Universidad Complutense de Madrid
E-Prints Complutense

Interplay between the endocrine and circadian systems in fishes

Impacto

Downloads

Downloads per month over past year

Isorna Alonso, Esther and Pedro Ormeño, Nuria de and Valenciano González, Ana Isabel and Alonso Gómez, Ángel Luis and Delgado Saavedra, María Jesús (2017) Interplay between the endocrine and circadian systems in fishes. Journal of Endocrinology, 232 (3). pp. 141-159. ISSN 0022-0795

[img] PDF
Restringido a Repository staff only

1MB

Official URL: http://joe.endocrinology-journals.org/



Abstract

The circadian system is responsible for the temporal organisation of physiological functions which, in part, involves daily cycles of hormonal activity. In this review, we analyse the interplay between the circadian and endocrine systems in fishes. We first describe the current model of fish circadian system organisation and the basis of the molecular clockwork that enables different tissues to act as internal pacemakers. This system consists of a net of central and peripherally located oscillators and can be synchronised by the light–darkness and feeding–fasting cycles. We then focus on two central neuroendocrine transducers (melatonin and orexin) and three peripheral hormones (leptin, ghrelin and cortisol), which are involved in the synchronisation of the circadian system in mammals and/or energy status signalling. We review the role of each of these as overt rhythms (i.e. outputs of the circadian system) and, for the first time, as key internal temporal messengers that act as inputs for other endogenous oscillators. Based on acute changes in clock gene expression, we describe the currently accepted model of endogenous oscillator entrainment by the light–darkness cycle and propose a new model for non-photic (endocrine) entrainment, highlighting the importance of the bidirectional cross-talking between the endocrine and circadian systems in fishes. The flexibility of the fish circadian system combined with the absence of a master clock makes these vertebrates a very attractive model for studying communication among oscillators to drive functionally coordinated outputs.


Item Type:Article
Uncontrolled Keywords:circadian rhythms; clock genes; ghrelin; glucocorticoids; leptin; melatonin; orexin
Subjects:Medical sciences > Biology
Medical sciences > Biology > Animal physiology
Medical sciences > Biology > Fishes
ID Code:44378
Deposited On:29 Aug 2017 11:38
Last Modified:04 Sep 2017 10:28

Origin of downloads

Repository Staff Only: item control page