Superiority of heterodyning over homodyning: An assessment with quadrature moments

Y. S. Teo,1 C. R. Müller,2 H. Jeong,3 Z. Hradil,4 J. Řeháček,4 and L. L. Sánchez-Soto2,5
1BK21 Frontier Physics Research Division, Seoul National University, 08826 Seoul, South Korea
2Max-Planck-Institut für die Physik des Lichts, Staudtstraße 2, 91058 Erlangen, Germany
3Center for Macroscopic Quantum Control, Seoul National University, 08826 Seoul, South Korea
4Department of Optics, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
5Departamento de Optica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain

(Received 27 January 2017; published 17 April 2017)

We examine the moment-reconstruction performance of both the homodyne and heterodyne (double-homodyne) measurement schemes for arbitrary quantum states and introduce moment estimators that optimize the respective schemes for any given data. In the large-data limit, these estimators are as efficient as the maximum-likelihood estimators. We then illustrate the superiority of the heterodyne measurement for the reconstruction of the first and second moments by analyzing Gaussian states and many other significant nonclassical states. Finally, we present an extension of our theories to two-mode sources, which can be straightforwardly generalized to all other multimode sources.

DOI: 10.1103/PhysRevA.95.042322

I. INTRODUCTION

The next-generation quantum technologies introduce novel and innovative routes to the understanding and implementation of measurements, communication, and computation. In this respect, the manipulation of a quantum light source using continuous-variable (CV) measurements offers many advantages [1–5]. There exist two standard CV measurement schemes. The more commonly employed homodyne detection [6–8], which performs an approximate measurement of rotated photonic quadratures [9], probes the marginal distribution of the Wigner function of the unknown quantum state [10]. The other less widely adopted double-homodyne detection, or the heterodyne detection, involves the joint measurement of complementary observables [11–18] that directly samples the phase space according to the Husimi function [19] and is connected to the conventional heterodyne scheme [20–29]. This measurement also has fundamental influence on quantum-mechanical uncertainties, which were also investigated in a different context [30].

These measurement schemes, which experimentally probe quasiprobability distributions, can also be equivalently understood as practical means to directly characterize the source in terms of the ordered moments of the quadrature operators in phase space. Gaussian states [2], for example, which are important in analyzing CV quantum information processing [31–34], are conveniently described by this representation since all their operator moments are functions of only the first and second moments. Therefore, estimating the first and second moments is enough to fully reconstruct the Gaussian state or verify if the reconstructed state is accurately Gaussian [35]. Higher moments come into play for general quantum states. On its own right, the topic of operator moments of quantum states draws interest in the context of generalized uncertainty relations [36,37], nonclassicality detection [38,39], entanglement detection [40,41], and cryptography [42,43].

In Refs. [44,45], we theoretically and experimentally compared the two measurement schemes, using a polarization-squeezing setup [46–51] for the latter. We analyzed the physical implications of having the unavoidable Arthurs-Kelly-type noise that is inherent in the joint measurement heterodyne scheme on moment reconstruction. We found that despite this additional noise, for a single-mode central-Gaussian source the heterodyne scheme still results in second-moment estimators that are more accurate than the homodyne scheme for a wide range of the squeezing strength and temperature parameter.

In this article, we extend the theory of these two CV measurement schemes to general quantum states and show that the tomographic advantage in using the heterodyne scheme carries over to other interesting and important non-Gaussian states. This message is conveyed in five main sections. Section II gives an overview of the fundamental elements in first- and second-moment tomography, as well as the concept of reconstruction accuracy. These elements are then used to discuss the general theory of moment reconstruction for the homodyne and heterodyne schemes in Sec. III. In that section, we shall also introduce optimal moment estimators that asymptotically approach the respective Cramér-Rao bounds, which are derived in Appendix A. In Sec. IV, we shall study the CV schemes in first-moment estimation where it shall be shown that heterodyne detection will always outperform homodyne detection unless the state is of minimum uncertainty, in which case the two schemes give equal reconstruction accuracy per sampling event. This result shall be discussed with some interesting classes of non-Gaussian states. Next, we study the results for second-moment estimation in Sec. V with the same classes of non-Gaussian states and illustrate once again the tomographic advantages of using the heterodyne scheme in moment tomography. Finally, Sec. VII concludes the presented results in a summary.

II. COVARIANCE MATRIX AND MOMENT-RECONSTRUCTION ACCURACY

In dealing with single-mode bosonic systems, such as photons, for the pair of position X and momentum P quadrature operators obeying $[X, P] = i$ (with the quantum unit $\hbar = 1$) that form the column $\mathbf{R} = (X \ P)^T$, the covariance...
matrix can be written as
\[
G = \text{Re}\{(RR^\dagger) - \langle R \rangle \langle R \rangle^\dagger\} = G_2 - G_1, \tag{2.1}
\]
where we have introduced the first-moment \((G_1 = \langle R \rangle \langle R \rangle^\dagger)\) and second-moment \((G_2 = \text{Re}\{(RR^\dagger)\})\) matrices. The two independent parameters \(\{\langle X \rangle, \langle P \rangle\}\) in \(G_1\) and three independent parameters \(\{\langle X^2 \rangle, \langle X \rangle \langle P \rangle, \langle P^2 \rangle\}\) in \(G_2\) constitute the complete set of five parameters that characterize \(G\). The well-known class of Gaussian states possesses a Gaussian Wigner function or any other kind of well-behaved quasiprobability distribution. As a consequence, any Gaussian state is fully described by only \(G_1\) and \(G_2\).

The covariance matrix for any quantum state obeys the inequality \(G \geq -i \Omega/2\) in terms of \(\Omega \equiv \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\) that is related to the two-dimensional symplectic group, which is a recast of the Heisenberg-Robertson-Schrödinger (HRS) uncertainty relation for position and momentum operators. This gives the equivalent stricter inequality \(\det \{G\} \geq \frac{1}{4}\) in addition to the standard positivity constraint for \(G\). The reconstruction of the full covariance matrix \(G\) involves the quantum tomography of all the five independent parameters that define the first and second operator moments of the state. Here, the figure of merit of the reconstruction accuracy is the mean-squared error (MSE) \(\mathcal{D} = \mathbb{E} \left[\text{Tr} \left((\hat{G} - G)^2 \right) \right]\) between \(G\) and its estimator \(\hat{G}\). In terms of \(G_1\) and \(G_2\),
\[
\mathcal{D} = \mathbb{E} \left[\text{Tr} \left((\hat{G}_1 - G_1)^2 \right) \right] + \mathbb{E} \left[\text{Tr} \left((\hat{G}_2 - G_2)^2 \right) \right] + \text{[cross terms]}, \tag{2.2}
\]
To illustrate the physics behind moment reconstruction, we shall analyze both the first- and second-moment reconstruction accuracy separately. In practice, these analyses are relevant to the situation where the reconstructions of \(G_1\) and \(G_2\) are carried out with independent data. For this situation, the [cross terms] in Eq. (2.2) vanish so that the total MSE is the sum of the respective MSEs \(\mathcal{D}_1\) and \(\mathcal{D}_2\) of the reconstructed moments. From hereon, to facilitate discussions, we shall analyze the quantity \(r = \langle R \rangle\) in place of \(G_1\), where \(\mathcal{D}_1 = \mathbb{E} \left[(\hat{r} - r)^2 \right]\). In unbiased statistical estimation theory [52], the MSE \(\mathcal{D} \geq \text{Tr}(F^{-1})\) is bounded from below by the inverse of the Fisher information matrix \(F\), or the Cramér-Rao bound (CRB). Consequently, we have the respective first- and second-moment CRBs \(\mathcal{D}_1 \geq \text{Tr}(F_1^{-1})\) and \(\mathcal{D}_2 \geq \text{Tr}(F_2^{-1})\). Therefore, the general theory of the Fisher matrices \(F_1\) and \(F_2\) for the two CV schemes is in order.

Two crucial factors that affect the CRB are the type of measurement used for reconstruction, as well as the measurement resources or number of sampling events \(N\) detected by this measurement. In this article, we are interested in comparing the reconstruction accuracies of different measurement types. Therefore, the important quantities of interest are the scaled versions of the CRBs, \(\mathcal{H}_1 = N \text{Tr}(F_1^{-1})\) and \(\mathcal{H}_2 = N \text{Tr}(F_2^{-1})\), or their respective scaled Fisher matrices \(\hat{F}_1 = F_1/N\) and \(\hat{F}_2 = F_2/N\).

III. General Theory

A. Homodyne detection

The homodyne detection [6–8] involves a 50:50 beam splitter that introduces an interference between the optical source of an unknown state (signal) and the local oscillator (coherent-state reference source), the latter of which is set to a much larger optical intensity than the mean intensity of the optical source of an unknown quantum state \(\rho\) [see Fig. 1(a)].

A subtraction of the output photocurrents gives a distribution of voltage readouts \(-\infty < x_\sigma < \infty\) for the local-oscillator phase \(0 \leq \vartheta \leq \pi\), which essentially corresponds to the eigenvalue probability distribution of the quadrature operator \(X_\sigma = X \cos \vartheta + P \sin \vartheta\). It then follows that statistically, the expectation value \(\langle X_\sigma^m \rangle\) for any integer value \(m\) contains all measurable information about the \(m\)th operator moments of \(X\) and \(P\). Since the data acquired with this scheme are the marginals of the Wigner function, the first \((m = 1)\) and second \((m = 2)\) moments, or \(G_1\), that are reconstructed with these data may be attributed to this quasiprobability distribution function.

In a typical homodyne experiment, the value of \(\vartheta\) is set to increase linearly. The data collected would then be binned for all the measured \(\vartheta\) values. The data bins are mutually independent, so that the Fisher matrices \(F_{1,\text{hom}}\) and \(F_{2,\text{hom}}\) for the respective first- and second-moment CRBs can each be understood as a summation of Fisher matrices of every local-oscillator phase bin according to the additivity property of the Fisher information. In the limit of large number of sampling events \(N\), the central limit theorem states that the unbiased estimator \(\langle X_\sigma^m \rangle\) of the \(m\)th quadrature moment \(\langle X_\sigma^m \rangle\) that is defined as an average sum of independently collected random voltage values for the phase \(\vartheta\) follows a Gaussian distribution of data mean \(\mu = \mu(\vartheta) = \langle X_\sigma^m \rangle\) and data variance \(\sigma^2/N\) where \(\sigma^2 = \sigma(\vartheta)^2 = \langle X_\sigma^m \rangle - \langle X_\sigma^m \rangle^2\), so that the Fisher matrix
\[
F_{\vartheta,m} = \frac{N}{\sigma^2} \frac{\partial \mu}{\partial a} \frac{\partial \mu}{\partial a} + \frac{1}{2\sigma^4} \frac{\partial \sigma^2}{\partial a} \frac{\partial \sigma^2}{\partial a} \tag{3.1}
\]
for a given phase \(\vartheta\) in the large-\(N\) limit follows the well-known expression for Gaussian distributions, where in our case \(a\) is the column of \(m\)th moment parameters we are interested in reconstructing. As it is clear that only the first term of (3.1) would survive in this limit, we thus have the scaled homodyne
Fisher matrix
\[
\hat{F}_{\text{m,hom}} = \int_{(\pi)} d\phi \frac{F_{\phi,m}}{N} = \frac{1}{\pi N} \int_{(\pi)} d\phi \frac{1}{\sigma(\phi)^2} \frac{\partial \mu(\phi)}{\partial a} \frac{\partial \mu(\phi)}{\partial a}
\]
(3.2)
with respect to the number of sampling events \(N\) for the complete set of homodyne quadrature-eigenstate outcomes.

1. First-moment reconstruction

All information about the first moments, \(a = \mathbf{r}\), of the covariance matrix is completely encoded in the expectation value \(\mu(\phi) = \langle X_\phi \rangle\). The variance for the data is then given by \(\sigma(\phi)^2 = \langle X_\phi^2 \rangle - \langle X_\phi \rangle^2\). The scaled Fisher matrix for the first-moment estimation with homodyne data is therefore given by
\[
\hat{F}_{1,\text{hom}} = \int_{(\pi)} d\phi \frac{m_\phi}{\langle X_\phi^2 \rangle - \langle X_\phi \rangle^2}.
\]
(3.3)
where
\[
m_\phi = \left(\begin{array}{c} \cos(\phi)^2 \\ \sin(\phi \cos(\phi)^2 \end{array} \right).
\]
(3.4)
The integral can be evaluated exactly, bringing us to the closed-form expression
\[
\hat{H}_{1,\text{hom}} = \text{Tr}[\mathbf{G}] + 2\sqrt{\det[\mathbf{G}]}.
\]
(3.5)

2. Second-moment reconstruction

To estimate \(G_2\), it is clear that second-moment information is completely encoded in the second quadrature moment \(\langle X_\phi^2 \rangle\), which is a function of the three independent parameters \(a_1 = \langle X_\phi^2 \rangle, a_2 = \frac{1}{\Delta_1}\langle L X_\phi^{\Delta_1} P \rangle\), and \(a_3 = \langle P^2 \rangle\). From Eq. (3.2), the corresponding \(3 \times 3\) Fisher matrix for these three parameters is
\[
\hat{F}_{2,\text{hom}} = \int_{(\pi)} d\phi \frac{M_\phi}{\langle X_\phi^4 \rangle - \langle X_\phi^2 \rangle^2},
\]
(3.9)
where
\[
M_\phi = \left(\begin{array}{c} \cos(\phi)^2 \\ \sqrt{2} \sin\phi \cos\phi \\ \sin(\phi)^2 \end{array} \right) \times \left(\begin{array}{c} \cos(\phi)^2 \\ \sqrt{2} \sin\phi \cos\phi \\ \sin(\phi)^2 \end{array} \right).
\]
(3.10)
The analytical answer to \(\hat{F}_{2,\text{hom}}\) for an arbitrary state, and its subsequent inverse \(\mathcal{H}_{2,\text{hom}} = \text{Tr}[\hat{F}_{2,\text{hom}}^{-1}]\), is difficult to calculate, as the denominator in the integrand generally contains trigonometric functions in a complicated manner. Nevertheless, the integral can be calculated explicitly for many interesting and important quantum sources.

The optimal second-moment estimator (see Appendix A 2) that achieves the corresponding scaled CRB can be cleanly expressed using the vectorization operation \(\text{vec}(\mathbf{Y})\) that turns a matrix into a column according to
\[
\mathbf{Y} = \left(\begin{array}{c} y_1 \\ y_2 \\ y_3 \end{array} \right) \mapsto \text{vec}(\mathbf{Y}) = \left(\begin{array}{c} y_1 \\ \sqrt{2} y_2 \\ y_3 \end{array} \right)
\]
(3.11)
in any prechosen basis, such that \(\text{Tr}[\mathbf{Y}_1 \mathbf{Y}_2] = \text{vec}(\mathbf{Y}_1)^T \text{vec}(\mathbf{Y}_2)\) for any two \(2 \times 2\) symmetric matrices \(\mathbf{Y}_1\) and \(\mathbf{Y}_2\). Given the processed data defined in Eq. (3.8), the final operationally ready expressions for this optimal estimator are given as follows:
\[
\hat{G}_{2,\text{hom}}^{\text{(opt)}} = W_2^{-1} \sum_{k=1}^{n_\phi} \text{vec}(a_k) \frac{N_k \langle X_k^2 \rangle}{\langle X_k^2 \rangle - \langle X_k \rangle^2},
\]
(3.12)
\[
W_1 = \sum_{k=1}^{n_\phi} a_k \frac{N_k \langle X_k^2 \rangle}{\langle X_k^2 \rangle - \langle X_k \rangle^2},
\]
\[
W_2 = \sum_{k=1}^{n_\phi} \frac{M_k}{\langle X_k^2 \rangle - \langle X_k \rangle^2}.
\]

For accurate tomography, the value of \(N\) is typically large enough such that \(\hat{G}_{2,\text{hom}}^{\text{(opt)}}\) is a proper covariance matrix and approaches the maximum-likelihood estimator that asymptotically achieves the scaled CRB, which is strictly speaking the correct regime where \(\hat{G}_{2,\text{hom}}^{\text{(opt)}}\) is to be used for second-moment tomography. On a separate note, optimal estimators for overcomplete quantum-state tomography of \(\rho\) was developed in [53] and later rederived in [54] with the variational principle that is also used to construct the optimal moment estimators in Appendix A.
B. Heterodyne detection

The heterodyne detection scheme essentially uses two homodyne setups to perform a joint measurement of two complementary observables [see Fig. 1(b)], which are in this case chosen to be the standard \(X\) and \(P\) quadrature pair for convenience. It is well known [11–18] that the product of Husimi-function data, we have access to the moments completely into the phase-space language that is relevant additional measurement noise can therefore be translated into the phase-space language that is relevant additional quantum noise introduced by the joint measurement.

The outcomes for this scheme are in fact the complete set of coherent states. This means that the resulting data are direct phase-space samples of the Husimi function for the statistical operator \(\hat{\rho}\). The technical complication of having additional measurement noise can therefore be translated completely into the phase-space language that is relevant in our subsequent analysis. Given an infinite set of the Husimi-function data, we have access to the moments \(\bar{x}^2/p^2\) (the overline denotes the average with respect to the Husimi function, or simply the Husimi average), with which the corresponding “\(G\)” operator

\[
G_{het} = G + \frac{1}{2}.
\]

(3.14)

The corresponding Arthurs-Kelly–type measurement uncertainty relation

\[
\mathrm{Var}_0[x] \mathrm{Var}_0[p] = \left[(\langle \Delta X \rangle^2 + \frac{1}{2}) \left((\Delta P)^2 + \frac{1}{2} \right) \right] \geq 1,
\]

(3.15)

which is saturated by coherent states \[(\langle \Delta X \rangle^2 = (\Delta P)^2 = \frac{1}{2}) \], can therefore be understood as a physical manifestation of the Gauss-Weierstrass transform [related to Eq. (3.14)] between the Wigner and Husimi functions if the joint-measurement data are directly used to calculate variances (here denoted by \(\mathrm{Var}_0[y] = \bar{y}^2 - \bar{y}^2\) for a complete Husimi-function data \(y\)). We shall show that this additional quantum noise, when combined with optimal tomography strategies, can still lead to better moment-reconstruction accuracies relative to the homodyne scheme.

1. First-moment reconstruction

From Sec. III B, we note that the data collected from the heterodyne scheme are a scatter set of phase-space coordinates \((x_j, p_j)\) that are distributed according to the Husimi function. As Eq. (3.14) tells us that there is no difference between the state average \(\bar{r}\) and Husimi average of \((x, p)^T\), being a two-parameter estimation scheme, the first-moment scaled CRB with respect to the heterodyne data can again be found by taking the average of the distance between the estimator

\[
\hat{r}_{het} = \frac{1}{N} \sum_{j=1}^{N} (x_j, p_j)
\]

(3.16)

and the true column \(r^T = (x, p)^T\):

\[
\mathcal{D}_{1,het} = \mathbb{E}[(\hat{r}_{het} - r)^2] = \frac{1}{N} (\mathrm{Var}_0[x] + \mathrm{Var}_0[p]),
\]

(3.17)

so that

\[
\mathcal{H}_{1,het} = \mathrm{Var}_0[x] + \mathrm{Var}_0[p] = \mathrm{Tr}(\mathcal{G}) + 1.
\]

(3.18)

That \(N \mathcal{D}_{1,het} = \mathcal{H}_{1,het}\) follows in the limit of large \(N\), where the unbiased estimator \(\hat{r}_{het}\) is asymptotically optimal since in this limit, the distribution of \(\hat{r}_{het}\) follows a bivariate Gaussian distribution with vanishing widths, such that \(\hat{r}_{het}\) becomes the maximum-likelihood estimator that approaches the scaled CRB for this Gaussian distribution.

2. Second-moment reconstruction

Similarly, to arrive at the optimal accuracy for estimating \(G_2\) using heterodyne data, we define the natural second-moment estimator

\[
\hat{G}_{2,het} = \frac{1}{N} \sum_{j=1}^{N} \begin{pmatrix} x_j^2 & x_j p_j \\ x_j p_j & p_j^2 \end{pmatrix},
\]

(3.19)

where \((x_j, p_j)\) are again the sampled Husimi-function data collected during heterodyne detection. From Eq. (3.14), we get

\[
G_{2,het} = G_2 + \frac{1}{2}.
\]

(3.20)

The MSE \(\mathcal{D}_{2,het}\) for heterodyne detection concerning second-moment estimation is consequently given by

\[
\mathcal{D}_{2,het} = \mathbb{E}[(\hat{G}_{2,het} - G_{2,het})^2] = \mathrm{Tr}\{\hat{G}_{2,het}^2 \} - \mathrm{Tr}\{G_{2,het}^2\} = \frac{1}{N} (\mathrm{Var}_0[x^2] + \mathrm{Var}_0[p^2] + 2 \mathrm{Var}_0[xp]).
\]

(3.21)

In the large-\(N\) limit, this MSE is essentially the scaled CRB

\[
\mathcal{H}_{2,het} = \mathrm{Var}_0[x^2] + \mathrm{Var}_0[p^2] + 2 \mathrm{Var}_0[xp]
\]

(3.22)

since \(\hat{G}_{2,het}\) again becomes the maximum-likelihood estimator. To see this, we inspect the Fisher matrix \(\mathbf{F}_{2,het}\) for the estimator \(\hat{G}_{2,het}\). If we look at the random column

\[
\mathbf{x} = \text{vec}(\hat{G}_{2,het}) \equiv \frac{1}{N} \sum_{j=1}^{N} \begin{pmatrix} x_j \\ \sqrt{2} x_j p_j \end{pmatrix}
\]

(3.23)

that represents \(\hat{G}_{2,het}\), we find that in the limit of large \(N\), the central limit theorem again says that \(\mathbf{x}\) follows a Gaussian distribution defined by the mean \(\mathbf{\mu} = \bar{x} \oplus (\sqrt{2} \sqrt{x^2 p^2})^T\) and the covariance matrix (unimportant entries marked by *)

\[
\Sigma = \bar{x} x^T - \mathbf{\mu} \mathbf{\mu}^T \equiv \frac{1}{N} \begin{pmatrix} \mathrm{Var}_0[x^2] & * & 2 \mathrm{Var}_0[xp] & * \\ * & \mathrm{Var}_0[p^2] \\ \end{pmatrix}
\]

(3.24)

so that we eventually recover the well-known result \(\Sigma = \mathbf{F}_{2,het}^{-1}\) for Gaussian scatter data that saturates the CRB as we
remember that \(\text{Tr}[\Sigma] = \mathcal{D}_{2,\text{het}} \). Equation (3.22) then follows tout de suite.

IV. FIRST-MOMENT ESTIMATION

A. General optimality of heterodyne tomography

As far as first-moment estimation is concerned, the general results in Eqs. (3.5) and (3.18) imply that \(\mathcal{H}_{1,\text{het}} \leq \mathcal{H}_{1,\text{hom}} \) for any quantum state. This main result hinges on the physical HRS uncertainty relation, which is equivalent to the constraint \(\det \{ G \} \geq (\frac{1}{2})^{1/4} \) for the covariance matrix \(G \). This constraint means that

\[
\mathcal{H}_{1,\text{hom}} = \text{Tr}[G] + 2\sqrt{\det[G]} \geq \text{Tr}[G] + 1 = \mathcal{H}_{1,\text{het}}, \tag{4.1}
\]

This implies that for all quantum states, the reconstruction accuracy of the optimal heterodyne first-moment estimator is always higher or equal to that of the optimal homodyne first-moment estimator in locating the average center of the quantum state in phase space. For minimum-uncertainty states, the accuracies of the two schemes are equal (\(\mathcal{H}_{1,\text{hom}} = \mathcal{H}_{1,\text{het}} \)). Subsequent well-known and interesting examples merely illustrate this fundamental fact. In terms of the first-moment performance ratio

\[
\gamma_1 = \frac{\mathcal{H}_{1,\text{het}}}{\mathcal{H}_{1,\text{hom}}}, \tag{4.2}
\]

a subunit magnitude indicates that the heterodyne scheme outperforms the homodyne scheme.

B. Gaussian states

For a Gaussian state where the covariance matrix \(G \) characterizes the spread of its Wigner function, the state variance of \(X_\theta \) is simply

\[
\langle X_\theta^2 \rangle - \langle X_\theta \rangle^2 = u_\theta^2 G u_\theta. \tag{4.3}
\]

From Eqs. (3.5) and (3.18), the first-moment performance ratio

\[
\gamma_1 = \frac{\text{Tr}[G] + 1}{\text{Tr}[G] + 2\sqrt{\det[G]}} \leq 1 \tag{4.4}
\]

clearly cannot exceed one since any physical state satisfying the HRS uncertainty relation must take \(\det \{ G \} \geq \frac{1}{4} \). The maximum value of \(\gamma_1 = 1 \) is attained for minimum-uncertainty states.

C. Fock states

A Fock state of the ket \(|n\rangle \) is always centered at the origin of the phase space (\(\mathbf{r} = \mathbf{0} \)). The circular symmetry of these states imply the fact that \(\langle \Delta X^2 \rangle = \langle \Delta P^2 \rangle = n + 1/2 = \langle \Delta X_\theta \rangle^2 \), hence

\[
\mathcal{H}_{1,\text{hom}} = 2(n + 1) \tag{4.5}
\]

since such states have zero first moments. On the other hand, for the heterodyne scheme, we get

\[
\mathcal{H}_{1,\text{het}} = 2(n + 1) \tag{4.6}
\]

by simply using the Husimi characteristic function from Table I in Appendix B. Therefore, we get a

\[
\gamma_1 = \frac{n + 1}{2n + 1} \tag{4.7}
\]

that is always subunity unless \(n = 0 \), a result that is again familiar from Sec. IV B. In the limit of large photon numbers, the first-moment \(\gamma_1 \) approaches \(\frac{1}{2} \).

D. Even and odd coherent states

Another popular class of non-Gaussian states with interesting phase-space quantum interference features are the even and odd coherent states characterized by the ket \(|\pm; \alpha_0 \rangle = (|\alpha_0 \rangle \pm |-\alpha_0 \rangle) / \sqrt{2} \). The first moments are all equal to zero. Using the definitions \(a = \frac{1}{2}[(\Delta X)^2 - (\Delta P)^2] = \alpha_0^2 \) and \(b = \frac{1}{2}[(\Delta X)^2 + (\Delta P)^2] = \alpha_0^2 \tanh(\alpha_0^2)^{\pm 1/2} + 1/2 \),

\[
\mathcal{H}_{1,\text{hom}} = 2(b_{\pm} + \sqrt{b_{\pm}^2 - a^2}). \tag{4.8}
\]

For the heterodyne counterpart, one finds that

\[
\mathcal{H}_{1,\text{het}} = 2(b_{\pm} + \frac{1}{2}), \tag{4.9}
\]

which contributes to the performance ratio

\[
\gamma_1 = \frac{b_{\pm} + \frac{1}{2}}{b_{\pm} + \sqrt{b_{\pm}^2 - a^2}}. \tag{4.10}
\]

For both types of coherent-state superpositions, \(\gamma_1 \to 1 \) as \(\alpha_0 \to \infty \). For even coherent states, the performance ratio \(\gamma_1 = 1 \) when \(\alpha_0 = 0 \) as it should. Otherwise, this ratio is always less than one for any positive \(\alpha_0 \). There exists a single local minimum of \(\gamma_1 \approx 0.7577 \) at \(\alpha_0 \approx 1.715 \). For odd coherent states, \(\gamma_1 < 1 \) for all \(\alpha_0 \) values, with the minimum value of \(\gamma_1 = \frac{1}{2} \) at \(\alpha_0 = 0 \). For these states, \(\gamma_1 \) increases monotonically to one as \(\alpha_0 \) tends to infinity.

E. Displaced Fock states

Displacement and photon addition are two important physical procedures that are frequently discussed in quantum physics. The different orders in which these processes are carried out on the vacuum state give output states of a different nature. Displacing an \(m \)-photon-added vacuum state by a complex amplitude \(\delta_0 \) results in displaced Fock states defined by the ket \(D(\alpha_0|m) \) can be effectively performed using a beam splitter with a high transmissivity and a strong coherent state [55,56].

It can be shown easily that the first-moment scaled CRBs are indeed given by Eqs. (4.5) and (4.6), so that the performance ratio is then completely identical to that of the usual central Fock states in Eq. (4.7). This reflects the physical fact that the accuracy in estimating the displacement cannot explicitly depend on where the center of the displaced Fock states is when full sets of CV measurement outcomes are considered, as the tomographic coverage of the entire phase space is then complete. This accuracy depends only on the variances, which describe the second-order symmetry and is unaffected at all by the displacement.
F. Photon-added coherent states

A swap in the order of photon addition and displacement on the vacuum state gives the photon-added coherent state of m added photons and reference amplitude α_{0} defined by the ket $|m; \alpha_{0}\rangle = A_{m;\alpha_{0}}^{\dagger}A^{m}\ket{\alpha_{0}}$ with the bosonic annihilation operator A, where the normalization constant $A_{m;\alpha_{0}}^{\dagger}A^{m}$ involves the confluent hypergeometric function of the first kind $F_{1}(a; b; y)$. The integer value m denotes the extent to which the mean photon number

$$\langle A^{\dagger}A \rangle = (m + 1)_{1}F_{1}(m + 2; 1; |\alpha_{0}|) - 1, \tag{4.11}$$

which is always larger than $|\alpha_{0}|^{2} + m$ whenever $\alpha_{0} \neq 0$, is increased nonlinearly by the operation by A^{m} on the reference coherent ket $|\alpha_{0}\rangle$. This particular class of quantum states is but one of many possible kinds of photon-added states, which are of interest to the quantum community for testing some fundamental statements [57–59].

For these photon-added coherent states, the second-order symmetry is now affected by the combined action of the displacement and photon addition, so that $\langle (\Delta X)^{2} \rangle$ and $\langle (\Delta P)^{2} \rangle$ are functions of m and α_{0}. These expressions can be straightforwardly computed with the help of the characteritic functions given in Table I in Appendix B. By defining

$$a = -\frac{\alpha_{0}^{2}(m + 1)}{2_{1}F_{1}(m + 1; 1; |\alpha_{0}|^{2})} \left[2(m + 1)_{1}F_{1}(m + 2; 2; |\alpha_{0}|^{2}) - (m + 2)_{1}F_{1}(m + 1; 1; |\alpha_{0}|^{2})_{1}F_{1}(m + 3; 3; |\alpha_{0}|^{2}) \right],$$

$$b = m + \frac{1}{2} - \frac{\alpha_{0}^{2}m_{1}F_{1}(m + 1; 2; |\alpha_{0}|^{2})}{2_{1}F_{1}(m + 1; 1; |\alpha_{0}|^{2})} \left[_{1}F_{1}(m + 1; 1; |\alpha_{0}|^{2}) \right], \tag{4.12}$$

such that $b > a$, the first-moment scaled CRB for homodyne detection is of the same form as in Eq. (4.8), namely,

$$\mathcal{H}_{1,\text{hom}} = 2(b + \sqrt{b^{2} - a^{2}}). \tag{4.13}$$

together with the definitions

$$a = \frac{1}{2} \text{Tr}(G), \quad b = \frac{1}{2}(G_{11} - G_{22}), \quad c = G_{12},$$

$$w_{1} = a + r_{0}^{2}, \quad w_{2} = b + x_{0}^{2} - p_{0}^{2}, \quad w_{3} = c + 2x_{0}p_{0},$$

$$z_{1 \pm} = -\frac{a + i\sqrt{-a^{2} + b^{2} + c^{2}}}{b - ic}, \quad z_{2 \pm} = \frac{-w_{1} \pm i\sqrt{-w_{1}^{2} + w_{2}^{2} + 2w_{3}^{2}}}{w_{2} - iw_{3}} \tag{5.3}$$

When $r_{0} = 0$, we have $w_{1} = a$, $w_{2} = b$, and $w_{3} = c$ and the scaled Fisher matrix $\bar{F}_{2,\text{hom}}$ reduces to that for the central Gaussian state in [44]. For the general setting, the full expression of $\mathcal{H}_{2,\text{hom}}^{ \prime}$ is omitted here in this case due to its complexity. On the other hand, the scaled CRB with the heterodyne scheme for these noncentral Gaussian states can be calculated directly from Eq. (3.22) using the characteristic

V. SECOND-MOMENT ESTIMATION

A. Gaussian states

It seems fitting to commence the discussion of second-moment estimation with the Gaussian state, for it is natural to begin with the generalization of the results that already appeared in Refs. [44,45] to general noncentral Gaussian states ($r \neq 0$). We suppose that the Gaussian state of the covariance matrix G is centered at $r = r_{0} = (x_{0}, p_{0})^{T}$. From Table I in Appendix B, by defining $\mu_{\phi} = u_{\phi}^{T}r_{0}$ and $\sigma_{\phi}^{2} = u_{\phi}^{T}G_{\phi}u_{\phi}$, the variance for the second quadrature moment reads as

$$\langle X_{\phi}^{2} \rangle - \langle X_{\phi} \rangle^{2} = 2\sigma_{\phi}^{2}(\sigma_{\phi}^{2} + 2\mu_{\phi}^{2}). \tag{5.1}$$

For central Gaussian states ($\langle X \rangle = \langle P \rangle = 0$), we have $\langle X_{\phi}^{2} \rangle = 3\langle X_{\phi} \rangle^{2}$ and the scaled Fisher matrix in Eq. (3.9) turns into the familiar form in [44,45]. For the more general situation, one can repeat the contour-method integration in [44] to calculate the scaled Fisher matrix in Eq. (3.9). The answer is given as

$$\bar{F}_{2,\text{hom}} = \frac{-2}{(c + ib)(w_{1} + iw_{2})} \left[M_{z = 0} \begin{array}{c} \zeta_{1} - (z - \zeta_{1})(\zeta_{1} - \zeta_{2}) \zeta_{2} - (z - \zeta_{2}) \end{array} \right] \right] \tag{5.2}$$

$$+ \frac{M_{z = \zeta_{1}}}{\zeta_{1} - (z - \zeta_{1})(\zeta_{1} - \zeta_{2})} \left[\begin{array}{c} \zeta_{1} - (z - \zeta_{1})(\zeta_{1} - \zeta_{2}) \zeta_{2} - (z - \zeta_{2}) \end{array} \right]$$

$$+ \frac{M_{z = \zeta_{2}}}{\zeta_{2} - (z - \zeta_{1})(\zeta_{2} - \zeta_{1})} \left[\begin{array}{c} \zeta_{1} - (z - \zeta_{1})(\zeta_{1} - \zeta_{2}) \zeta_{2} - (z - \zeta_{2}) \end{array} \right]$$

When $r_{0} = 0$, we have $w_{1} = a$, $w_{2} = b$, and $w_{3} = c$ and the scaled Fisher matrix $\bar{F}_{2,\text{hom}}$ reduces to that for the central Gaussian state in [44]. For the general setting, the full expression of $\mathcal{H}_{2,\text{hom}}^{ \prime}$ is omitted here in this case due to its complexity. On the other hand, the scaled CRB with the heterodyne scheme for these noncentral Gaussian states can be calculated directly from Eq. (3.22) using the characteristic
function in Table I and is given by
\[
\mathcal{H}_{2,\text{het}} = 2 \left(\text{Tr}(G_{\text{het}}^2) - \det(G_{\text{het}}) \right) + r_0^T G_{\text{het}} r_0 + \text{Tr}(G_{\text{het}} r_0^2),
\]
where one immediately verifies the counterpart expression in [44] for the central Gaussian states upon setting \(r_0 = 0 \).

At this stage, we reassure ourselves the physics of the problem of second-moment tomography by understanding, first, that in the case where tomography is performed on the full covariance matrix \(G \), then the scaled CRB, which is the minimum of the MSE, should not depend on the orientation of the two-dimensional uncertainty region (here being an ellipse for any Gaussian state) described by the eigenvectors of this matrix but only its eigenvalues owing to the form of the MSE. Additionally, the accuracy should also be independent of \(r_0 \). When only the second-moment matrix \(G_2 \) is reconstructed, the scaled CRB should also not depend on its eigenvectors but only its eigenvalues. The physics remains the same. However, there is a difference between estimating the full matrix \(G \) and estimating just \(G_2 \). Since \(G_2 \) is in general an increasing function of the first moments, this means that as the displacement of the center from the phase-space origin for the quantum state increases, the geometric mean of eigenvalues (GME) of \(G_2 \) correspondingly becomes larger so that the second-order “temperature” of the state, a terminology borrowed from Gaussian states, as described by the GME is now higher and this results in a stronger borrowing from Gaussian states, as described by the GME for non-Gaussian states, also contribute to the scaled CRB, and therefore \(\gamma_2 \), as described in the general theory in Sec. III.

This physics, however, seems to be violated by the noncentral-Gaussian-state expressions in (5.2) and (5.4), namely, that \(\mathcal{H}_{2,\text{het}} \) depends on the explicit displacement vector \(r_0 \) and covariance matrix \(G \), for instance. This mishap has nothing to do with any kind of physical violation, but has only to do with the way we specify Gaussian states. By choosing to parametrize a multivariate Gaussian distribution using the natural independent parameters \(r_0 \) and \(G \) (the full matrix), we inadvertently change the eigenvalues of \(G_2 \) by changing \(r_0 \) and fixing \(G \). This becomes obvious when one finds that the two positive eigenvalues \(\lambda_\pm \) of \(G_2 \) are given by
\[
\lambda_\pm = |a_0|^2 + \frac{1}{2} \text{Tr}(G_{\text{het}}^2) \pm |w_0^T G_{\text{het}} w|^2,
\]
where \(w = \frac{1}{\sqrt{2}} (1 \ i)^T \) and \(a_0 = (x_0 + i p_0)/\sqrt{2} \). The consequence of this natural definition results in such an apparent observation. The noncentral Gaussian states so defined form the singular example in this article where this happens, and

![FIG. 2. Plots of \(\gamma_2 \) surfaces for \(\phi = 0 \) and different displacement magnitudes along the \(x \) axis in phase space. The center plot refers to the critical displacement magnitude of \(\sqrt{5}/\sqrt{2} \approx 0.395 \), beyond which \(\gamma_2 < 1 \) for all \(\mu \) and \(\lambda \). The surface tip at \(\mu = \lambda = 1 \) for the coherent states is invariant under a displacement rotation. It is clear from these plots that increasing the temperature reduces the value of \(\gamma_2 \), while increasing the squeezing strength counters this reduction.](image-url)
φ = x approaches unity at μY. S. TEO

n = (is less than one for n are sufficiently

gGg = μx in this limit. Different γ Fock states in Appendix B produces the answer

are independent of the phase ϑ, so that the Fisher matrix

F_{2, \text{hom}} = \frac{1}{4(n^2 + n + 1)} \begin{pmatrix} 3 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}. (5.9)

It then follows that the scaled CRB is given by

H_{2, \text{hom}} = 5(n^2 + n + 1). (5.10)

On the other hand, the Husimi characteristic function for the Fock states in Appendix B produces the answer

H_{2, \text{het}} = 2(n + 1)(n + 3). (5.11)

The performance ratio

γ_2 = \frac{2(n + 1)(n + 3)}{5(n^2 + n + 1)} (5.12)

is less than one for n ≥ 2, in which regime the Fock states are sufficiently G_2 “thermal”. For n = 0, we evidently obtain the familiar answer γ_2 = 6 5 for the vacuum state, whereas for n = 1, γ_2 = 16 15. In the limit of large n, γ_2 → 2 5 (see Fig. 4).

C. Even and odd coherent states

Since the eigenvalues

λ_{±}^{(±)} = \frac{1}{2} ± |α_0|^2 [\tan(α_0)]^{(±)} ± 1 (5.13)

of G_2 are simple functions of |α_0|^2 for the even and odd (±) coherent states, we may take α_0 ≥ 0 without loss of generality.

The quadrature moments can be easily derived with the help of Appendix B, which give the following second-moment variance:

\langle X_1^2 \rangle - \langle X_0^2 \rangle^2 = \frac{1}{2} + 2α_0^2 |\cos(2θ) + [\tanh(α_0)]^{±} | \pm \frac{4α_0^4}{(α_0^2 ± e^{-α_0^2})^2}. (5.14)

By relying on the asymptotic behaviors coth y ≈ 1/y and cosech y ≈ 1/y of the hyperbolic trigonometric functions for small arguments, we revert to the limiting second-moment variances for n = 0 and 1, which is consistent with the fact that the even states approach the vacuum state and the odd states approach the single-photon Fock state. The Fisher matrix F_{2, \text{hom}} thus takes the simple form

F_{2, \text{hom}} = \int M_d \frac{dθ}{\pi} m_± + l \cos(2θ) \quad (l = 2α_0^2 < m_±), (5.15)

m_± = \frac{1}{2} + 2α_0^2 [\tanh(α_0)]^{±} ± \frac{4α_0^4}{(α_0^2 ± e^{-α_0^2})^2},

hence, one obtains

H_{2, \text{hom}} = 6m_± + 4\sqrt{m_±^2 - l^2} (5.16)

after carrying out the integration, matrix inversion, and matrix trace. On the other hand, the Husimi-average moments of the heterodyne data contribute to the result

H_{2, \text{het}} = 6 + 12α_0^2 [\tanh(α_0)]^{±} ± \frac{8α_0^4}{(α_0^2 ± e^{-α_0^2})^2} (5.17)

for the heterodyne scaled CRB.

We once again remind the reader that the scaled CRBs stated in Eqs. (5.16) and (5.17) are independent of the phase of the even and odd coherent states, as this phase amounts to a rotation in phase space that is immaterial in determining the moment-estimation accuracy. For arbitrary complex values of α_0, the expressions are still valid after the change α_0 → |α_0|^2.

The ratio γ_2 is greater than one for small values of α_0, with the special limiting cases (α_0 = 0) being those of the respective Fock states, and less than one for large values of α_0.
The crossover values for which these states become sufficiently \(G_2 \) “thermal” such that \(\gamma_2 \approx 1 \) differ for both the even and odd states (see Fig. 5). For sufficiently large \(\alpha_0 \), \(\gamma_2 \) approaches unity from below. This can be clearly seen by taking the limit \(\alpha_0 \to \infty \). In this limit, we have \(m_{\text{in}} \to 2 \alpha_0^2 = l \) so that \(\mathcal{H}_{2,\text{hom}} \to 12 \alpha_0^2 \approx \mathcal{H}_{2,\text{bet}} \). For these class of states, \(\gamma_2 \) has a stationary minimum that is again different for the two types of states, and this is elucidated in Fig. 5. At \(\alpha_0 \approx 0.631 \), the \(\gamma_2 \) values for the even and odd states are equal, even though their \(G_2 \) matrices are very different. The reason is that the combined contributions of all the second and fourth moments give an overall multiplicative factor of about 2.0694 to both \(\mathcal{H}_{2,\text{bet}} \) and \(\mathcal{H}_{2,\text{hom}} \) for the odd state relative to the even state.

D. Displaced Fock states

As opposed to the previous three classes of states, the displaced Fock states (as well as the photon-added coherent states that follow) possess a nonzero quadrature first moment. As the only two parameters \(\alpha_0 = (x_0 + i \phi_0)/\sqrt{2} \) and \(m \) that characterize these displaced Fock states do not, in any way, restrict the covariance matrix \(G \), it is easy to show that the \(G_2 \) geometry, and hence its reconstruction accuracy, depend only on the displacement magnitude \(|\alpha_0|^2 \) and not its phase. This is done by directly inspecting the eigenvalues of \(G_2 \), namely,

\[
\lambda_1 = m + \frac{1}{2}, \\
\lambda_2 = m + 2|\alpha_0|^2 + \frac{1}{2},
\]

one of which is an increasing function of \(|\alpha_0|^2 \). As a result, we only need to consider the case where \(\alpha_0 = x_0/\sqrt{2} \) is positive. As \(\alpha_0 \) increases, the GME increases, which means that the quantum state becomes more \(G_2 \) “thermal.” We shall soon see that an increase in \(|\alpha_0|^2 \) results in a smaller performance ratio \(\gamma_2 \) in favor of the heterodyne scheme.

To calculate the homodyne scaled CRB, we first note that the relevant even-order quadrature moments (see Appendix B) supply the second-moment quadrature variance

\[
\langle X^2 \rangle - \langle X \rangle^2 = m_0 + l \cos(2\theta),
\]

\[
m_0 = \frac{1}{2} \left[m^2 + m + \alpha_0^2 (8m + 4) \right], \quad l = 2 \alpha_0^2 (2m + 1) < m_0,
\]

which bears striking resemblance in form with that for the even and odd coherent states, so that the scaled CRB also takes the same closed form as Eq. (5.16) inasmuch as

\[
\mathcal{H}_{2,\text{hom}} = 6m_0 + 4\sqrt{m_0^2 - l^2}. \quad (5.20)
\]

For the heterodyne scheme, we subsequently get

\[
\mathcal{H}_{2,\text{het}} = (2m + 1)(m + 6 \alpha_0^2) \quad (5.21)
\]

by again referring to Table I.

The interplay between the discrete \(m \) and continuous \((\alpha_0) \) parameters gives rise to familiar cases that have already been analyzed previously for the Gaussian and Fock states. For \(m = 0 \), we of course have the coherent state of amplitude \(\alpha_0 \) where the maximum \(\gamma_2(\alpha_0 = 0) = \frac{2}{\sqrt{3}} \) and the crossover point \(\gamma_2(\alpha_0 = \sqrt{3/2}) = 1 \) beyond which \(\gamma_2 \approx 1 \) are reproduced by Eqs. (5.20) and (5.21). For \(m = 1 \), we have the \(m = 1 \) Fock state for \(\alpha_0 = 0 \) so that the unsurprising number \(\gamma_2(\alpha_0 = \frac{1}{\sqrt{2}}) \) comes up from the same scaled CRB expressions. The crossover point for \(\gamma_2 = 1 \) is located at \(\alpha_0 = \frac{1}{\sqrt{3}} \langle 19/3 - 2\sqrt{7}/3 \approx 0.1696 \). The performance ratio becomes subunit for all displacements \(\alpha_0 \) for \(m \geq 2 \), just like the Fock states. In the limit of large displacements \(\alpha_0^2 \gg m \), we have \(m_0 \to l \) and

\[
\gamma_2(\alpha_0^2 \gg m) = \frac{m + 1}{2m + 1}. \quad (5.22)
\]

which approaches \(\frac{1}{2} \) in the regime \(\alpha_0^2 \approx m \gg 1 \).

For this two-parameter quantum state, it is interesting to look at the minimum value of \(\gamma_2 \) over all possible displacement magnitudes \(\alpha_0 \) for each \(m \) [see Fig. 6(a)]. To calculate the minimum stationary points \(\alpha_0 = \tilde{\alpha}_0 \), we differentiate \(\gamma_2 \) with respect to \(\alpha_0 \) and set the derivative to zero. While the analytical form for the optimal \(\gamma_2 = \gamma_2_{\min} \) as a complicated function of \(m \) exists, the approximated forms

\[
\gamma_2_{\min} \approx \begin{cases}
0.8504 - 0.5893 m & (\text{small-} m \text{ regime}), \\
0.3693 + 0.6655 \frac{m}{m} & (\text{large-} m \text{ regime})
\end{cases} \quad (5.23)
\]

are enough to understand the optimal-\(\gamma_2 \) curve in terms of a power law already for moderately large \(m \). Interestingly, the saturation point for \(\gamma_2 \) is slightly lower than \(\frac{1}{2} \), which is the \(\gamma_2 \) for the Fock state of an infinitely large-\(m \) value. This hints that the optimal center for the displaced Fock state of a large \(m \) for which \(\gamma_2 = \gamma_{2,\min} \) is significantly far away from the phase-space origin. This is indeed consistent with the behavior of the minimum point \(\tilde{\alpha}_0 \), which also has a complicated closed-form expression [plotted in Fig. 6(a)], so that we only present the more useful approximated forms

\[
\tilde{\alpha}_0 \approx \begin{cases}
1.2929 + 2.2060 m - 3.2976 m^2 & (\text{small-} m \text{ regime}), \\
0.3993 \sqrt{m} + \frac{2.8172}{\sqrt{m}} & (\text{large-} m \text{ regime})
\end{cases} \quad (5.24)
\]
that highlight the main gradient features. To summarize, the minimum value of \(\gamma_2 \) essentially behaves as a power law in \(m \), and the corresponding stationary minimum \(\bar{\alpha}_0 \) is quadratic for small \(m \) and goes as a square-root curve for large \(m \).

E. Photon-added coherent states

As in the case of the displaced Fock states, the eigenvalues of \(G_2 \) for the photon-added coherent states,

\[
\lambda_1 = (m + 1)^2 \left[\frac{F_1(m + 2; 2; |\alpha_0|^2)}{F_1(m + 1; 1; |\alpha_0|^2)} \right] - \frac{1}{2},
\]

\[
\lambda_2 = 2m + 2|\alpha_0|^2 + \frac{1}{2} + m(2|\alpha_0|^2 - 1) \left[\frac{F_1(m + 1; 2; |\alpha_0|^2)}{F_1(m + 1; 1; |\alpha_0|^2)} \right],
\]

are also functions of \(|\alpha_0|^2 \), which correctly coincides with the physics of the second-moment estimation problem. Moreover, the eigenvalues are increasing functions of the displacement magnitude, so that the GME becomes larger with \(\alpha_0 \), thereby rendering the photon-added states more \(G_2 \) “thermal.” This again gives a smaller performance ratio \(\gamma_2 \), or a better tomographic performance for the heterodyne scheme compared to the homodyne scheme.

Once more with the help of Table 1 in Appendix B, the quadrature moments can be written in principle, but they are represented by bulky expressions that are hardly worth any analytical value and the Fisher-matrix integral in Eq. (3.59) has no known closed-form expression. However, we may still briefly discuss the important limiting cases. For \(\alpha_0 \ll \sqrt{m} \), to second order in \(\alpha_0 \), it can be shown that

\[
\mathcal{H}_{2, \text{hom}} \approx 5(m^2 + m + 1) + 10\alpha_0^2(m + 1)(m + 2),
\]

where the asymptotic connection with Fock states is clear. On the other hand, in the regime of large \(\alpha_0 \gg \sqrt{m} \), we find that

\[
\mathcal{H}_{2, \text{hom}} = 3 + 12\alpha_0^2 + 2\sqrt{1 + 8\alpha_0^2} \approx 12\alpha_0^2,
\]

which is the second-moment homodyne-scaled CRB for coherent states. This is also the homodyne-scaled CRB for large-intensity even and odd coherent states. The reason is that for large amplitudes, all these states behave like a coherent state of amplitude \(\alpha_0 \) as far as second-moment estimation is concerned since all their \(G_2 \) eigenvalues are indistinguishable in this limit.

Upon revisiting Eq. (3.22), the heterodyne-scaled CRB can be shown to have the closed form

\[
\mathcal{H}_{2, \text{het}} = 2 \left\{ 3 + 4m + 2\alpha_0^2(m + 3) - m \left[\frac{F_1(m + 1; 2; \alpha_0^2)}{F_1(m + 1; 1; \alpha_0^2)} \right]^2 \right\} \times \left\{ 2(\alpha_0^4 - 3\alpha_0^2 - m) \left[\frac{F_1(m + 1; 1; \alpha_0^2)}{F_1(m + 1; 1; \alpha_0^2)} \right] + m(2\alpha_0^4 - 2\alpha_0^2 - 1) \left[\frac{F_1(m + 1; 2; \alpha_0^2)}{F_1(m + 1; 1; \alpha_0^2)} \right] \right\}
\]

(5.28)

for \(\alpha_0 > 0 \). The behavior to leading order in \(\alpha_0^2 \) for \(\alpha_0 \ll \sqrt{m} \),

\[
\mathcal{H}_{2, \text{het}} \approx (2 + 4\alpha_0^2)(m + 1)(m + 3),
\]

(5.29)

is evidently consistent with the known result for Fock states.

For \(\alpha_0 \gg \sqrt{m} \), we once again have \(\mathcal{H}_{2, \text{het}} \approx 12\alpha_0^2 \). Note also that, as expected, the first equality in Eq. (5.27) is equal to 5, and Eq. (5.27) gives a value of 6 for the vacuum state (\(\alpha_0 = 0 \)).

For \(m > 2 \), the ratio \(\gamma_2 < 1 \) for all \(\alpha_0 \). This natural extension to the result for the Fock states means that for highly nonlinear photon-“adding” operations, the performance of heterodyne detection is always better than that of homodyne detection in terms of second-moment covariance-dyadic estimation. For \(m = 0 \), the analysis reverts to that for the coherent state, where the crossover occurs at \(\alpha_0 \approx \sqrt{5/32} \) after solving for \(\mathcal{H}_{2, \text{hom}} = \mathcal{H}_{2, \text{het}} = 2(3 + 6\alpha_0^2) \) so that \(\gamma_2(\alpha_0 > \sqrt{5/32}) < 1 \), which is again consistent with Sec. 5A. For \(m = 1 \), the crossover point \(\alpha_0 \approx 0.2 \) may be obtained as the numerical solution. As \(\alpha_0 \) approaches infinity, previous arguments imply that \(\gamma_2 \rightarrow 1 \) for any \(m \).

In view of the behavior of \(\gamma_2 \), another interesting limit is the high-nonlinearity limit (\(m \rightarrow \infty \)). In this case, we notice that the value \(\alpha_0 = \alpha_0 \) for which \(\gamma_2 \) is minimum approaches zero. A good model to estimate this minimum point in this limit is given by

\[
\tilde{\alpha}_0 \approx \frac{3}{2m},
\]

(5.30)
which can be approximated from curve fitting. Therefore, in
the large-\(m\) limit, the optimum performance ratio \(\gamma_2\) is that
of an intense Fock state of a large photon number and so we
expect the minimum value of \(\gamma_2\) to approach \(\frac{2}{3}\) as discussed in
Sec. V B. In other words, for sufficiently large \(m\), the minimum
of \(\gamma_2\) follows the noncentral power law
\[
\gamma_{2,\text{min}} = \gamma_2|_{v_{\text{dec}}=\hat{\Theta}_0} \approx \frac{2}{5} + \frac{6}{5m}.
\]
(5.31)

Figure 6(b) succinctly highlights these observations.

VI. TWO-MODE SOURCES: A TREATISE TO MULTIMODE MOMENT ESTIMATION

The general theory of CV measurements naturally applies
to sources of any number of independent optical modes. As
a brief yet concrete demonstration, we shall discuss matters
regarding two-mode sources. Their first-moment column
\[
r = \begin{pmatrix} r_1' \\ r_2' \end{pmatrix}, \quad r_j \equiv \begin{pmatrix} \langle X_j \rangle \\ \langle P_j \rangle \end{pmatrix}
\]
(6.1)
collects all single-mode first-moment expectation values while
their second-moment matrix takes the general form
\[
G_2 = \begin{pmatrix} A_1 & A_{12} \\ A_{12}^\dagger & A_2 \end{pmatrix} \geq -\frac{i}{2} \begin{pmatrix} \Omega & 0 \\ 0 & \Omega \end{pmatrix},
\]
\[
A_j \equiv \begin{pmatrix} \langle X_j^2 \rangle \\ \frac{1}{2}(\langle X_j \rangle \langle P_j \rangle) \end{pmatrix},
\]
(6.2)
\[
A_{12} \equiv \begin{pmatrix} \langle X_1 X_2 \rangle \\ \langle X_1 P_2 \rangle \\ \langle X_2 P_1 \rangle \end{pmatrix},
\]
where the positive single-mode \(A_j\)'s separately obey the HRS
inequality and the, generally, nonsymmetric \(A_{12}\) accounts for
nontrivial two-mode correlations for the two-mode quantum
state \(\rho\).

The estimation of \(r\) and \(G_2\) now involves the estimation
of both the single-mode \((r_1', r_2', A_1, A_2)\) and two-mode \((A_{12})\)
components. The block structures of \(r\) and \(G_2\) suggest the nat-
ural situation where these five components are estimated with
independent data, which we shall henceforth consider. In other
words, the full data are invested equally into the estimation
of all five components. Consequently, the corresponding scaled
CRBs
\[
\mathcal{H}_1 = \mathcal{H}_1^{(1)} + \mathcal{H}_1^{(2)},
\]
\[
\mathcal{H}_2 = \mathcal{H}_2^{(1)} + \mathcal{H}_2^{(2)} + \mathcal{H}_2^{(12)}
\]
(6.3)
(6.4)
reflect the independent additive contributions of the single-
mode and two-mode components.

For two-mode sources, one can concurrently perform two
separate CV measurements, one on each optical mode. The
resulting joint measurement has a tensor-product structure, and
it collects informationally complete data that directly probe the
full quantum state. Analysis of this type provides closed-form
expressions, which can be straightforwardly generalized to
arbitrary number of modes, albeit with a rapidly increasing
complexity. This method is by no means the only one for
characterizing multimode sources. For more complex sources, it
might be more economical to carry out tomography on linear
superpositions of all the available modes using a single-mode
measurement setup. Cross-spectral information may be
acquired by studying different kinds of such superpositions.
To this end, the general theory for single-mode sources
presented in Sec. III is all we need to understand the accuracies in estimating moments for these superpositions.
The robustness in controlling these superpositions as well as
their high customizability are important prerequisites for
practical multimode schemes [60].

A. Homodyne detection

If the two modes of \(\rho\) are physically fed into two separate
homodyne setups, then the data collected must come from the
rank-one measurement outcomes defined by the kets
\(|x_{\theta_1}\rangle |x'_{\theta_2}\rangle\), and the data scatter is characterized by the joint
probabilities \(p(x_{\theta_1}, \theta_1; x'_{\theta_2}, \theta_2)\) that are the Born probabilities
of these outcomes. The two-mode expectation values are then
given by
\[
\begin{align*}
\langle X_{m,1}^n X_{2,\theta_2}^n \rangle &= \int dx_{\theta_1} \int dx'_{\theta_2} \int dx_{\theta_1}^m \int dx'_{\theta_2}^n \rho(x_{\theta_1}, \theta_1; x'_{\theta_2}, \theta_2).
\end{align*}
\]
(6.5)
The single-mode \(\langle X_{m,1}^n \rangle = \langle X_{m,1}^n \otimes 1 \rangle\) expectation values can hence be derived easily by first setting \(x'_{\theta_2} = 1\) and, next,
marginalizing the joint probabilities over the second mode.
The procedure is similar for obtaining \(\langle X_{2,\theta_2}^n \rangle\), so that we have
\[
\begin{align*}
\langle X_{1,\theta_1}^n \rangle &= \int dx_{\theta_1} x_{\theta_1}^n \rho(x_{\theta_1}, \theta_1), \\
\langle X_{2,\theta_2}^n \rangle &= \int dx'_{\theta_2} x'_{\theta_2}^n \rho(x'_{\theta_2}, \theta_2),
\end{align*}
\]
(6.6)
where \(\rho(x_{\theta_1}, \theta_1) = \int dx'_{\theta_2} p(x_{\theta_1}, \theta_1; x'_{\theta_2}, \theta_2),\) for instance.

The first and second moments can be fully characterized
by the full two-mode homodyne data. For the first moments,
\(\langle X_{1,\theta_1}^n \rangle\) and \(\langle X_{2,\theta_2}^n \rangle\) are parametrized by the pairs \((\langle X_1 \rangle, \langle P_1 \rangle)\)
or \((\langle X_2 \rangle, \langle P_2 \rangle)\) needed to characterize \(r\). For the second
moments, the joint expectation value \(\langle X_{1,\theta_1}^n X_{2,\theta_2}^n \rangle\) contains all the four parameters of \(A_{12}\), and their marginalized versions
\(\langle X_{1,\theta_1}^n \rangle\) and \(\langle X_{2,\theta_2}^n \rangle\) together contain all the six parameters
of \(A_1\) and \(A_2\), all of which characterize the 10 independent
parameters in \(G_2\).

With careful accounting of measurement resources, arguments similar to those that are responsible for Sec. III give the
scaled Fisher matrix
\[
\tilde{F}_{1,\text{hom}}^{(l)} = \int \frac{d\theta_1}{\pi} \frac{m_{\theta_1}}{\langle X_{1,\theta_1}^l \rangle^2 - \langle X_{1,\theta_1}^2 \rangle},
\]
(6.7)
first-moment single-mode components, and that for the second-moment single-mode components
\[
\tilde{F}_{2,\text{hom}}^{(l)} = \int \frac{d\theta_1}{\pi} \frac{M_{\theta_1}}{\langle X_{1,\theta_1}^2 \rangle^2 - \langle X_{1,\theta_1}^4 \rangle},
\]
(6.8)
for \(l = 1, 2\). To figure out \(\tilde{F}_{2,\text{hom}}^{(12)}\) we observe that the MSE
\[
\text{E}[\text{Tr}[(\hat{A}_{12} - A_{12})^\dagger (\hat{A}_{12} - A_{12})]] = \text{E}[\hat{A}_{12}^\dagger \hat{A}_{12} - A_{12}^\dagger A_{12}]
\]
for the two-mode component \(A_{12}\) is identical to the MSE for the
two-mode column \(a_{12} = \langle \langle X_1 X_2 \rangle \langle X_1 P_2 \rangle \langle X_2 P_1 \rangle \rangle^T\).
The 4×4 Fisher matrix for estimating A_{12} now reads as
\begin{equation}
F_{2,\text{hom}}^{(12)} = \int_{(\pi)} d\theta_1 \int_{(\pi)} d\theta_2 \frac{m_{\theta_1} \otimes m_{\theta_2}}{\langle X_{1,\theta_1}^2 X_{2,\theta_2}^2 \rangle - \langle X_{1,\theta_1} X_{2,\theta_2} \rangle^2}. \tag{6.9}
\end{equation}

B. Heterodyne detection

On the other hand, when the two modes are respectively fed into two separate heterodyne setups, the resulting measurement consists of all rank-one outcomes defined by product coherent states. In effect, this separable heterodyne detection directly samples the two-mode Husimi function. The sample mean of the phase-space data obtained, which tends to the two-mode Husimi function in the large-N limit, can again be shown to asymptotically converge to a joint Gaussian distribution, such that
\begin{equation}
\tilde{r} = \frac{1}{N} \sum_{j=1}^{N} (\tilde{r}_{1,j} - \mu_{1,j}), \quad \tilde{r}_{1,j} \equiv \left(x_{1,j}, p_{1,j} \right) \tag{6.10}
\end{equation}
and
\begin{equation}
\tilde{G}_{2,\text{het}} = \frac{1}{N} \sum_{j=1}^{N} \left(\tilde{A}_{1,j} \tilde{A}_{1,j}^\dagger - \tilde{A}_{12,j} \tilde{A}_{12,j}^\dagger \right), \nonumber
\end{equation}

\begin{equation}
\tilde{A}_{1,j} \equiv \begin{pmatrix} x_{1,j} & x_{1,j} p_{1,j} \\ p_{1,j} & p_{1,j} \end{pmatrix}, \quad \tilde{A}_{12,j} \equiv \begin{pmatrix} x_{1,j} x_{2,j} & x_{1,j} x_{2,j} p_{1,j} \\ x_{2,j} p_{1,j} & x_{2,j} p_{1,j} \end{pmatrix} \tag{6.11}
\end{equation}
become asymptotically efficient estimators for r and G_2.

The relations between single- and two-mode heterodyne data share a similar behavior to those for the two-mode homodyne data. The Husimi average \tilde{r}, for example, can be obtained from the joint average $\tilde{A}_{1,j} \tilde{A}_{1,j}^\dagger$, by simply setting the phase-space values to 1 and marginalizing the two-mode Husimi function over the second mode, and vice versa. With these facts, we can immediately calculate the expressions for $\mathcal{H}_{1,\text{het}}^2$ and $\mathcal{H}_{2,\text{het}}$ by direct evaluations of the corresponding MSEs, as we did before in Sec. III B for single-mode sources. One then finds that
\begin{equation}
\mathcal{H}_{1,\text{het}} = \text{Var}_0[x_1] + \text{Var}_0[p_1] + \text{Var}_0[x_2] + \text{Var}_0[p_2], \nonumber
\end{equation}
\begin{equation}
\mathcal{H}_{2,\text{het}} = \text{Var}_0[x_1^2] + \text{Var}_0[p_1^2] + 2\text{Var}_0[x_1 p_1] + \text{Var}_0[x_2^2] + \text{Var}_0[p_2^2] + 2\text{Var}_0[x_1 x_2] + 2\text{Var}_0[x_1 p_2] + 2\text{Var}_0[x_2 p_1] + 2\text{Var}_0[p_1 p_2]. \tag{6.12}
\end{equation}

C. Optimality of heterodyne tomography in first-moment estimations

As in Eq. (3.5) for the single-mode case, we recognize here that $\mathcal{H}_{1,\text{hom}}$ takes the explicit expression
\begin{equation}
\mathcal{H}_{1,\text{hom}} = \text{Tr}(G^{(1)} + G^{(2)}) + 2(\sqrt{\text{det}(G^{(1)})} + \sqrt{\text{det}(G^{(2)})}) \tag{6.13}
\end{equation}
for any two-mode state ρ, where
\begin{equation}
G^{(l)} = \left(\begin{array}{cc} \langle (\Delta X_1)^2 \rangle & \frac{1}{2} \langle (\Delta X_1, \Delta P_1) \rangle \\ \frac{1}{2} \langle (\Delta X_1, \Delta P_1) \rangle & \langle (\Delta P_1)^2 \rangle \end{array} \right). \tag{6.14}
\end{equation}

Since $G^{(l)}$ also obeys the HRS uncertainty relation, one has $\text{det}(G^{(l)}) \geq \frac{1}{2}$, which again implies the universal inequality $\mathcal{H}_{1,\text{hom}} \geq \mathcal{H}_{1,\text{het}}$, or $\gamma_1 \leq 1$. Equality holds when both the marginalized $G^{(1)}$ and $G^{(2)}$ are, respectively, the covariance matrices of single-mode minimum-uncertainty states.

D. Two-mode Fock states

The first example to which we apply our two-mode theory is the class of two-mode Fock states $|n_1,n_2\rangle$. Since they are product states, the two-mode expectation values are product of single-mode expectation values. As such, the expressions for $\mathcal{H}_{1,\text{hom}}$ and $\mathcal{H}_{1,\text{het}}$ are easy to get, and they are
\begin{equation}
\mathcal{H}_{1,\text{hom}} = 4(n_1 + n_2 + 1), \quad \mathcal{H}_{1,\text{het}} = 2(n_1 + n_2 + 2). \tag{6.15}
\end{equation}

When $n_1 = n_2 = 0$, ρ is a two-mode vacuum state, so that $G^{(1)}$ and $G^{(2)}$ are identically the covariance matrix of the single-mode vacuum state, where $\gamma_1 = 1$ as it should be. For any other values of n_1 and n_2, γ_1 is clearly subunity. Furthermore, since the scaled CRBs are clearly symmetric in n_1 and n_2, upon examining the limit $n_1 = n_2 \to \infty$, we find that the performance ratio approaches the constant $\frac{1}{2}$.

Likewise, the product nature of these states and their rotational symmetry allow us to comfortably obtain
\begin{equation}
\mathcal{H}_{2,\text{hom}} = 5(n_1^2 + n_2^2) + 21(n_1 + n_2) + 18, \quad \mathcal{H}_{2,\text{het}} = 2(n_1^2 + n_2^2) + 16(n_1 + n_2) + 20. \tag{6.16}
\end{equation}

It turns out that although for the two-mode vacuum state, we have $\gamma_2 = 10/9 > 1$, the heterodyne scheme still beats the homodyne scheme for all other values of n_1 and n_2. The performance ratio γ_2 approaches the constant $\frac{4}{3}$ in the limit $n_1 = n_2 \to \infty$.

E. Two-mode squeezed vacuum state

The two-mode squeezed vacuum state, for a squeezing parameter $\zeta \geq 0$, is defined by the ket
\begin{equation}
|\text{SVV}\rangle = \frac{1}{\cosh(\zeta)} \sum_{n=0}^{\infty} |nn\rangle \tanh(\zeta)^n. \tag{6.17}
\end{equation}
This two-mode entangled state is an important basic ingredient for many entanglement-manipulation and generation strategies for CV settings as well as quantum interferometry studies [61-64].

Even though this state is no longer a product state, the scaled CRBs still have closed-form expressions. In particular, for the first-moment scaled CRBs, we have
\begin{equation}
\mathcal{H}_{1,\text{hom}} = 4 \cosh(2\zeta), \quad \mathcal{H}_{1,\text{het}} = 2 \cosh(2\zeta) + 2. \tag{6.18}
\end{equation}
We check that for $\zeta = 0$, we recover the scaled CRBs for the two-mode vacuum state, where again $\gamma_1 = 1$. For $\zeta > 0$, $\gamma < 1$ and tends to $\frac{1}{2}$ for large-ζ values.
This time, we witness that although all first moments for this entangled state are zero, the joint first moments need not. In particular, \(\langle X_{1,\theta_1} X_{2,\theta_2} \rangle = \sinh(\zeta) \cosh(\zeta) \cos(\vartheta_1 + \vartheta_2) \) and \(\langle X_{1,\theta_1}^2 \rangle = \frac{1}{2} \langle \cos(2\zeta) \rangle^2 \). For the homodyne scheme, the scaled Fisher matrices \(\tilde{F}_{2,\hom}^{(1)}, \tilde{F}_{2,\hom}^{(2)}, \) and \(\tilde{F}_{2,\hom}^{(12)} \) can be calculated with the respective state variance functions
\[
\begin{align*}
\langle X_{1,\theta_1}^2 \rangle - \langle X_{1,\theta_1}^2 \rangle^2 &= \frac{1}{2} \langle \cos(2\zeta) \rangle^2, \\
\langle X_{1,\theta_1} X_{2,\theta_2} \rangle - \langle X_{1,\theta_1} \rangle \langle X_{2,\theta_2} \rangle &= a \cos(2\vartheta_1 + 2\vartheta_2) + b,
\end{align*}
\]
with the coefficients \(a = \frac{1}{2} \langle \sin(2\zeta) \rangle^2 \) and \(b = \frac{1}{2} [1 + 3 \cosh(4\zeta)] \).

The results are as follows:
\[
\begin{align*}
\mathcal{H}_{2,\hom} &= \frac{11}{2} + \frac{13}{2} \cosh(4\zeta) + 6 \cosh(2\zeta) \sqrt{\cosh(4\zeta)}, \\
\mathcal{H}_{2,\het} &= 4[\cosh(\zeta)]^2 (2 + 3 \cosh(2\zeta)).
\end{align*}
\]
When \(\zeta = 0 \), the scaled CRBs indeed give the correct values for the two-mode vacuum state. From these formulas, we see that \(\gamma_2 \) is a monotonically decreasing function, starting from \(\gamma_2 \vert_{\zeta=0} = \frac{10}{\pi} \), all the way to the lowest value \(\gamma_{2,\min} = 6/(13 + 6\sqrt{2}) \approx 0.27926 \).

VII. CONCLUSION

We compare the moment-reconstruction performances of the homodyne and heterodyne measurement schemes using optimal moment estimators that minimize the mean-squared error. We first showed that in first-moment tomography, the homodyne scheme is always tomographically superior to, or at least as good as, the homodyne scheme for all quantum states in terms of the mean-squared error of the moment estimators. The underlying physical reason is solely the Heisenberg-Robertson-Schrödinger uncertainty relation for complementary observables. For second-moment tomography, we showed that the heterodyne scheme can often outperform the homodyne scheme for Gaussian states and many other interesting and important classes of non-Gaussian states. All these states indicate a trend that a larger geometric mean of second-moment eigenvalues (second-moment “temperature”) improves the moment-reconstruction accuracy with the heterodyne scheme relative to the homodyne scheme. This trend, however, is not monotonic in the second-moment “temperature” because there is also influence from the fourth moments originating from the form of the mean-squared error, the combined contributions of both give interesting features to the reconstruction accuracy, as illustrated by the examples in this article. The general theory introduced in Sec. III can be applied to higher-moment estimations that are important in general operator-moment applications and source-calibration protocols, and these shall be reported in the future.

ACKNOWLEDGMENTS

We acknowledge financial support from the BK21 Plus Program (Grant No. 21A201311111123) funded by the Ministry of Education (MOE, Korea) and National Research Foundation of Korea (NRF), the NRF grant funded by the Korea government (MSIP) (Grant No. 2010-0018295), the Korea Institute of Science and Technology Institutional Program (Project No. 2E26680-16-P025), the European Research Council (Advanced Grant PACART), the Spanish MINECO (Grant No. FIS2015-67963-P), the Grant Agency of the Czech Republic (Grant No. 15-03194S), and the IGA Project of the Palacký University (Grant No. IGA Prf 2016-005).

APPENDIX A: OPTIMAL ESTIMATORS FOR HOMODYNE TOMOGRAPHY

1. First-moment estimation

In this discussion, the reconstruction accuracy of the estimator \(\tilde{\mathbf{r}}_{\hom} \) for \(\mathbf{r} \) shall be taken to be the usual MSE distance measure
\[
\mathcal{D}_{1,\hom} = \mathbb{E}[(\tilde{\mathbf{r}}_{\hom} - \mathbf{r})^2]
\]
that is typically defined for columns. One easy way to obtain an estimator \(\tilde{\mathbf{r}}_{\hom} \) is to make use of \(\langle X_\vartheta \rangle = \langle X \rangle \cos \vartheta + (P) \sin \vartheta \) to ascertain that
\[
\mathbf{L}_\vartheta \mathbf{r} = \mathbf{r}_\vartheta
\]
for an \(n_\vartheta \times 2 \) matrix \(\mathbf{L}_\vartheta \) (\(n_\vartheta \) being the number of bins for the phases \(\vartheta \)) and a column \(\mathbf{r}_\vartheta \) of \(n_\vartheta \) true averages \(\langle X_\vartheta \rangle \). The highly overcomplete nature of the measurement thus permits us to define, for any experimentally obtained estimates of average values \(\mathbf{r}_\vartheta \equiv ([\langle X_1 \rangle, \langle X_2 \rangle, \ldots, \langle X_{n_\vartheta} \rangle]^T) \),
\[
\tilde{\mathbf{r}}_{\hom}^{(\text{lin})} = \mathbf{L}_\vartheta (\tilde{\mathbf{R}}_{\vartheta})
\]
as the linear estimator of interest using the pseudoinverse \(\mathbf{L}_\vartheta \) of \(\mathbf{L}_\vartheta \). This estimator, however, is suboptimal in the sense that it does not minimize the MSE \(\mathcal{D}_{1,\hom} \).

To obtain the optimal estimator for \(\mathbf{r} \) [often known as the best linear unbiased estimator] that minimizes the MSE, we resort to the linear optimization of
\[
\tilde{\mathbf{r}}_{\hom} = \sum_{k=1}^{n_\vartheta} \mathbf{v}_k (\tilde{X}_k)
\]
over all possible reconstruction columns \(\mathbf{v}_k \) for the estimates \(\langle X_k \rangle \). Data consistency according to \(\langle X_k \rangle = \mathbf{u}_k^T \tilde{\mathbf{r}}_{\hom} \) requires these reconstruction columns, or *dual columns*, to satisfy the property
\[
\sum_{k=1}^{n_\vartheta} \mathbf{v}_k \mathbf{u}_k^T = \mathbf{1} = \sum_{k=1}^{n_\vartheta} \mathbf{u}_k \mathbf{v}_k^T
\]
with the measurement columns \(\mathbf{u}_k = \mathbf{u}_{\vartheta_k} = (\cos \vartheta_k \sin \vartheta_k)^T \).

Logically, we must have
\[
\mathbb{E} [\tilde{\mathbf{r}}_{\hom}] = \sum_{k=1}^{n_\vartheta} \mathbf{v}_k (\langle X_k \rangle) = \mathbf{r}.
\]

The Lagrange function for the optimization is therefore
\[
\mathcal{L}_{\hom} = \mathcal{D}_{\hom} - \text{Tr} \left\{ A \left(\sum_{k=1}^{n_\vartheta} \mathbf{u}_k \mathbf{v}_k^T - \mathbf{1} \right) \right\},
\]

\[042322-13\]
where \mathbf{A} is the Lagrange matrix for the dual-column constraint in (A5). In terms of the dual columns,

$$D_{1,\text{hom}} = \sum_{k=1}^{n_o} \sum_{k'=1}^{n_o} \mathbf{v}_k^\dagger \mathbf{v}_{k'} \mathbb{E}[(\mathbf{X}_k)(\mathbf{X}_{k'})] - \langle \mathbf{X}_k \rangle \langle \mathbf{X}_{k'} \rangle$$

$$= \sum_{k=1}^{n_o} \mathbf{v}_k^\dagger \mathbf{v}_k \mathbb{E}[(\mathbf{X}_k)^2] + \sum_{k \neq k'} \mathbf{v}_k^\dagger \mathbf{v}_{k'} \mathbb{E}[(\mathbf{X}_k)\mathbf{X}_{k'}] \mathbb{E}[(\mathbf{X}_{k'})]$$

$$= \sum_{k=1}^{n_o} \sum_{k'=1}^{n_o} \mathbf{v}_k^\dagger \mathbf{v}_{k'} \langle \mathbf{X}_k \rangle \langle \mathbf{X}_{k'} \rangle. \quad \text{(A8)}$$

Since the unbiased estimate

$$\langle \mathbf{X}_k \rangle = \frac{1}{N_k} \sum_{j=1}^{n_k} n_{jk} x_{jk} \quad \text{(A9)}$$

is an average sum of all the measured n_x voltage readings x_{jk} per phase that are distributed according to the multinomial distribution of random multinomial weights $\sum_j n_{jk} = N_k$, the second moment is given by

$$\mathbb{E}[(\mathbf{X}_k)^2] = \frac{1}{N_k} \sum_{j=1}^{n_k} \sum_{j'=1}^{n_k} \mathbb{E}[n_{jk} n_{j'k}] x_{jk} x_{j'k}$$

$$= \frac{1}{N_k} \sum_{j=1}^{n_k} p_{jk} x_{jk}^2 + \frac{N_k - 1}{N_k} \sum_{j=1}^{n_k} \sum_{j'=1}^{n_k} p_{jk} p_{j'k} x_{jk} x_{j'k}$$

$$\frac{1}{N_k} \langle X_k^2 \rangle + \frac{N_k - 1}{N_k} \langle X_k \rangle^2. \quad \text{(A10)}$$

The final equality is valid for sufficiently large data (bins) for all phases, as $p_{jk} \to d x_0 p(x_0, \theta)$ and

$$\sum_{j=1}^{n_k} p_{jk} x_{jk}^2 \to \int d x_0 p(x_0, \theta) x_0^2$$

$$\int d x_0 \langle x_0 \rangle (x_0) x_0^2 = \langle X_k^2 \rangle. \quad \text{(A11)}$$

So, we finally get

$$D_{1,\text{hom}} = \sum_{k=1}^{n_o} \frac{\mathbf{v}_k^\dagger \mathbf{v}_k}{N_k} \langle (\mathbf{X}_k)^2 \rangle - \langle \mathbf{X}_k \rangle^2. \quad \text{(A12)}$$

A simple variation of \mathcal{L}_{hom} therefore gives

$$\delta \mathcal{L}_{\text{hom}} = \sum_{k=1}^{n_o} \frac{\delta \mathbf{v}_k^\dagger \mathbf{v}_k + \mathbf{v}_k^\dagger \delta \mathbf{v}_k}{N_k} \langle (\mathbf{X}_k)^2 \rangle - \langle \mathbf{X}_k \rangle^2$$

$$- \frac{1}{2} \text{Tr} \left\{ \mathbf{A} \sum_{k=1}^{n_o} (\mathbf{u}_k^\dagger \delta \mathbf{v}_k + \delta \mathbf{v}_k^\dagger \mathbf{u}_k) \right\} \equiv 0 \quad \text{(A13)}$$

or

$$\frac{1}{2} \mathbf{A} = \mathbf{F}(\langle \mathbf{X}_k \rangle, \langle X_k^2 \rangle) = \sum_{k=1}^{n_o} \mathbf{u}_k^\dagger \mathbf{u}_k \frac{N_k}{\langle X_k^2 \rangle - \langle X_k \rangle^2},$$

$$\mathbf{v}_k = \frac{N_k}{\langle X_k^2 \rangle - \langle X_k \rangle^2} \mathbf{F}(\langle \mathbf{X}_k \rangle, \langle X_k^2 \rangle)^{-1} \mathbf{u}_k. \quad \text{(A14)}$$

The matrix $\mathbf{F}(\langle \mathbf{X}_k \rangle, \langle X_k^2 \rangle)$ is known as the frame matrix.

The optimal estimator therefore depends on the true moments which are certainly unavailable in the first place, for no tomography is otherwise necessary at all. Nonetheless, one can substitute the estimated moments for them to obtain an asymptotically efficient optimal estimator that approximates the optimal estimator. An unbiased estimate for the second moment is given by

$$\langle \mathbf{X}_k^2 \rangle = \frac{1}{N_k} \sum_{j=1}^{n_k} n_{jk} x_{jk}^2, \quad \text{(A15)}$$

so that the asymptotically optimal estimator is given by

$$\tilde{\mathbf{F}}_{\text{hom}}(\text{opt}) = W_1^{-1} \sum_{k=1}^{n_o} \frac{N_k \langle \mathbf{X}_k^2 \rangle}{\langle \mathbf{X}_k \rangle - \langle \mathbf{X}_k \rangle^2},$$

$$W_1 = \sum_{k=1}^{n_o} m_k \frac{N_k}{\langle X_k^2 \rangle - \langle X_k \rangle^2}. \quad \text{(A16)}$$

It is easy to see that when the estimated moments approach the true moments, this optimal estimator attains the scaled CRB. Directly from Eq. (A12), we immediately know that its corresponding MSE is given by

$$D_{2,\text{hom}} = \text{Tr} \left\{ \mathbf{F}(\langle \mathbf{X}_k \rangle, \langle X_k^2 \rangle) \right\}^{-1} \quad \text{(A17)}$$

and all we need to realize is that for sufficiently large N and uniformly distributed quadrature outcomes, $N_k/N \to d \theta/\pi$ and the frame matrix

$$\frac{1}{N} \mathbf{F}(\langle \mathbf{X}_k \rangle, \langle X_k^2 \rangle) \to \int d \theta \frac{m_\theta}{\pi \langle X_\theta^2 \rangle - \langle X_\theta \rangle^2} \mathbf{F}(\langle \mathbf{X}_k \rangle, \langle X_k^2 \rangle)$$

is nothing more than the Fisher matrix introduced in Eq. (3.3). This also means that the optimal estimator and the asymptotically optimal estimator are both asymptotically as efficient as the maximum-likelihood estimator.

This construction comes with a basic and important lesson. The simple linear estimator $\tilde{\mathbf{F}}_{\text{hom}}(\text{lin})$ in Eq. (A3), which is suboptimal, depends only on the first moments. To improve the reconstruction accuracy, more aspects of the data that are attributed to the figure of merit chosen to measure this accuracy would have to be incorporated systematically. In the case of the MSE, these are linear combinations of both the first and second moments, or at least their estimates. Put differently, we should always use the reconstruction estimator that optimize the figure of merit we choose to rank the goodness of the reconstruction.

2. Second-moment estimation

By the same token, we can construct the optimal estimator that approximates the optimal estimator for second-moment estimation by minimizing the MSE

$$D_{2,\text{hom}} = \mathbb{E} \left[\text{Tr}(\mathbf{G}_{2,\text{hom}} - \mathbf{G}_{2,\text{hom}}^2) \right] \quad \text{(A19)}$$

over the estimator that is of the linear form

$$\tilde{\mathbf{G}}_{2,\text{hom}} = \sum_{k=1}^{n_o} \Theta_k \langle X_k^2 \rangle \quad \text{(A20)}$$

with respect to the second-moment estimates. This form is a natural extension to the column estimator $\tilde{\mathbf{F}}_{\text{hom}}$ via a generalization of the dual columns \mathbf{v}_k to dual matrices Θ_k.

042322-14
 Completely analogous to the discussion in Appendix A1, consistency with \(\langle X_k^2 \rangle = u_k^T \hat{G}_{2,\text{hom}} u_k \) implies that
\[
\hat{G}_{2,\text{hom}} = \sum_{k=1}^{n_s} \Theta_k u_k^T \hat{G}_{2,\text{hom}} u_k. \tag{A21}
\]

The above relation can be simplified by introducing the vectorization notation \(\text{vec}(Y) \) that turns a matrix \(Y \) into a column. Since all two-dimensional matrices considered here are real and symmetric, they are essentially characterized by three real parameters. Hence, in our context, given that
\[
Y \equiv \begin{pmatrix} y_1 & \sqrt{2} y_2 \\ y_3 \end{pmatrix}, \tag{A22}
\]
the vectorized quantity is defined as
\[
\text{vec}(Y) = \begin{pmatrix} y_1 \\ \sqrt{2} y_2 \\ y_3 \end{pmatrix}. \tag{A23}
\]

This operation is a variant of the usual column-stacking vectorization operation to apply on \(2 \times 2 \) real symmetric matrices for our case to make contact with the property \(\text{Tr}(Y_1 Y_2) = \text{vec}(Y_1)^T \text{vec}(Y_2) \) between any pair of such matrices \(Y_1 \) and \(Y_2 \). In this notation, Eq. (A21) becomes
\[
\text{vec}(\hat{G}_{2,\text{hom}}) = \sum_{k=1}^{n_s} \text{vec}(\Theta_k) \text{vec}(m_k)^T \text{vec}(\hat{G}_{2,\text{hom}}), \tag{A24}
\]
which is equivalent to the vectorized constrained
\[
\sum_{k=1}^{n_s} \text{vec}(\Theta_k) \text{vec}(m_k)^T = 1 = \sum_{k=1}^{n_s} \text{vec}(m_k) \text{vec}(\Theta_k)^T. \tag{A25}
\]

As usual, to derive the expression for the optimal estimator, we first calculate \(\hat{D}_{2,\text{hom}} \) in terms of the dual matrices. For this we shall need the average of the square of the estimate \(\langle X_k^2 \rangle \) defined in Eq. (A15):
\[
\mathbb{E}[\langle X_k^2 \rangle^2] = \frac{1}{N_k} \langle X_k^4 \rangle + \frac{N_k - 1}{N_k} \langle X_k^2 \rangle^2, \tag{A26}
\]
from which gives the expression
\[
\hat{D}_{2,\text{hom}} = \sum_{k=1}^{n_s} \frac{\text{vec}(\Theta_k)^T \text{vec}(\Theta_k)}{N_k} (\langle X_k^4 \rangle - \langle X_k^2 \rangle^2), \tag{A27}
\]
for the MSE. Then, by carrying out the variation of the appropriate Lagrange function similar to the calculations in Appendix A1 and remembering the additional association \(M_k = \text{vec}(m_k)^T \text{vec}(m_k) \), we find that the matrices for the optimal estimator are
\[
\begin{align*}
F(\{\langle X_k^2 \rangle, \langle X_k^4 \rangle\}) &= \sum_{k=1}^{n_s} \frac{N_k}{\langle X_k^2 \rangle - \langle X_k^4 \rangle}, \\
\text{vec}(\Theta_k) &= \frac{N_k}{\langle X_k^2 \rangle - \langle X_k^4 \rangle} F(\{\langle X_k^2 \rangle, \langle X_k^4 \rangle\})^{-1} \text{vec}(m_k).
\end{align*} \tag{A28}
\]
Finally, the asymptotically optimal estimator is given by
\[
\hat{G}_{2,\text{hom}}^{(opt)} = W_2^{-1} \sum_{k=1}^{n_s} \text{vec}(m_k) \frac{N_k}{\langle X_k^2 \rangle - \langle X_k^4 \rangle}, \tag{A29}
\]
That this estimator asymptotically attains the scaled CRB for second-moment estimation is again clear.

APPENDIX B: LIST OF CHARACTERISTIC FUNCTIONS

In calculating the moments for both the homodyne and heterodyne schemes, it is extremely useful to start with the relevant characteristic functions for both schemes. To facilitate the discussions in the main article, we have supplied a list of quadrature characteristic functions \(\langle e^{i k X}\rangle \) for the homodyne scheme and a list of Husimi characteristic functions \(\langle e^{i g \alpha} \rangle \) for the heterodyne scheme respectively in Table I in this appendix. Then, the two kinds of moments can then be readily computed by the prescriptions
\[
\begin{align*}
\langle X^m \rangle &= \left(\frac{-i}{\partial \alpha} \right)^m \langle e^{i k X} \rangle |_{\alpha=0}, \\
\langle X \rangle^2 &= \left(\frac{\partial}{\partial u} \right)^k \left(\frac{\partial}{\partial v} \right)^l \langle e^{iu+iv}\rangle |_{u,v=0}, \tag{B1}
\end{align*}
\]

TABLE I. A list of characteristic functions for all the quantum states discussed. The symbols in this table are defined as \(\alpha g e^{-i\varphi} = (x_0 + i p_0)/\sqrt{2} \) where \(x_0 = x_{\theta=0} \) and \(p_0 = p_{\theta=0} \), \(g \equiv (-g \ g^\dagger) \), \(M = HH^\dagger \), \(G \equiv G_{\theta=0} H \), and \(H \equiv \frac{1}{\sqrt{2}} \left(\frac{1}{i} I \right)^{\theta} \).

<table>
<thead>
<tr>
<th>Class of quantum states</th>
<th>Quadrature characteristic function</th>
<th>Husimi characteristic function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>(\exp \left(-\frac{1}{2} (u \ G \ u)^T k^2 + i u \ u_0 k \right))</td>
<td>(e^{i g \alpha_0} \exp \left(\frac{\text{det}(G_{\text{hom}})}{2} \right))</td>
</tr>
<tr>
<td>Fock</td>
<td>(e^{i \frac{1}{2} L_{2 \theta} k^2})</td>
<td>(\frac{1}{\sqrt{2}} F_1(n+1;1;</td>
</tr>
<tr>
<td>Even and odd coherent</td>
<td>(\frac{1}{\sqrt{2}} \cos(kx_0) \pm e^{-i2m\varphi} \cos(kp_0))</td>
<td>(2 \pm 2 e^{-i2m\varphi})</td>
</tr>
<tr>
<td>Displaced Fock</td>
<td>(\frac{1}{\sqrt{2}} e^{i \frac{1}{2} L_{2 \theta} k^2})</td>
<td>(e^{-i g \alpha_0} \pm e^{i g \alpha_0})</td>
</tr>
<tr>
<td>Photon-added coherent</td>
<td>(e^{i \frac{1}{2} F_1(m+1;1;\alpha_0^2) \left(\alpha_0^2 + \frac{i}{\sqrt{2}} e^{-i\varphi} \right)})</td>
<td>(\frac{1}{\sqrt{2}} F_1(m+1;1;</td>
</tr>
</tbody>
</table>
which simply involves multiple differentiations with respect to the free variables and later setting these variables to zero. The identity \(F_1(n + 1; 1; -x) = e^{-x} L_n(x) \) relating the confluent hypergeometric functions and Laguerre polynomials is particularly useful for consistency verification between two characteristic functions of different quantum states.