Publication:
Nanocrystallinity effects on osteoblast and osteoclast response to silicon substituted hydroxyapatite

Research Projects
Organizational Units
Journal Issue
Abstract
Hypothesis: Silicon substituted hydroxyapatites (SiHA) are highly crystalline bioceramics treated at high temperatures (about 1200ºC) which have been approved for clinical use with spinal, orthopedic, periodontal, oral and craniomaxillofacial applications. The preparation of SiHA with lower temperature methods (about 700ºC) provides nanocrystalline SiHA (nano-SiHA) with enhanced bioreactivity due to higher surface area and smaller crystal size. The aim of this study has been to know the nanocrystallinity effects on the response of both osteoblasts and osteoclasts (the two main cell types involved in bone remodelling) to silicon substituted hydroxyapatite. Experiments: Saos-2 osteoblasts and osteoclast-like cells (differentiated from RAW-264.7 macrophages)have been cultured on the surface of nano-SiHA and SiHA disks and different cell parameters have been evaluated: cell adhesion, proliferation, viability, intracellular content of reactive oxygen species, cell cycle phases, apoptosis, cell morphology, osteoclast-like cell differentiation and resorptive activity. Findings: This comparative in vitro study evidences that nanocrystallinity of SiHA affects the cell/biomaterial interface inducing bone cell apoptosis by loss of cell anchorage (anoikis), delaying osteoclast-like cell differentiation and decreasing the resorptive activity of this cell type. These results suggest the potential use of nano-SiHA biomaterial for preventing bone resorption in treatment of osteoporotic bone.
Description
RESEARCHER ID M-3378-2014 (María Vallet Regí) ORCID 0000-0002-6104-4889 (María Vallet Regí) RESEARCHER ID N-4501-2014 (Sandra Sánchez Salcedo) ORCID 0000-0002-1889-2057 (Sandra Sánchez Salcedo)
Keywords
Citation
[1] A.M. Parfitt, Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression, Bone 30 (2002) 5–7. [2] S. Harada, G.A. Rodan, Control of osteoblast function and regulation of bone mass, Nature 423 (2003) 349–355. [3] E.J. Mackie, Osteoblasts: novel roles in orchestration of skeletal architecture, Int. J. Biochem. Cell Biol. 35 (2003) 1301–1305. [4] W.J. Boyle, W.S. Simonet, D.L. Lacey, Osteoclast differentiation and activation, Nature 423 (2003) 337–342. [5] A. Qin, T.S. Cheng, N.J. Pavlos, Z. Lin, K.R. Dai, M.H. Zheng, V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption, Int. J. Biochem. Cell Biol. 44 (2012) 1422–1435. [6] H.K. Väänänen, Y.K. Liu, P. Lehenkari, T. Uemara, How do osteoclasts resorb bone?, Mater Sci. Eng. C 6 (1998) 205–209. [7] S.C. Manolagas, Cellular and molecular mechanisms of osteoporosis, Aging 10 (1988) 182–190. [8] T. Luhmann, O. Germershaus, J. Groll, L. Meinel, Bone targeting for the treatment of osteoporosis, J. Control. Release 161 (2012) 198–213. [9] E.M. Carlisle, Silicon as a trace nutrient, Sci. Total Environ. 73 (1998) 95–106. [10] K. Schwarz, A bound form of silicon in glycosaminoglycans and polyuronides, Proc. Natl. Acad. Sci. 70 (1973) 1608–1612. [11] E.M. Carlisle, In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick, J. Nutr. 106 (1976) 478–484. [12] W.J. Landis, D.D. Lee, J.T. Brenna, S. Chandra, G.H. Morrison, Detection and localization of silicon and associated elements in vertebrate bone tissue by imaging ion microscopy, Calcif. Tissue Int. 38 (1986) 52–59. [13] D.M. Reffitt, D.N. Ogston, R. Jugdaohsingh, H.F. Cheung, B.A. Evans, R.F. Thompson, J.J. Powell, G.N. Hampson, Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro, Bone 32 (2003) 127–135. [14] Z. Mladenovic´ , A. Johansson, B. Willman, K. Shahabi, E. Björn, M. Ransjö, Soluble silica inhibits osteoclast formation and bone resorption in vitro, Acta Biomater. 10 (2014) 406–418. [15] H. Li, J. Chang, Bioactive silicate materials stimulate angiogenesis in fibroblast and endothelial cell co-culture system through paracrine effect, Acta Biomater. 9 (2013) 6981–6991. [16] P.J. Bouletreau, S.M. Warren, J.A. Spector, Z.M. Peled, R.P. Gerrets, J.A. Greenwald, M.T. Longaker, Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing, Plast. Reconstr. Surg. 109 (2002) 2384–2397. [17] J.H. Shepherd, D.V. Shepherd, S.M. Best, Substituted hydroxyapatites for bone repair, J. Mater. Sci. - Mater. Med. 23 (2012) 2335–2347. [18] N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, E. Damien, P.A. Revell, A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules, J. Mater. Sci. - Mater. Med. 13 (2002) 1199–1206. [19] A.M. Pietak, J.W. Reid, M.J. Stott, M. Sayer, Silicon substitution in the calcium phosphate bioceramics, Biomaterials 28 (2007) 4023–4032. [20] M. Bohner, Silicon-substituted calcium phosphates - a critical view, Biomaterials 30 (2009) 6403–6406. [21] F. Balas, J. Pérez-Pariente, M. Vallet-Regí, In vitro bioactivity of siliconsubstituted hydroxyapatites, J. Biomed. Mater. Res. A 66 (2003) 364–375. [22] A.E. Porter, S.M. Best, W. Bonfield, Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications, J. Biomed. Mater. Res. A 68 (2004) 133–141. [23] M.M. Dvorak, A. Siddiqua, D.T. Ward, D.H. Carter, S.L. Dallas, E.F. Nemeth, D. Riccardi, Physiological changes in extracellular calcium concentration directly control osteoblast function in the absence of calciotropic hormones, Proc. Natl. Acad. Sci. 101 (2004) 5140–5145. [24] A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, W. Bonfield, Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics, Biomaterials 24 (2003) 4609–4620. [25] M.C. Matesanz, M.J. Feito, C. Ramírez-Santillán, R.M. Lozano, S. Sánchez- Salcedo, D. Arcos, M. Vallet-Regí, M.T. Portolés, Signaling pathways of immobilized FGF-2 on silicon-substituted hydroxyapatite, Macromol. Biosci. 12 (2012) 446–453. [26] A. Balamurugan, A.H.S. Rebelo, A.F. Lemos, J.H.G. Rocha, J.M.G. Ventura, J.M.F. Ferreira, Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response, Dent. Mater. 24 (2008) 1374–1380. [27] D. Arcos, J. Rodríguez-Carvajal, M. Vallet-Regí, Silicon incorporation in hydroxylapatite obtained by controlled crystallization, Chem. Mater. 16 (2004) 2300–2308. [28] S.V. Dorozhkin, Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in Biomedical engineering, biology and medicine, Materials 2 (2009) 1975–2045. [29] E.S. Thian, Z. Ahmad, J. Huang, M.J. Edirisinghe, S.N. Jayasinghe, D.C. Ireland, R. A. Brooks, N. Rushton, W. Bonfield, S.M. Best, The role of surface wettability and surface charge of electrosprayed nanoapatites on the behaviour of osteoblasts, Acta Biomater. 6 (2010) 750–755. [30] S. Samaved, A.R. Whittington, A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: a review of properties and their influence on cell behavior, Acta Biomater. 9 (2013) 8037–8045. [31] M. Bohner, J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials 30 (2009) 2175–2179 [32] A. Quillet-Mary, J.P. Jaffrezou, V. Mansat, C. Bordier, J. Naval, G. Laurent, Implication of mitochondrial hydrogen peroxide generation in ceramideinduced apoptosis, J. Biol. Chem. 272 (1997) 21388–21395. [33] S.M. Frisch, E. Ruoslaht, Integrins and anoikis, Curr. Opin. Cell Biol. 9 (1997) 701–706. [34] S.M. Frisch, R.A. Screaton, Anoikis mechanisms, Curr. Opin. Cell Biol. 13 (2001) 555–562. [35] J. Grossmann, K. Walther, M. Artinger, S. Kiessling, J. Scholmerich, Apoptotic signaling during initiation of detachment-induced apoptosis (‘‘anoikis”) of primary human intestinal epithelial cells, Cell Growth Differ. 12 (2001) 147–155. [36] M. Alcaide, M.C. Serrano, J. Román, M.V. Cabañas, J. Peña, E. Sánchez-Zapardiel, M. Vallet-Regí, M.T. Portolés, Suppression of anoikis by collagen coating of interconnected macroporous nanometric carbonated hydroxyapatite/agarose scaffolds, J. Biomed. Mater. Res. A 95 (2010) 793–800. [37] P. Chiarugi, E. Giannoni, Anoikis: a necessary death program for anchoragedependent cells, Biochem. Pharmacol. 76 (2008) 1352–1364. [38] M.C. Matesanz, J. Linares, I. Lilue, S. Sánchez-Salcedo, M.J. Feito, D. Arcos, M. Vallet-Regí, M.T. Portolés, Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity, J. Mater. Chem. B 2 (2014) 2910–2919. [39] M.C. Matesanz, J. Linares, M. Oñaderra, M.J. Feito, F.J. Martínez-Vázquez, S. Sánchez-Salcedo, D. Arcos, M.T. Portolés, M. Vallet-Regí, Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures, Colloids Surf. B 133 (2015) 304–313.
Collections