Universidad Complutense de Madrid
E-Prints Complutense

Fast optoelectric printing of plasmonic nanoparticles into tailored circuits

Impacto

Downloads

Downloads per month over past year



Rodrigo Martín-Romo, José Augusto (2017) Fast optoelectric printing of plasmonic nanoparticles into tailored circuits. Scientific reports, 7 . ISSN 2045-2322

[img] PDF
Creative Commons Attribution Non-commercial No Derivatives.

1MB

Official URL: https://www.nature.com/articles/srep46506


URLURL Type
https://www.nature.comPublisher


Abstract

Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic printing, for fast and straightforward fabrication of curve-shaped circuits of plasmonic nanoparticles deposited onto a transparent electrode often used in optoelectronics, liquid crystal displays, touch screens, etc. We experimentally demonstrate that this kind of plasmonic structure, printed by using silver nanoparticles of 40 nm, works as a plasmonic enhanced optical device allowing for polarized-color-tunable light scattering in the visible. These findings have potential applications in biosensing and fabrication of future optoelectronic devices combining the benefits of plasmonic sensing and the functionality of transparent electrodes.


Item Type:Article
Additional Information:

© The Author(s) 2017. The Spanish Ministerio de Economia y Competitividad is acknowledged for the project TEC2014-57394-P. The author gratefully thanks Tatiana Alieva for valuable discussions. ICTS Centro Nacional de Microscopia Electronica (UCM, Madrid) is also acknowledged for technical support in the acquisition of the SEM images.

Uncontrolled Keywords:Gold nanorods; Light; Manipulation; Lithography; Dynamics; Devices; Silver
Subjects:Sciences > Physics > Optics
ID Code:43141
Deposited On:07 Jun 2017 12:43
Last Modified:07 Jun 2017 14:14

Origin of downloads

Repository Staff Only: item control page