Universidad Complutense de Madrid
E-Prints Complutense

The mechanical bond on carbon nanotubes: diameter-selective functionalization and effects on physical properties

Impacto

Downloads

Downloads per month over past year



Martínez Periñan, Emiliano and Juan, Alberto de and Pouillon, Yann and Schierl, Christoph and Strauss, Volker and Martin, Nazario and Rubio, Angel and Guldi, Dirk M. and Lorenzo, Encarnación and Pérez, Emilio M. (2016) The mechanical bond on carbon nanotubes: diameter-selective functionalization and effects on physical properties. Nanoscale, 8 (17). pp. 9254-9264. ISSN 2040-3364

[img]
Preview
PDF
2MB

Official URL: http://pubs.rsc.org/en/Content/ArticleLanding/2016/NR/c6nr01182a#!divAbstract



Abstract

We describe the functionalization of SWNTs enriched in (6,5) chirality with electron donating macrocycles to yield rotaxane-type mechanically interlocked carbon nanotubes (MINTs).Investigations by means of TEM and control experiments corroborated the interlocked nature of the MINTs. A comprehensive characterization of the MINTs through UV-vis-NIR, Raman, fluorescence, transient absorption spectroscopy, cyclic voltammetry, and chronoamperometry was carried out.Analyses of the spectroscopic data reveal that the MINT-forming reaction proceeds with diameter selectivity, favoring functionalization of (6,5) SWNTs rather than larger (7,6) SWNTs. In the ground state, we found a lack of significant charge-transfer interactions between the electron donor exTTF and the SWNTs. Upon photoexcitation, efficient charge-transfer between the electron donating exTTF macrocycles and SWNTs was demonstrated. As a complement, we established significantly different charge-transfer rate constants and diffusion coefficients for MINTs and the supramolecular models,which confirms the fundamentally different type of interactions between exTTF and SWNTs in the presence or absence of the mechanical bond. Molecular mechanics and DFT calculations support the experimental findings.


Item Type:Article
Uncontrolled Keywords:Absorption spectroscopy; Carbon; Carbon nanotubes; Chronoamperometry; Cyclic voltammetry; Electrons; Ground state; Mints; Nanotubes; Rate constants; Yarn
Subjects:Sciences > Chemistry > Chemistry, Organic
ID Code:41724
Deposited On:08 Mar 2017 11:14
Last Modified:01 Jun 2017 23:01

Origin of downloads

Repository Staff Only: item control page