Publication:
Increasing applicability of slow light in molecular aggregate nanofilms with two-exciton dynamics

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-05-25
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We study the slow-light performance in the presence of exciton – exciton interaction in films of linear molecular aggregates at the nanometer scale. In particular, we consider a four-level model to describe the creation/annihilation of two-exciton states that are relevant for high-intensity fields. Numerical simulations show delays comparable to those obtained for longer propagation distances in other media. Two-exciton dynamics could lead to larger fractional delays, even in presence of disorder, in comparison to the two-level approximation. We conclude that slow-light performance is a robust phenomenon in these systems under the increasing complexity of the two-exciton dynamics.
Description
© 2016 Optical Society of America. Funding. MINECO (MAT2013-46308, FIS2013- 41709-P).
Keywords
Citation
1. J. Mørk, R. Kjær, M. van der Poel, and K. Yvind, Opt. Express 13, 8136 (2005). 2. K.-H. Kim, A. Husakou, and J. Herrmann, Opt. Express 20, 25790 (2012). 3. S. Ek, P. Lunnemann, Y. Chen, E. Semenova, K. Yvind, and J. Mork, Nat. Commun.5, 5039 (2014). 4. T. Baba, H. C. Nguyen, N. Yazawa, Y. Terada, S. Hashimoto, and T. Watanabe, Sci. Technol. Adv. Mater.15, 024602 (2014). 5. E. Cabrera-Granado, E. Díaz, and O. G. Calderón, Phys. Rev. Lett. 107, 013901 (2011). 6. J. Knoester, Int. J. Photoenergy 2006, 61364 (2006). 7. S. K. Saikin, A. Eisfeld, S. Valleau, and A. Aspuru-Guzik, Nanophotonics 2, 21 (2013). 8. H. Fidder, J. Knoester, and D. A. Wiersma, J. Chem. Phys. 98, 6564 (1993). 9. H. Glaeske, V. A. Malyshev, and K.-H. Feller, Phys. Rev. A 65, 033821 (2002). 10. F. Herrera, B. Peropadre, L. A. Pachon, S. K. Saikin, and A. Aspuru-Guzik, J. Phys. Chem. Lett.5, 3708 (2014). 11. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, Phys. Rev. Lett. 114, 157401 (2015). 12. E. C. Jarque and V. A. Malyshev, J. Chem. Phys. 115, 4275 (2001). 13. H. Fidder, J. Knoester, and D. A. Wiersma, Chem. Phys. Lett. 171, 529 (1990). 14. K. Minoshima, M. Taiji, K. Misawa, and T. Kobayashi, Chem. Phys. Lett. 218, 67 (1994). 15. R. W. Boyd, M. G. Raymer, P. Narum, and D. J. Harter, Phys. Rev. A 24, 411 (1981). 16. H. Stiel, S. Daehne, and K. Teuchner, J. Lumin. 39, 351 (1988). 17. R. V. Markov, Z. M. Ivanova, A. I. Plekhanov, N. A. Orlova, and V. V. Shelkovnikov, Quantum Electron. 31, 1063 (2001)
Collections