Universidad Complutense de Madrid
E-Prints Complutense

Sistemas de recomendación basados en técnicas de predicción de enlaces para jueces en línea

Impacto

Downloads

Downloads per month over past year



Caro Martínez, Marta (2017) Sistemas de recomendación basados en técnicas de predicción de enlaces para jueces en línea. [Trabajo Fin de Máster]

[img]
Preview
PDF
1MB


Abstract

La oferta de todo tipo de productos o experiencias que se puede encontrar en Internet hoy en día es inmensa y difícil de valorar para los usuarios que quieren buscar un producto que se adapte a sus necesidades. Debido a este problema, surgen los sistemas de recomendación, que ayudan a los usuarios a encontrar productos que sean de su interés facilitando sus tareas de búsqueda. Los sistemas de recomendación están implantados en muchísimas plataformas de consumo, pero no en otro tipo de plataformas donde su uso también sería interesante y necesario. Una de estas plataformas son los jueces en línea, donde los sistemas de recomendación podrían ayudar a los usuarios en la selección de los problemas a resolver que les resulten más interesantes.
En este Trabajo Fin de Máster se proponen diferentes métodos de recomendación para implantar en jueces en línea que están basados en grafos de interacciones y que hacen uso de técnicas de predicción de enlaces con el fin de generar recomendaciones. En este trabajo se ha realizado una evaluación de los métodos de recomendación propuestos a través de la generación de experimentos realizados sobre el juez en línea de Acepta el Reto con el objetivo de determinar qué métodos resultan más prometedores

Resumen (otros idiomas)

The offer of products or experiences that can be found on the Internet today is immense and difficult to value for users who want to find a product that suits their needs. Because of this problem, recommender systems emerge, which help users to find products that are interesting to them, making easier their search tasks. Recommender systems are implemented in many consumer platforms, but not in other platforms where their use would also be interesting and necessary. One of these platforms are online judges, where recommender systems could help users in selecting which interesting problems to solve. In this Final Master's Work, different recommender methods to institute in online judges are proposed. They are based on interactions graphs and make use of link prediction techniques in order to generate recommendations. In this work an evaluation of the proposed recommender methods has been made with the generation of experiments on the Acepta el Reto (Take On the Challenge) online judge in order to determine which methods are the most promising.

Item Type:Trabajo Fin de Máster
Additional Information:

Máster en Ingeniería Informática, Facultad de Informática, Departamento de Ingeniería del Software e Inteligencia Artificial, curso 2016-2017

Directors:
DirectorsDirector email
Jiménez Díaz, Guillermo
Uncontrolled Keywords:Sistemas de recomendación, Jueces en línea, Predicción de enlaces, Grafos de interacción, Acepta el Reto
Palabras clave (otros idiomas):Recommender systems, Online judges, Link prediction, Interactions graphs, Take on the Challenge
Subjects:Sciences > Computer science > Artificial intelligence
Sciences > Computer science > Expert systems (Computer science)
Título del Máster:Máster en Ingeniería Informática
ID Code:43975
Deposited On:21 Jul 2017 08:51
Last Modified:21 Jul 2017 08:53

Origin of downloads

Repository Staff Only: item control page