Universidad Complutense de Madrid
E-Prints Complutense

Interplay between the endocrine and circadian systems in fishes

Impacto

Descargas

Último año

Isorna Alonso, Esther y Pedro Ormeño, Nuria de y Valenciano González, Ana Isabel y Alonso Gómez, Ángel Luis y Delgado Saavedra, María Jesús (2017) Interplay between the endocrine and circadian systems in fishes. Journal of Endocrinology, 232 (3). pp. 141-159. ISSN 0022-0795

[img] PDF
Restringido a Sólo personal autorizado del repositorio

1MB

URL Oficial: http://joe.endocrinology-journals.org/



Resumen

The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light–darkness and feeding–fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light–darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.


Tipo de documento:Artículo
Palabras clave:circadian rhythms; clock genes; ghrelin; glucocorticoids; leptin; melatonin; orexin
Materias:Ciencias Biomédicas > Biología
Ciencias Biomédicas > Biología > Fisiología animal
Ciencias Biomédicas > Biología > Peces
Código ID:44378
Depositado:29 Aug 2017 11:38
Última Modificación:04 Sep 2017 10:28

Descargas en el último año

Sólo personal del repositorio: página de control del artículo