in Medicine. vol.13(12): 1193–1197. http://dx.doi.org/10.1023/A:1021162626006 68. Padilla S, Sánchez-Salcedo S and Vallet-Regí M, 2007, Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. Journal Biomedical Materials Research, vol.81(1): 224–232. http://dx.doi.org/10.1002/jbm.a.30934 69. Slosarczyk A J, 1999, Porous hydroxyapatite ceramics. Journal Materials Science: Materials in Medicine, vol.18(14): 1163–1165. http://dx.doi.org/10.1023/A:1006677806537 70. Al Ruhaimi K A, 2001, Bone graft substitutes: Acom-parative qualitative histologic review of current osteo-conductive grafting materials. International Journal of Oral & Maxillofacial Implants, vol.16(1): 105–114. 71. Sánchez-Salcedo S, Balas F, Izquierdo-Barba I, et al., 2009, In vitro structural changes in porous HA/beta-TCP scaffolds under simulated body fluid. Acta Biomateria-lia, vol.5(7): 2738–2751. http://dx.doi.org/10.1016/j.actbio.2009.03.025 72. Deville S, Saiz E, Nalla R K, et al., 2006, Freezing as a path to build complex composites, Science, vol.311(5760): 515–518. http://dx.doi.org/10.1126/science.1120937 73. Locs J, Zalite V, Berzina-Cimdina L, et al., 2013, Am-monium hydrogen carbonate provided viscous slurry foaming — a novel technology for the preparation of porous ceramics. Journal of the European Ceramic So-ciety, vol.33(15–16): 3437–3443. http://dx.doi.org/10.1016/j.jeurceramsoc.2013.06.010 74. Sánchez-Salcedo S, Werner J and Vallet-Regí M, 2008, Hierarchical pore structure of calcium phosphate scaf-folds by combination of the gel casting and multiple tape casting methods. Acta Biomaterialia, vol.4: 913–922. http://dx.doi.org/10.1016/j.actbio.2008.02.005 75. Hutmacher D W, Sittinger M and Risbud M V, 2004, Sandra Sánchez-Salcedo, Montserrat Colilla, Isabel Izquierdo-Barba, et al. International Journal of Bioprinting (2016)–Volume 2, Issue 1 33 Scaffold-based tissue engineering: Rationale for com-puter-aided design and solid free-form fabrication sys-tems. Trends in Biology, vol.22(7): 354–362. http://dx.doi.org/10.1016/j.tibtech.2004.05.005 76. Hutmacher D W, 2001, Scaffold design and fabrication technologies for engineering tissues — state of the art and future perspectives. Journal Biomaterials Science Polymer Edition, vol.12(1): 107–124. http://dx.doi.org/10.1163/156856201744489 77. Leong K F, Cheah C M and Chua C K, 2003, Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomate-rials, vol.24(13): 2363–2378. http://dx.doi.org/10.1016/S0142-9612(03)00030-9 78. Fu Q, Saiz E, Rahaman M N, et al., 2011, Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Materials Science and En-gineering C, vol.31(7): 1245–1256. http://dx.doi.org/10.1016/j.msec.2011.04.022 79. Coward T J, Watson R M and Wilkinson I C, 1999, Fa-brication of a wax ear by rapid-process modeling using stereolithography. International Journal of Prosthodon-tics, vol.12(1): 20–27. 80. Sánchez-Salcedo S, Nieto A and Vallet-Regí M, 2008, Hydroxyapatite/β-tricalciumphosphate/agarose macro-porous scaffolds for bone tissue engineering. Chemical Engineering Journal, vol.137(1): 62–71. http://dx.doi.org/10.1016/j.cej.2007.09.011 81. Padilla P, Sánchez-Salcedo S and Vallet-Regí M, 2007, Bioactive glass as precursor of designed-architecture scaffolds for tissue engineering. Journal of Biomedical Materials Research, vol.81A(1): 224–232. http://dx.doi.org/10.1002/jbm.a.30934 82. Ryan G E, Pandit A S and Apatsidis D P, 2008, Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials, vol.29(27): 3625–3635. http://dx.doi.org/10.1016/j.biomaterials.2008.05.032 83. Giordano R A, Wu B M, Borland S W, et al., 1996, Me-chanical properties of dense polylactic acid structures fabricated by three dimensional printing. Journal of Biomaterials Science, Polymer Edition, vol.8(1): 63–75. http://dx.doi.org/10.1163/156856297X00588 84. Lopez-Heredia M A, Sohier J, Gaillard C, et al., 2008, Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering. Biomaterials, vol. 29(17): 2608–2615. http://dx.doi.org/10.1016/j.biomaterials.2008.02.021 85. Wiria F E, Shyan J Y M, Lim P N, et al., 2010, Printing of titanium implant prototype. Materials and Design, vol.31(1): S101–S105. http://dx.doi.org/10.1016/j.matdes.2009.12.050 86. Zein I, Hutmacher D W, Tan K C, et al., 2002, Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, vol.23(4): 1169–1185. http://dx.doi.org/10.1016/S0142-9612(01)00232-0 87. Hutmacher D W, Schantz T, Zein I, et al., Mechanical properties and cell cultural response of polycaprolac-tone scaffolds designed and fabricated via fused deposi-tion modelling. Journal of Biomedical Materials Re-search, vol.55(2): 203–216. http://dx.doi.org/10.1002/1097-4636%28200105%2955%3A2%3C203%3A%3AAID-JBM1007%3E3.0.CO%3B2-7 88. Cesarano J, Segalman R and Calvert P, 1998, Robo-casting provides mold less fabrication from slurry de-position. Ceramic Industry, vol.148: 94–102. 89. Smay J E, Cesarano J and Lewis J A, 2002, Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, vol.18(14): 5429–5437. http://dx.doi.org/10.1021/la0257135 90. Michna S, Wu W and Lewis J A, 2005, Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds. Biomaterials, vol.26(28): 5632–5639. http://dx.doi.org/10.1016/j.biomaterials.2005.02.040 91. Barnes C P, Sell S A, Boland E D, et al., 2007, Nanofi-ber technology: Designing the next generation of tissue engineering scaffolds. Advanced in Drug Delivery Re-views, vol.59(14): 1413–1433. http://dx.doi.org/10.1016/j.addr.2007.04.022 92. Perera F H, Martínez-Vázquez F J, Miranda P, et al., 2010, Clarifying the effect of sintering conditions on the microstructure and mechanical properties of beta-tri-calcium phosphate. Ceramics International, vol.36(6): 1929–1935. http://dx.doi.org/10.1016/j.ceramint.2010.03.015 93. Yun H S, Kim S E and Hyeon Y T, 2007, Design and preparation of bioactive glasses with hierarchical pore networks. Chemical Communications, vol.21(21): 2139– 2141. http://dx.doi.org/10.1039/B702103H 94. García, A, Izquierdo-Barba I, Colilla M, et al., 2011, Preparation of 3-D scaffolds in the SiO2–P2O5 system with tailored hierarchical meso-macroporosity. Acta Biomaterialia, vol.7(3): 1265–1273. http://dx.doi.org/10.1016/j.actbio.2010.10.006 95. Sánchez-Salcedo S, Shruti S, Salinas A J, et al., 2014, In vitro antibacterial capacity and cytocompatibility of SiO2– CaO–P2O5 meso-macroporous glass scaffolds enriched with ZnO. Journal Materials Chemistry B, vol.2(30): 4836–4847. http://dx.doi.org/10.1039/C4TB00403E 96. Martínez-Vázquez F J, Cabañas M V, Paris J L, et al., 2015, Fabrication of novel Si-doped hydroxyapatite/ Preventing bacterial adhesion on scaffolds for bone tissue engineering 34 International Journal of Bioprinting (2016)–Volume 2, Issue 1 gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Acta Biomaterialia, vol.15: 200– 209. http://dx.doi.org/0.1016/j.actbio.2014.12.021 97. Shruti S, Salinas A J, Lusvardi G, et al., 2013, Meso-porous bioactive scaffolds prepared with cerium-, gal-lium- and zinc-containing glasses. Acta Biomaterialia, vol.9(1): 4836–4844. http://dx.doi.org/10.1016/j.actbio.2012.09.024 98. Cicuéndez M, Malmsten M, Doadrio J C, et al., 2014, Tailoring hierarchical meso–macroporous 3D scaffolds: From nano to macro. Journal of Materials Chemistry B, vol.2(1): 49–58. http://dx.doi.org/10.1039/C3TB21307B 99. Meseguer-Olmo, L, Vicente-Ortega V, Alcaraz-Baños M, et al., 2013, In-vivo behavior of Si-Hydroxyapatite/po-lycaprolactone/DMB scaffolds fabricated by 3D printing. Journal of Biomedical Materials Research A, vol.101A(7): 2038–2048. http://dx.doi.org/10.1002/jbm.a.34511 100. Riza S H, Masood S H and Wen C, 2014, Laser-assisted additive manufacturing for metallic biomedical scaffolds, Comprehensive Materials Processing, vol.10: 285–301. http://doi.org/10.1016/B978-0-08-096532-1.01017-7 101. Berry E, Brown J M, Connell M, et al., 1997, Prelimi-nary experience with medical applications of rapid pro-totyping by selective laser sintering. Medical Engineer- ing & Physics, vol.19(1): 90–96. http://dx.doi.org/10.1016/S1350-4533(96)00039-2 102. Kruth J-P, Mercelis P, Vaerenbergh J V, et al., 2005, Binding mechanisms in selective laser sintering and se-lective laser melting. Rapid Prototyping Journal, vol.11(1): 26–36. http://dx.doi.org/10.1108/13552540510573365 103. Wiria F E, Leong K F, Chua C K, et al., 2007, Poly- Ɛ-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomaterialia, vol.3(1): 1–12. http://dx.doi.org/10.1016/j.actbio.2006.07.008 104. Tan K H, Chua C K, Leong K F, et al., 2005, Selective laser sintering of biocompatible polymers for applica-tions in tissue engineering. Biomedical Materials Engi-neering, vol.15(1–2): 113−124. 105. Shuai C, Li P, Liu J, et al., 2013, Optimization of TCP/HAP ratio for better properties of calcium phos-phate scaffold via selective laser sintering. Materials Characterization, vol.77: 23–31. http://dx.doi.org/10.1016/j.matchar.2012.12.009 106. Lin C Y, Wirtz T, LaMarca F, et al., 2007, Structural and mechanical evaluation of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. Journal of Biomedical Material Re-search, vol.83A(2): 272–279. http://dx.doi.org/10.1002/jbm.a.31231
Collections