Publication:
Capacity of straylight and disk halo size to diagnose cataract

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2015-10
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Purpose To examine the capacity of straylight and disk halo size to diagnose cataract. Setting Faculty of Optics and Optometry, Universidad Complutense de Madrid, Spain. Design Prospective study. Methods Straylight, disk halo radius, and high-contrast corrected distance visual acuity (CDVA) measurements were compared between patients with age-related cataract and age-matched normal-sighted control subjects by calculating the area under the curve (AUC) receiver operating characteristic. Results Measurements were made in 53 eyes of 53 patients with a mean age of 67.94 years ± 7.11 (SD) and 31 eyes of 31 controls with a mean age 66.06 ± 5.43 years. Significantly worse (P <.001) mean straylight (1.38 ± 0.24 log[s]), mean disk halo radius (2.40 ± 0.18 log minutes of arc [arcmin]), and mean CDVA (0.17 ± 0.11 logMAR) were recorded in the cataract group than in the control group (1.17 ± 0.11 log[s], 2.10 ± 0.16 log arcmin, and 0.08 ± 0.08 logMAR). Significant differences in AUCs were observed for disk halo radius (0.89 ± 0.04) versus straylight (0.77 ± 0.05) (P =.03) and disk halo radius versus CDVA (0.72 ± 0.05) (P =.001). The comparison of disk halo radius versus the discriminant function with input from CDVA and straylight (0.80 ± 0.05) was at the limit of significance only (0.091 ± 0.05, P =.051). Conclusion Although all 3 variables discriminated well between normal eyes and eyes with cataract, the disk halo radius showed the best diagnostic capacity. Financial Disclosure Neither author has a financial or proprietary interest in any material or method mentioned.
Description
Submitted: November 20, 2014. Final revision submitted: March 20, 2015. Accepted: March 22, 2015.
Keywords
Citation
1. Norregaard JC, Bernth-Petersen P, Alonso J, Dunn E, Black C, Andersen TF, Espallargues M, Bellan L, Anderson G. Variation in indications for cataract surgery in the United States, Denmark, Canada, and Spain: results from the International Cataract Surgery Outcomes Study. Br J Ophthalmol 1998; 82:1107–1111. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1722378/pdf/v082p01107.pdf. Accessed August 27, 2015. 2. Michael R, van Rijn LJ, van den Berg TJTP, Barraquer RI, Grabner G, Wilhelm H, Coeckelbergh T, Emesz M, Marvan P, Nischler C. Association of lens opacities, intraocular straylight, contrast sensitivity and visual acuity in European drivers. Acta Ophthalmol 2009; 87:666–671. Available at: http://onlinelibrary. wiley.com/doi/10.1111/j.1755-3768.2008.01326.x/pdf. Accessed August 27, 2015. 3. Bal T, Coeckelbergh T, Van Looveren J, Rozema JJ, Tassignon M-J. Influence of cataract morphology on straylight and contrast sensitivity and its relevance to fitness to drive. Ophthalmologica 2011; 225:105–111. 4. Rubin GS, Adamsons IA, Stark WJ. Comparison of acuity, contrast sensitivity, and disability glare before and after cataract-surgery. Arch Ophthalmol 1993; 111:56–61. 5. Stifter E, Sacu S, Thaler A, Weghaupt H. Contrast acuity in cataracts of different morphology and association to self-reported visual function. Invest Ophthalmol Vis Sci 2006; 47:5412–5422. Available at: http://iovs.arvojournals.org/article.aspx?articleidZ2163670. Accessed August 27, 2015. 6. de Waard PWT, IJspeert JK, van den Berg TJTP, de Jong PTVM. Intraocular light scattering in age-related cataracts. Invest Ophthalmol Vis Sci 1992; 33:618–625. Available at: http://iovs.arvojournals.org/article.aspx?articleidZ2160745. Accessed August 27, 2015. 7. Babizhayev MA, Minasyan H, Richer SP. Cataract halos: a driving hazard in aging populations. Implication of the Halometer DG test for assessment of intraocular light scatter. Appl Ergon 2009; 40:545–553. 8. Cervino A, Montes-Mico R, Hosking SL. Performance of the ~ compensation comparison method for retinal straylight measurement: effect of patient’s age on repeatability. Br J Ophthalmol 2008; 92:788–791. Available at: http://bjo.bmj.com/content/92/6/788.full.pdf. Accessed August 27, 2015. 9. van der Meulen IJE, Gjertsen J, Kruijt B, Witmer JP, Rulo A, Schlingemann RO, van den Berg TJTP. Straylight measurements as an indication for cataract surgery. J Cataract Refract Surg 2012; 38:840–848. 10. van Rijn LJ, Nischler C, Michael R, Heine C, Coeckelbergh T, Wilhelm H, Grabner G, Barraquer RI, van den Berg TJ. Prevalence of impairment of visual function in European drivers. Acta Ophthalmol 2011; 89:124–131. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2009.01640.x/pdf. Accessed August 27, 2015. 11. Van den Berg TJTP, Van Rijn LJ, Michael R, Heine C, Coeckelbergh T, Nischler C, Wilhelm H, Grabner G, Emesz M, Barraquer RI, Coppens JE, Franssen L. Straylight effects with aging and lens extraction. Am J Ophthalmol 2007; 144:358–363. 12. Rozema JJ, van den Berg TJTP, Tassignon M-J. Retinal straylight as a function of age and ocular biometry in healthy eyes. Invest Ophthalmol Vis Sci 2010; 51:2795–2799. Available at: http://iovs.arvojournals.org/article.aspx?articleidZ2186495. Accessed August 27, 2015. 13. van den Berg TJTP. Analysis of intraocular straylight, especially in relation to age. Optom Vis Sci 1995; 72:52–59. 14. Hennelly ML, Barbur JL, Edgar DF, Woodward EG. The effect of age on the light scattering characteristics of the eye. Ophthalmic Physiol Opt 1998; 18:197–203. 15. Lackner B, Pieh S, Schmidinger G, Hanselmayer G, DejacoRuhswurm I, Funovics MA, Skorpik C. Outcome after treatment of ametropia with implantable contact lenses. Ophthalmology 2003; 110:2153–2161. 16. Klyce SD. Night vision disturbances after refractive surgery: haloes are not just for angels [editorial]. Br J Ophthalmol 2007; 91:992–993. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1954820/pdf/992.pdf. Accessed August 27, 2015. 17. Pieh S, Lackner B, Hanselmayer G, Zohrer R, Sticker M, Weghaupt H, Fercher A, Skorpik C. Halo size under distance and near conditions in refractive multifocal intraocular lenses. Br J Ophthalmol 2001; 85:816–821. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1724058/pdf/v085p00816.pdf. Accessed August 27, 2015. 18. Simpson GC. Ocular haloes and coronas. Br J Ophthalmol 1953; 37:450–486. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1324173/pdf/brjopthal01144-0004.pdf. Accessed August 27, 2015. 19. O’Brart DPS, Lohmann CP, Fitzke FW, Smith SE, Kerr-Muir MG, Marshall J. Night vision after excimer laser photorefractive keratectomy: haze and halos. Eur J Ophthalmol 1994; 4:43–51. 20. Allen RJ, Saleh GM, Litwin AS, Sciscio A, Beckingsale AB, Fitzke FW. Glare and halo with refractive correction. Clin Exp Optom 2008; 91:156–160. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1444-0938.2007.00220.x/pdf. Accessed August 27, 2015. 21. Gutierrez R, Jiménez JR, Villa C, Valverde JA, González Anera R. Simple device for quantifying the influence of halos after LASIK surgery. J Biomed Opt 2003; 8:663–667. 22. Puell MC, Perez-Carrasco MJ, Barrio A, Antona B, Palomo-Alvarez C. Normal values for the size of a halo produced by a glare source. J Refract Surg 2013; 29:618–622. 23. Meikies D, van der Mooren M, Terwee T, Guthoff RF, Stachs O. Rostock Glare Perimeter: a distinctive method for quantification of glare. Optom Vis Sci 2013; 90:1143–1148. Available at: http://journals.lww.com/optvissci/Fulltext/2013/10000/Rostock_Glare_Perimeter___A_Distinctive_Method_for.19.aspx. Accessed August 27, 2015. 24. Puell MC, Perez-Carrasco MJ, Palomo-Alvarez C, Antona B, Barrio A. Relationship between halo size and forward light scatter. Br J Ophthalmol 2014; 98:1389–1392. 25. Chylack LT Jr, Wolfe JK, Singer DM, Leske MC, Bullimore MA, Bailey IL, Friend J, McCarthy D, Wu S-Y; for the Longitudinal Study of Cataract Study Group. The Lens Opacities Classification System III. Arch Ophthalmol 1993; 111:831–836. erratum 1506. Available at: http://www.chylackinc.com/LOCS_III/LOCS_III_Certification_files/LOCS_III_Reprint_pdf.pdf. Accessed August 27, 2015. 26. Franssen L, Coppens JE, van den Berg TJTP. Compensation comparison method for assessment of retinal straylight. Invest Ophthalmol Vis Sci 2006; 47:768–776. Available at: http://iovs.arvojournals.org/article.aspx? articleidZ2163743. Accessed August 27, 2015. 27. Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract 2006; 12:132–139. 28. van den Berg TJTP, Franssen L, Kruijt B, Coppens JE. History of ocular straylight measurement: a review. Z Med Phys 2013; 23:6–20. 29. Ortiz C, Castro JJ, Alarcon A, Soler M, Anera RG. Quantifying age-related differences in visual-discrimination capacity: drivers with and without visual impairment. Appl Ergon 2013; 44:523–531. 30. Thibos LN. Retinal image quality for virtual eyes generated by a statistical model of ocular wavefront aberrations. Ophthalmic Physiol Opt 2009; 29:288–291.
Collections