Publication:
Enantioselective determination of ibuprofen residues by chiral liquid chromatography: a systematic study of enantiomeric transformation in surface water and sediments

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
CSIRO Publising
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
The enantioselective composition of ibuprofen in sediments in contact with surface water was evaluated over 168 h in the presence and absence of light. Multivariate techniques applied for the evaluation of enantiomeric fraction (EF) and recoveries of enantiomers in water and sediments show differences in the EF and composition of each enantiomer. In sediments, differences in the EF are a result of the presence or absence of light, whereas in water it is attributable to degradation of the two enantiomers with time. To achieve enantioselective separation of ibuprofen in surface water and sediments, a clean-up and preconcentration procedure using solid phase extraction combined with a direct chiral liquid chromatography–ultraviolet method was developed. Quantitation limits of the proposed method were between 0.12 and 0.15 mg g �1 for each enantiomer in sediments, and between 2.4 and 3.0 mg L �1 in surface water. Intra- and inter-day precisions were between 5.1 and 8.9 %. Multivariate techniques can be useful to identify enantiomeric modifications and to select the variables that should be used for modelling such transformations.
Description
Keywords
Citation
[1] M. A. Sousa, C. Gonc¸alves, E. Cunha, J. Hajsˇlova´, M. F. Alpendurada, Cleanup strategies and advantages in the determination of several therapeutic classes of pharmaceuticals in wastewater samples by SPELC- MS/MS. Anal. Bioanal. Chem. 2011, 399, 807. doi:10.1007/ S00216-010-4297-0 [2] R. Lo´pez-Serna, B. Kasprzyk-Hordern, M. Petrovic´, D. Barcelo´, Multi-residue enantiomeric analysis of pharmaceuticals and their active metabolites in the Guadalquivir River basin (South Spain) by chiral chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 2013, 405, 5859. doi:10.1007/S00216-013-6900-7 [3] P. Paı´ga, L. H. M. L. M. Santos, C. G. Amorim, A. N. Arau´jo, M. C. B. S. M. Montenegro, A. Pena, C. Delerue-Matos, Pilot monitoring study of ibuprofen in surface waters of north of Portugal. Environ Sci. Pollut. Res. 2013, 20, 2410. doi:10.1007/S11356-012-1128-1 [4] H. Chen, X. Li, S. Zhu, Ocurrence and distribution of selected pharmaceuticals and personal care products in aquatic environments: a comparative study of regions in China with different urbanization levels. Environ. Sci. Pollut. Res. 2012, 19, 2381. doi:10.1007/S11356- 012-0750-2 [5] C. Caballo, M. D. Sicilia, Enantioselective determination of representative profens in wastewater by a single step sample treatment and chiral liquid chromatography-tandem mass spectrometry. Talanta 2015, 134, 325. doi:10.1016/J.TALANTA.2014.11.016 [6] P. Vazquez-Roig, V. Andreu, C. Blasco, Y. Pico´ , Risk assessment on the presence of pharmaceuticals in sediments, soil and water of the Pego-Oliva Marshlands (Valencia, eastern Spain). Sci. Total Environ. 2012, 440, 24. doi:10.1016/J.SCITOTENV.2012.08.036 [7] I. Ali, S. Prashant, Y. A. Hassan, S. Bhavtosh, Chiral analysis of ibuprofen residues in water and sediments. Anal. Lett. 2009, 42, 1747. doi:10.1080/00032710903060768 [8] A. R. Ribeiro, P. M. L. Castro, M. E. Tiritan, Chiral pharmaceuticals in the environment. Environ. Chem. Lett. 2012, 10, 239. doi:10.1007/ S10311-011-0352-0 [9] S. Ortiz de Garcı´a, G. Pinto Pinto, P. Garcı´a Encina, R. Irusta Mata, Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci. Total Environ. 2013, 444, 451. doi:10.1016/J.SCITOTENV.2012.11.057 [10] K. M. Nowak, C. Girardi, A. Miltner, M. Gehre, A. Scha¨ffer, M. Ka¨stner, Contribution of microorganism to non-extractable residue formation during biodegradation of ibuprofen in soil. Sci. Total Environ. 2013, 445–446, 377. doi:10.1016/J.SCITOTENV.2012. 12.011 [11] C. Girardi, K. M. Nowak, O. Carranza-Diaz, B. Lewkow, A. Miltner, M. Gehre, A. Scha¨ffer, M. Ka¨stner, Microbial degradation of the pharmaceutical ibuprofen and the herbicide 2,4-D in water and soil – use and limits of data obtained from aqueous systems for predicting their fate in soil. Sci. Total Environ. 2013, 444, 32. doi:10.1016/ J.SCITOTENV.2012.11.051 [12] V. Matamoros, M. Hijosa, J. M. Bayona, Assessment of the pharmaceutical active compounds removal in wastewater treatment systems at enantiomeric level. Ibuprofen and naproxen. Chemosphere 2009, 75, 200. doi:10.1016/J.CHEMOSPHERE.2008.12.008 [13] M. Stuart, D. Lapworth, E. Crane, A. Hart, Review of risk from potential emergeing contaminants in UK groundwater. Sci. Total Environ. 2012, 416, 1. doi:10.1016/J.SCITOTENV.2011.11.072 [14] N. H. Hashim, S. J. Khan, Enantioselective analysis of ibuprofen, ketoprofen and naproxen in wastewater and environmental water samples. J. Chromatogr. A 2011, 1218, 4746. doi:10.1016/J.CHRO MA.2011.05.046 [15] Study on the environmental risks of medicinal products. Final report 2013 (Executive Agency for Health and Consumers). Available at http://ec.europa.eu/health/files/environment/study_environment.pdf [Verified 10 November 2015]. [16] C. Caballo, M. D. Sicilia, S. Rubio, Enantioselective analysis of nonsteroidal anti-inflammatory drugs in freshwater fish based on microextraction with a supramolecular liquid and chiral liquid chromatography- tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 4721. doi:10.1007/S00216-015-8675-5 [17] L. E. Jacobs, R. L. Fimmen, Y. Chin, H. E. Mash, L. K. Weavers, Fulvic acid mediated photolysis of ibuprofen in water. Water Res. 2011, 45, 4449. doi:10.1016/J.WATRES.2011.05.041 [18] H. Hu¨hnerfuss, M. Raza Shah, Enantioselective chromatography – a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental pollutants. J. Chromatogr. A 2009, 1216, 481. doi:10.1016/J.CHROMA.2008.09.043 [19] K. B. Borges, A. R. Moraes de Oliveira, T. Barth, V. A. Polizel Jabor, M. Tallarico Pupo, P. Sueli Bonato, LC-MS-MS determination of ibuprofen, 2-hydroxyibuprofen enantiomers and carboxyibuprofen stereoisomers for application in biotransformation studies employing endophytic fungi. Anal. Bioanal. Chem. 2011, 399, 915. doi:10.1007/ S00216-010-4329-9 [20] B. Vermeulen, J. P. Remon, Validation of a high-performance liquid chromatographic method for the determination of ibuprofen enantiomers in plasma of broiler chickens. J. Chromatogr. B Biomed. Sci. Appl. 2000, 749, 243. doi:10.1016/S0378-4347(00)00428-X [21] M. Rambla-Alegre, J. Esteve-Romero, S. Carda-Broch, Is it really necessary to validate an analytical method or not? That is the question. J. Chromatogr. A 2012, 1232, 101. doi:10.1016/J.CHROMA.2011. 10.050 [22] Harmonised tripartite guideline: validation of analytical procedures: text and methodology, Q2 (R1) 2005 (ICH: Geneva). Available at http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/ Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf [Verified 10 November 2015]. [23] V. Guill�en-Casla, J. Magro-Moral, N. Rosales-Conrado, L. V. P�erez- Arribas, M. E. Leo´n-Gonza´lez, L. M. Polo-Dı´ez, Direct chiral liquid chromatography determination of aryloxyphenoxypropionic herbicides in soil: deconvolution tools for peak processing. Anal. Bioanal. Chem. 2011, 399, 915.
Collections