Publication:
Sublattice dynamics and quantum state transfer of doublons in two-dimensional lattices

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2017-03-07
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
American Physical Society
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
We analyze the dynamics of two strongly interacting fermions moving in two-dimensional lattices under the action of a periodic electric field, both with and without a magnetic flux. Due to the interaction, these particles bind together forming a doublon. We derive an effective Hamiltonian that allows us to understand the interplay between the interaction and the driving, revealing surprising effects that constrain the movement of the doublons. We show that it is possible to confine doublons to just the edges of the lattice and to a particular sublattice if different sites in the unit cell have different coordination numbers. Contrary to what happens in one-dimensional systems, here we observe the coexistence of both topological and Shockley-like edge states when the system is in a nontrivial phase.
Description
©2017 American Physical Society. We would like to thank A. Gómez-León for enlighten- ing discussions. M.B. and G.P. were supported by Spain’s MINECO through Grant No. MAT2014-58241-P, and C.E.C. was supported by Grant No. FIS2013-41716-P
Keywords
Citation
Collections