Publication:
Realization of uniform synthetic magnetic fields by periodically shaking an optical square lattice.

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2016-09-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Shaking a lattice system, by modulating the location of its sites periodically in time, is a powerful method to create effective magnetic fields in engineered quantum systems, such as cold gases trapped in optical lattices. However, such schemes are typically associated with space-dependent effective masses (tunneling amplitudes) and non-uniform flux patterns. In this work we investigate this phenomenon theoretically, by computing the effective Hamiltonians and quasienergy spectra associated with several kinds of lattice-shaking protocols. A detailed comparison with a method based on moving lattices, which are added on top of a main static optical lattice, is provided. This study allows the identification of novel shaking schemes, which simultaneously provide uniform effective mass and magnetic flux, with direct implications for cold-atom experiments and photonics.
Description
© 2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. This work has been supported by Spain’s MINECO through Grant No. FIS2013-41716-P. FS acknowledges the support of the Real Colegio Complutense at Harvard and the MIT-Harvard Center for Ultracold Atoms. Research at ICFO has been supported by MINECO (Severo Ochoa grant SEV-2015-0522 and FOQUS FIS2013- 46768), Catalan AGAUR SGR 874, and Fundació Cellex. NG acknowledges discussions with A Spracklen and S Mukherjee; he was supported by the FRS-FNRS Belgium and by the BSPO under PAI Project No. P7/18 DYGEST.
Keywords
Citation
Collections