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We consider a class of synthetic DNA molecules based on a quasiperiodic arrangement of their constituent
nucleotides. Making use of a two-step renormalization scheme the double-stranded DNA molecule is modeled
in terms of a one-dimensional effective Hamiltonian, which includes contributions from the nucleobase
system, the sugar-phosphate backbone, and the environment. Analytical results for the energy spectrum
structure and Landauer conductance of Fibonacci DNA approximants are derived and compared with those
corresponding to periodic polyGACT-polyCTGA chains. The main effect of quasiperiodic order is the emer-
gence of a highly fragmented energy spectrum, introducing a characteristic low-energy scale in the electronic
structure of aperiodic DNA chains. The presence of a series of high-conductance peaks in the transmission
spectra of Fibonacci approximants indicates the existence of extended states in these systems. These results
open perspectives for experimental work in nanodevices based on synthetic DNA.
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I. INTRODUCTION

Nucleic acids can be classified into two broad classes:
namely, duplex and single-stranded molecules of either DNA
or RNA. In turn, each class can be further split into biologi-
cal �i.e., samples extracted from living organisms, like vi-
ruses, bacteria, or eucaryotic cells� and artificially engineered
molecules �e.g., polyG-polyC, polyA-polyT, or polyGC-
polyCG chains�. In general, synthetic nucleic acids consid-
ered so far comprise short oligonucleotides where relatively
few base pairs �BP’s� are periodically arranged.1 These struc-
tures are quite different from the biological ones, in which
several thousands to millions of BP’s are aperiodically dis-
tributed, exhibiting characteristic scale-invariant properties
due to the presence of long-range correlations in certain
regions.2,3 Accordingly, biological DNA exhibits a higher
chemical complexity, determined by their BP sequencing.
The key role of structural order in nucleic acids was earlier
pointed out by Schrödinger, who introduced the notion of a
one-dimensional aperiodic crystal in order to describe the
basic structure of genetic material in the 1940s.4 The subse-
quent discovery of quasicrystalline alloys, followed by the
growth of different kinds of aperiodic superlattices and mul-
tilayers, based on semiconductor, dielectric, and metallic ma-
terials, have spurred interest in those arrangements of matter
which exhibit a well-defined order without the recourse of
periodic repetition.5 These novel arrangements usually intro-
duce some sort of correlation among the system building
blocks, which ultimately plays a significant role in its trans-
port properties. Thus, the study of the random dimer model,6

originally introduced to explain the high electrical conduc-
tivity of doped polyacetylene and polyaniline, properly illus-
trates that, as soon as short-range dimer correlations among
monomers are introduced in an otherwise random linear
polymer, a significant number of extended states appear,
efficiently contributing to the electrical transport.7,8

Self-similar systems exhibiting more complex correlation
patterns among their basic building blocks, like fractals or
Fibonacci chains, are able to support extended electronic
states as well.9–13 Recent studies indicating the existence of

well-defined currents �apparently on a micron scale� in
�-DNA molecules support the possible presence of this sort
of extended states in biopolymers.14 Although this charge
carrier path is probably too large,15 it has been theoretically
shown that the presence of long-range correlations in aperi-
odic DNA sequences allows for efficient charge transfer over
length scales up to �100 nm.16 In fact, experimental evi-
dence of efficient charge transport through double-stranded
�ds�DNA oligonucleotides �14–26 BP’s long� with a nonpe-
riodic nucleotide sequence has been recently reported17,18

and the critical dependence of the measured dsDNA conduc-
tance upon the order sequence of the chain has been also
demonstrated.19

Besides its fundamental importance for the progress of
biological condensed-matter theory, several properties of
biological interest may be directly related to the presence of
sequence correlations in genomic DNA, including gene regu-
lation, cell division, or damage recognition processes due to
DNA-mediated charge migration.20,21 In this sense, certain
quasiperiodic systems may be regarded as useful model pro-
totypes, able to mimic relevant features related to long-range
correlation effects in natural DNA samples.5,16 Motivated by
such a possibility, some recent works have analyzed the role
of quasiperiodic order in the electronic structure and charge
transport efficiency of single-stranded DNA chains based on
the Fibonacci polyGC sequence.22,23 In this work, we will
consider the case of more realistic dsDNA chains containing
four different nucleotides, which can be arranged either
periodically or quasiperiodically.

II. DNA MODEL

Our description of electronic DNA energetics will take
into account three different contributions stemming from �i�
the nucleobase system, �ii� the backbone system, and �iii� the
environment, as is sketched in Fig. 1. Attending to the ener-
gies involved in the different interactions, the resulting en-
ergy network can be hierarchically arranged, starting from
high energy values related to the on-site energies of the bases
and sugar-phosphate groups �8–12 eV�,24,25 passing through
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intermediate energy values related to the hydrogen bonding
between Watson-Crick pairs ��0.5 eV�,24,26 and the coupling
between the bases and the sugar moiety ��1 eV�,25 and end-
ing up with the aromatic base stacking low energies
�0.01–0.4 eV�.24,27,28 The energy scale of environmental ef-
fects �1–5 eV� is related to the presence of counterions and
water molecules, interacting with the nucleobases and the
backbone by means of hydration, solvation, and charge trans-
fer processes. It is about one order of magnitude larger
than the coupling between the complementary bases and
about two orders of magnitude larger than the base stacking
energies.

In some previous models a transport channel associated
with the possible hopping of charge carriers between succes-
sive phosphate groups along the backbone was
considered.29–31 However, first-principles calculations, show-
ing that the phosphate molecular orbitals are systematically
below the base-related ones, do not favor the presence of
such a transport channel.32,33 On the other hand, quantum
mechanical studies show that hydrogen bonding interactions
give rise to a spatial separation of the highest occupied and
lowest unoccupied molecular orbitals �HOMO and LUMO�
in the nucleobase system, so that hole �electron� transfer pro-
ceeds through the purine �pyrimidine� bases, where the
HOMO �LUMO� carriers are located in polyG-polyC
�polyA-polyT�, respectively.34,35 Accordingly, we shall con-
sider that the charge transfer mainly proceeds through the
aromatic base stack channel.

In Fig. 2�a� we introduce our tight-binding model for a
double-stranded polyGACT-polyCTGA unit cell including
four different nucleotides. This unit cell provides the basis
for both periodic and aperiodic longer DNA chains, where � j,
with j= �G,C,A,T�, are the on-site energies of the bases, tj

is the hopping integral between the sugar’s oxygen atom and
the base’s nitrogen atom,36 and tGC �tAT� describes the hydro-
gen bonding between complementary bases. The backbone’s
contribution is described by means of the on-site energies
� j, introduced in Fig. 2�b�. In general, � j will depend on
the nature of the neighboring base as well as the presence
of water molecules and/or counterions attached to the

backbone, according to the overall scheme illustrated in Fig.
1. In order to obtain a simple mathematical description,
keeping most of the relevant physical information, we will
map the tight-binding model proposed in Fig. 2�a� onto the
equivalent binary lattice model shown in Fig. 2�c�. To this
end, the Watson-Crick BP’s are first renormalized to obtain
the branched tight-binding model shown in Fig. 2�b�.37 The
renormalized on-site energies and transfer integrals are,
respectively, given by �̃ij = tij and38

�k = tk +
�k

tk
�E − �k� . �1�

Note that the renormalized on-site energies �given by the
hydrogen bonding energy scale� are now about one order of
magnitude smaller than the original ones �given by the ion-
ization potentials of the nucleobases�, so that the effective
�-� overlap integral describing the aromatic base stacking
between adjacent nucleotides becomes energetically relevant
and it is explicitly included in the model by means of the
hopping integral t0. Next, the backbone contribution is deci-
mated to obtain the one-dimensional lattice shown in Fig.

FIG. 1. �Color online� Sketch illustrating the overall energetics
of a double-stranded DNA chain and the different tight-binding
parameters included in the DNA model considered in this work.

FIG. 2. �Color online� Sketch illustrating the two-step renormal-
ization process mapping the dsDNA chain into a linear diatomic
lattice. �a� Starting effective tight-binding model for the polyGACT-
polyCTGA unit cell. �b� Renormalized model after the first decima-
tion step. �c� Renormalized model after the second decimation step.
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2�c�, where the renormalized on-site energies are now given
by

�,� = t�,� +
�G,A

2 �E − �C,T� + �C,T
2 �E − �G,A�

�E − �G,A��E − �C,T�
, �2�

with t�� tCG and t�� tAT. In this way, the original
polyGACT-polyCTGA chain is mapped onto the equivalent
diatomic lattice shown in Fig. 2�c�, where the renormalized
“atoms” correspond to the Watson-Crick complementary
pairs in the DNA molecule. In this way, our approach pro-
vides a more realistic description, including 15 physical pa-
rameters �� j , tj ,� j , tGC , tAT , t0� fully describing the energetics
of the DNA molecule in terms of just three variables �i.e.,
� ,� , t0� in a unified way.

By inspecting the renormalized binary lattice shown in
Fig. 2�c� we realize that, instead of considering a periodic
chain with unit cell ��, we could arrange the GC and AT
complementary pairs according to the Fibonacci sequence,
which is prescribed by the inflation rule �→�� and �→�.
In this way, we obtain the series of unit cells
�� ,��� ,����� ,�������� , . . . . The first representative
in this series coincides with the periodic polyGACT-
polyCTGA chain �note that, according to Eq. �2�, the BP’s
GC/CG and AT/TA are indistinguishable in the renormalized
chain�. The following terms in the sequence describe peri-
odic DNA chains whose unit cell becomes progressively
complex, attaining the quasiperiodic order characteristic of
the Fibonacci sequence in the thermodynamic limit N→	.
Accordingly, the systematic study of these approximants
series provides useful information regarding the progressive
emergence of quasiperiodic order in the system.39

III. ENERGY SPECTRUM OF THE GACT-CTGA CHAIN

Within the framework of the transfer matrix formalism
and considering nearest-neighbor interactions only,40 the
Schrödinger equation of the renormalized binary chain
shown in Fig. 2�c� can be expressed in terms of the following
transfer matrices:

Q� � 	2x − 1

1 0

, Q� � 	2y − 1

1 0

 , �3�

where x= �E−�� /2t0 and y= �E−�� /2t0. Assuming periodic
boundary conditions the dispersion relation is given by the
relationship

2 cos�qNa*� = tr��Q�Q��m� � tr�Pm�E�� , �4�

where q is the wave vector, N is the BP number, a* measures
the separation between neighboring BP’s along the helix
axis, and m�N /2. Since both Q� and Q� are unimodular
matrices, we can make use of the Cayley-Hamilton
theorem41 to express the global transfer matrix of the DNA
chain as

Pm�E� = 	Um + Um−1 − 2yUm−1

2xUm−1 − Um−1 − Um−2

 , �5�

where Um�z��sin��m+1�
� / sin 
, with z� 1
2 tr�Q�Q��

�cos 
=2xy−1, are Chebyshev polynomials of the

second kind and we have made use of the relationship
Um+1−2zUm+Um−1=0. Then, taking into account the expres-
sion �Um−Um−2� /2=cos�m
�, we finally obtain the following
dispersion relation:

4t0
2 cos2�qa0� = E2 − �� + ��E + �� , �6�

which has the typical form for a binary chain, though in this
case the renormalized on-site energies ��E� and ��E� explic-
itly depend on the charge carriers energy E after Eqs. �1� and
�2�, leading to rather involved analytical expressions. In or-
der to grasp the basic energy spectrum structure we will in-
troduce two simplifications. First, according to recent x-ray
experiments the counterions condense around the nucleic
acid chain in a tightly bound layer.42 Accordingly, a homo-
geneous charge distribution through the backbone can be as-
sumed as a first approximation, so that � j ��. Second, the
transfer integral describing the coupling between the sugar
and neighbor bases takes on essentially the same values for
the different nucleotides,25 and we can confidently assume
tj � t as well. Thus, Eq. �2� simplifies to

��E� = �0 + �1E +
2t2

E − �
, ��E� = �0 + �1E +

2t2

E − �
,

�7�

where �0�a0−��1, �0�b0−��1, a0� tGC+2��G+�C�,
b0� tAT+2��A+�T�, �1���G

2 +�C
2 � / t2, and �1���A

2 +�T
2� / t2.

Plugging Eq. �7� into Eq. �6� we obtain �E���

E4 + AE3 + BE2 + CE + D = 0, �8�

where A�w−2�, B��+2�+���−2w�, C��2w+−2���
+��, and D�4t4 /uv+�2�−�, and we have introduced the
auxiliary variables u��1−1, v��1−1, w=�0 /u+�0 /v,
=2t2��0+�0� /uv, �= t2�u−1+v−1�, and �= ��0�0

− �2t0 cos qa*�2� /uv. Therefore, though the renormalized
chain only includes two “atomic” species, the energy spec-
trum is composed of four bands, as one expects for the tet-
ranucleotide unit cell shown in Fig. 2�a�. This result properly
illustrates that the renormalized chain encompasses a full
quantum description of the Watson-Crick bps energetics. The
detailed structure of the energy spectrum will depend on the
adopted model parameters. By considering the realistic val-
ues listed in Table I we obtain the energy spectrum shown in
the left panel of Fig. 3 �for convenience the energy origin is

TABLE I. Parameters adopted for the effective Hamiltonian
considered in this work arranged by decreasing energies in order to
illustrate the different energy scales of relevance in the DNA
system.

Model Hamiltonian parameters �eV�

�G=7.77 �C=8.87

�A=8.25 �T=9.13

�=12.27

t=1.5

tGC=0.90 tAT=0.34

t0=0.15
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set at �G�. The location of the different allowed bands and
their respective bandwidths are listed in Table II. As we see,
the energy spectrum consists of four narrow bands separated
by wide gaps. The wide separation among the different al-
lowed bands stems from hybridization effects between the
nucleobase system and the sugar-phosphate backbone.38 We
note that the obtained bandwidths compare well with the
values reported for short �5–12 BP’s� polyG-polyC and
polyA-polyT chains from first-principles band structure cal-
culations �HOMO bandwidths �50–400 meV, LUMO
bandwidths �100–300 meV�.35,43 Assuming, as it is usual,
that each BP contributes one free charge carrier,44 the
HOMO band is centered at E=−0.423 eV, yielding a
HOMO-LUMO gap width �=6.79 eV. This figure occupies
an intermediate position between numerically obtained val-
ues for polyG-polyC chains �7.4–7.8 eV� �Ref. 45� and
photoemission spectroscopy measurements �4.5–5.0 eV�
performed in polyG-polyC and polyA-polyT chains.46

The information about the overall structure of the
energy spectrum obtained from the dispersion relation is
complemented by the density of states �DOS�, given by the
following expression:29

D�E�dE =
1

N
d�cos−1	1

2
tr�Pm�E��
 , �9�

which, according to Eq. �5�, can be readily expressed as

D�E� = −
m

N�1 − z2

dz

dE
. �10�

From the definition of the variables z, x, and y, and Eq.
�7�, one finally obtains

D�E� =
yu + xv − 2t2�x + y��E − ��−2

4t0
�xy�1 − xy�

. �11�

Due to the one-dimensional nature of the considered model,
the obtained DOS is characterized by a number of sharp
features �van Hove singularities� given by the conditions E
=�, E=�, and 4t0

2= �E−���E−��, which determine the al-
lowed band-edge positions. In addition, we also have a reso-
nant feature at E=�. This resonance is a characteristic sig-
nature of the sugar-phosphate subsystem, which is shown as
a dashed line in the left panel of Fig. 3.

The system transport properties are related to the localiza-
tion degree of the different states belonging to the spectrum.
The Lyapunov coefficient, defined by the expression47,48

��E� = lim
N→	

�N�E� = lim
N→	

1

2N
ln�trPNPN

† � , �12�

where P† denotes the Hermitian conjugate of P, provides the
growth ratio of the wave function for an eigenstate of energy
E along the system. Gaps in the energy spectrum are charac-
terized by maxima of �, whereas allowed bands correspond
to minima of �. In particular, when considering extended
states belonging to the allowed bands of periodic systems
one gets ��E�=0. In the case of exponentially localized
eigenstates this property is not fulfilled and the value of the
Lyapunov coefficient provides a measure of the localization
length � of the considered state through the relationship
��E�=�−1�E�.

Plugging the matrix elements given by Eq. �5� into Eq.
�12� we obtain

��E� = lim
m→	

1

4m
ln�2 + 4Um−1

2 �4x2y2 + �x − y�2�� . �13�

The length dependence of the logarithm appearing in Eq.
�13� is determined by the Chebyshev polynomials Um−1�z�,
which remain always bounded for E��. Accordingly, one
gets ��E�→0 in the thermodynamic limit, hence indicating
the extended nature of these eigenstates. This result is prop-
erly illustrated in the right panel of Fig. 3, where we clearly
appreciate the correlation between small Lyapunov coeffi-
cient values and the presence of allowed bands. We also note
the presence of a localized state corresponding to the reso-
nant state E=�. In this case, the product xy diverges in Eq.
�13�, so that we obtain ��E�→	 �i.e., ��E�→0�. The reso-
nant state E=� is determined by the backbone on-site ener-
gies, which, in turn, depend on environmental effects due to
solvation and hydration processes involving the cations and
the water shell �see Fig. 1�. Therefore, our simplified Hamil-
tonian model is able of including the existence of localized
states in the HOMO-LUMO gap stemming from environ-
mental effects, in agreement with previous results obtained
from detailed ab initio calculations.32,49 In this regard,
we note that the number of resonant localized states within
the gap region will be increased by properly relaxing the
condition � j �� in our treatment.

TABLE II. Locations of the allowed bands centers �Ei�,
bandwidhts �Wi�, and gap widths ��ij� in the energy spectrum
corresponding to the polyGACT-polyCTGA chain.

Band center �eV� Bandwidth �meV� Gap width �eV�

E1=−14.209 W1=269

E2=−0.423 W2=120 �12=13.591

E3= +6.440 W3=29 �=6.788

E4= +11.595 W4=177 �34=5.052

FIG. 3. �Color online� The band structure �left� and the
Lyapunov exponent as a function of the energy �right� for the peri-
odic polyGACT-polyCTGA chain derived from Eqs. �8� and �13�,
respectively, making use of the model parameters listed in Table I.
The origin of energy is set at �G. More details in the text.
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IV. ENERGY SPECTRA OF FIBONACCI APPROXIMANTS

Following the approach introduced in the previous section
the dispersion relations of a successive series of approxi-
mants can be obtained from the knowledge of the
corresponding global transfer matrices, respectively given
by Q�Q�Q�, Q�Q�Q�Q�Q�, and so on. For instance, for
the ���, �����, and �������� approximants, we
respectively obtain

2x�2xy − 1� − y = cos�3qa*� ,

4yx�4x2y − 4x − y� + 3x + 2y = cos�5qa*� ,

8yx�8yx�yx�2x2 − 1� − 3x2 + 1� + 11x2 + y2 − 2� − 12x2 − 4y2

+ 1 = cos�8qa*� . �14�

The corresponding spectra are shown in Fig. 4. By inspecting
this figure we see that the four bands originally present in the
energy spectrum of the polyGACT-polyCTGA chain become
progressively fragmented as we consider successive approxi-
mants. Thus, the two central bands in the energy spectrum of
the �� chain split into two subbands in the energy spectrum
of the ��� approximant, into three subbands in the energy
spectrum of the ����� approximant, and into five subbands
in the energy spectrum of the �������� approximant. As
we see, this fragmentation scheme follows the series �1, 2, 3,
5,…� subbands. In a similar way, we see that the edge bands
in the energy spectrum of the �� chain follow the fragmen-
tation scheme �1, 1, 2, 3,…� subbands. In both cases the
fragmentation scheme is described by the Fibonacci series
Fn= �1,1 ,2 ,3 ,5 ,8 , . . . �, which is obtained from the recur-
sion expression Fn+1=Fn+Fn−1, with F0=F1=1. Thus, the
total number of subbands composing the spectrum of a given
approximant can be expressed as 2F�−1+2F�−2=2F�, where
� is the number of Watson-Crick BP’s contained in the ap-
proximant unit cell. This kind of highly fragmented energy
spectrum is a typical feature of quasiperiodic systems5 and
gives rise to the presence of two different energy scales in
the DNA spectrum. On the one hand, we have a large energy
scale �within the range 5–14 eV� determined by the width of

the gaps among the main bands. On the other hand, due to
the progressive fragmentation of these main bands, an in-
creasing number of narrow gaps progressively appear in the
spectra of higher-order approximants. In this way, the emer-
gence of the quasiperiodic order naturally introduces a spe-
cific, small energy scale in the DNA electronic structure,
ranging from about 0.1–0.5 eV for the low-order �����
approximant to values well below 100 meV for higher-order
approximants. The presence of these small activation
energies in the electronic structure brings an additional
mechanism in order to explain the anomalous absorption fea-
ture observed at low �10–100 meV� energies in optical
conductivity spectra of biological DNA samples.50

What is the nature of the states belonging to this highly
fragmented spectra? From a physical viewpoint, the states
can be classified according to their transport properties
which, in turn, are determined by the spatial distribution of
the wave function amplitudes. Thus, conducting, crystalline
systems are described by periodic Bloch states, whereas in-
sulating systems are described by exponentially decaying
wave functions corresponding to localized states. For sys-
tems described in terms of Fibonacci on-site Hamiltonians it
has been rigorously proven that the energy spectrum is sin-
gularly continuous and the amplitudes of its eigenstates do
not tend to zero at infinity but are bounded below throughout
the system,51 yielding the value ��E�=0 in the thermody-
namic limit.47 This result also holds for the Fibonacci DNA
chain we are considering in this work. In fact, from Eq. �12�
we obtain

��E� = lim
m→	

1

6m
ln�2 + 4Um−1

2 P�x,y�� → 0, ∀ E � � ,

�15�

for the ��� approximant, where P�x ,y��1+2y�y−1�
+4xy�3xy+y−2�. For higher-order approximants similar ex-
pressions are obtained, each one characterized by a corre-
sponding P�x ,y� function multiplied by the bounded Cheby-
shev polynomial Um−1

2 . Nevertheless, the vanishing of the
Lyapunov exponent should not be naively interpreted as in-
dicating a Block-like nature for the electronic states. In
most quasiperiodic systems we have critical wave functions
whose amplitudes are roughly modulated by scaling expo-
nents � describing a power-law behavior of an envelope as
��n � ��n−nk�−�, so that a set of exponents �n �rather than a
single localization length parameter� is usually required to
properly characterize the nature of these eigenstates,52 al-
though one may reasonably expect their related transport
properties to be more similar to those corresponding to ex-
tended states than to localized ones.10–12 In Fig. 5 we illus-
trate the progressive fragmentation of the energy spectrum
around the energy value E�−0.4 eV for increasing-order Fi-
bonacci DNA approximants. As we can see, a self-similar,
nested structure, characteristic of the long-range quasiperi-
odic order present in Fibonacci systems, progressively ap-
pears in the Lyapunov coefficient overall structure as the
complexity of the corresponding unit cell is increased for
successive approximants.

FIG. 4. �Color online� The energy specta of successive approxi-
mants of the Fibonacci DNA chain, obtained from Eqs. �14�, are
compared to that corresponding to the polyGACT-polyCTGA chain.
The model parameters are listed in Table I.
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V. LANDAUER CONDUCTANCE AND TRANSMISSION
SPECTRA

In order to ascertain the intrinsic DNA electrical transport
properties, one must pay particular attention to the role of
contacts.53 On the one hand, transport experiments have
shown that chemical bonding between DNA and metal elec-
trodes is a prerequisite for achieving reproducible conductiv-
ity results.32,54–57 On the other hand, if the contact bonding is
too strong, we should consider the states belonging to the
coupled molecular-metallic system rather than those of the
molecular subsystem alone.58 Fortunately, in the DNA-metal
junction case, one can consider the weak-coupling limit.32,53

Accordingly, the effective Hamiltonian describing the ds-
DNA in between two metallic leads will be written as59,60

H = �
n=1

N

��̃ncn
†cn − t0cn

†cn+1 + H.c.� − ��c0
†c1 + cN+1

† cN + H.c.�

+ �
k=0

−	

��Mck
†ck − tMck

†ck+1 + H.c.�

+ �
k=N+1

+	

��Mck
†ck − tMck

†ck+1 + H.c.� , �16�

where cs
† �cs� is the creation �annihilation� operator for a

charge at the sth site in the chain. The first term describes the
charge carrier propagation through the DNA chain in terms
of the renormalized variables �̃n= ���E� ,��E�� and t0. The
second term describes the DNA-metal contacts, where �
measures the coupling strength between the leads and the
end nucleotides, and the last two terms describe the metallic
leads at both sides of the DNA chain, modeled as semi-
infinite one-dimensional chains of atoms with one orbital per
site, where �M is the on-site energy and tM is the hopping
term.

In the absence of any applied voltage the fraction of tun-
neling electrons transmitted through a DNA chain of length
N is given by the energy-dependent transmission coefficient
TN�E�, which is related to the the Landauer conductance

G�E�=G0TN�E�, where G0�2e2 /h�12 906−1 �−1 is the
conductance quantum. The transmission coefficient can be
obtained from knowledge of the lead dispersion relation
E=�M +2tM cos k and the matrix elements of the metal-

DNA-metal transfer matrix MN�E�=LNQ̄m−1L1, where the
contact matrices

L1 = 	2x − �

1 0

, LN = �−1	2y − 1

� 0



describe the coupling between the DNA and metallic leads in
terms of the coupling strength ��� / t0. For the periodic

polyGACT-polyCTGA chain Q̄=Q�Q�, and one gets

MN�E� = 	�−1�Um + Um−1� − 2yUm−1

2xUm−1 − ��Um−1 + Um−2�

 .

Making use of the relationship Um−1
2 −UmUm−2=1, it is easy

to check that det�MN�E��=1. The transmission coefficient is
then given by the relationship TN�E�=4 sin2 k /DN�E�,
where61

DN�E� = �M12 − M21 + �M11 − M22�cos k�2

+ �M11 + M22�2 sin2 k . �17�

Taking into account the relationship Um
2 +Um−1

2 −2zUmUm−1
=1, after some algebra one gets the following expression for
the Landauer conductance:

Gm�E� = G0�1 + �x − y�2Um−1
2

+ tM
2 �f��E,Um� − 2�x + y�Um−1 cos k�2

�E − E−��E+ − E� −1

,

�18�

where the auxiliary function f��E ,Um���−1�Um−1+Um�
+��Um−2+Um−1� describes contact effects53 and
E±=�M ±2tM define the allowed spectral window as deter-
mined by the metallic lead bandwidth. The term
�x−y�2Um−1

2 in Eq. �18� accounts for the chemical diversity

FIG. 5. �Color online� Lyapunov coefficient
as a function of the energy for successive ap-
proximants of the Fibonacci DNA chain contain-
ing N=6 BP’s �three �� unit cells, solid gray�,
N=12 BP’s �four ��� unit cells, dotted curve�,
and N=20 BP’s �four ����� unit cells, solid
black�.
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of a polyGACT-polyCTGA chain as compared to either
polyG-polyC or polyA-polyT chains, and its main physical
effect is to reduce the overall conductance of the former with
respect to that obtained for the simpler ones. In Fig. 6, the
energy dependence of the transmission coefficient is shown
as a function of the injected charges energy at zero bias. In
the insets the transmission band profile is magnified. As we
see, the full transmission condition is fulfilled for all four
bands, indicating the extended nature of their eigenstates. By
taking y=x in Eq. �18� we can obtain the transmission spec-
tra for the polyG-polyC chain �the expression for polyA-
polyT is then obtained by simply replacing x→y�. In this
way, we can assign the central bands in the energy spectrum
to GC BP’s, while the edge bands in the spectrum are related
to the AT BP’s. Since the central bands are closer to the
adopted Fermi energy, we conclude that the charge transfer
will be dominated by the HOMO band in the considered
system, so that it will exhibit a p-type behavior.

The Landauer conductance of the DNA Fibonacci ap-
proximants is obtained in an analogous way, and it can be
expressed in the general form

Gm�E� = G0�1 + C�x,y�Um−1
2

+ tM
2 �F��E,Um−1� − Q�x,y�Um−1 cos k�2

�E − E−��E+ − E� −1

,

�19�

where the auxiliary functions F�, C, and Q are characteristic
of each approximant. In order to understand the intrinsic
transport properties of the Fibonacci DNA chains we will
first focus on the simpler case �=1, hence neglecting contact
effects as a first approximation.62 In that case, Eq. �19� can
be expressed as

Gm�E� = G0�1 + �C�x,y�

+ 4tM
2 �F�x,y� − Q�x,y�cos k�2

�E − E−��E+ − E� �Um−1
2 −1

. �20�

We note that at the allowed band edges �which according
to the dispersion relation are determined from the condition
cos�m
�= ±1� we get Um−1=0 and the full transmission con-
dition Tm=1 is satisfied. In this way, the transmission spec-
trum is characterized by a series of G0 conductance peaks,
hence confirming the extended nature of the eigenstates be-
longing to the different allowed bands in the Fibonacci ap-
proximants. On the other hand, as soon as contact effects are
explicitly included in Eq. �19�, the condition Um−1=0 �which
implies Um=−Um−2=1� leads to

Gm�E� = G0�1 + 	1 − �2

�

2 tM

2

�E − E−��E+ − E�−1

� G0,

�21�

so that the transmission peaks do not reach in general the full
transmission condition. We remark that this transmission
degradation is then a direct consequence of contact effects,
masking the fact that the electronic eigenstates are actually
extended ones �i.e, ��E�=0�. This result properly illustrates
the inherent difficulty in extracting reliable information con-
cerning the nature of the conducting states from transport
measurements performed in DNA chains.

VI. CONCLUSIONS

First-principles calculations are an excellent tool for a
complete characterization of the structural and electronic
properties of different molecules. However, the complexity
of double-stranded DNA molecule makes this method very
time consuming and most studies have been restricted to
consideration of short DNA oligomers containing 4–11 BP’s.
Consequently, model Hamiltonian approaches offer an effi-
cient complementary way to study electronic properties and
charge transport in DNA chains.63,64 In this work we have
introduced a tight-binding model able of describing both pe-
riodic and aperiodic dsDNA chains in terms of a renormal-
ized effective lattice model entailing substantial physico-
chemical information concerning nucleotide interactions and
backbone effects. In this way, our approach provides a real-
istic description of the dsDNA electronic structure, fully de-
scribing its basic energetics in terms of just three variables
�i.e., � ,� , t0� in a unified way. The reliability of this model
has been tested by considering a periodic polyGACT-
polyCTGA chain, arriving at the following main results: �i�
the obtained bandwidths compare well with those reported
from first-principles band structure calculations,35,43 �ii� the
obtained HOMO-LUMO band gap compares reasonably well
with the values reported from both numerical and experi-
mental studies of synthetic DNA chains,45,46 and �iii� the ex-
istence of localized states in the HOMO-LUMO gap stem-
ming from environmental effects is also predicted, in
agreement with previous detailed ab initio calculations.32,49

Accordingly, we conclude that our proposed effective Hamil-
tonian model provides a useful approach to describe the main
electronic structure features of double-stranded, synthetic
DNA molecules.

The study of the polyGACT-polyCTGA molecule paves
the way towards the study of more complex DNA molecules

FIG. 6. �Color online� Transmission coefficient as a function of
the energy for a periodic polyGACT-polyCTGA chain with N=4
BP’s.
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of biological interest, differing in size, chemical complexity,
and the kind of structural order. From general principles one
would expect that the nonperiodic nature of their nucleotide
sequence distribution will favor localization of charge carri-
ers in biological nucleic acids, reducing the charge transfer
rate due to backscattering effects.65 Nevertheless, this sce-
nario must be refined in order to take into account correlation
effects among nucleotides reported in biological DNA
samples, since these correlations can enhance charge trans-
port via resonant effects.16,22,66,67 As a suitable example in
this work we present a detailed analytical study of the elec-
tronic structure and Landauer conductance of short double-
stranded DNA chains where the Watson-Crick BP’s are ar-
ranged according to the Fibonacci series. To the best of our
knowledge these sort of Fibonacci dsDNA molecules have
not been previously considered in the literature, though I
understand that they may be easily synthesized with current
biotechnological techniques. From our study we conclude
that the emergence of quasiperiodic order naturally intro-
duces a specific, small energy scale in the DNA electronic
structure, ranging from about 0.1–0.5 eV for the low-order
����� approximant to values well below 100 meV for
higher-order approximants. The presence of these small ac-
tivation energies in the electronic structure, along with the
presence of a conductance peak series in the transmission
spectra, suggests the possible presence of some specific fea-
tures in their related transport properties, which may be
eventually related to the anomalous behavior observed in

optical conductivity spectra of biological DNA samples.50

Certainly, the possible observation of these small-energy-
scale features crucially depends on the robustness of the
electronic structure finer details against thermal effects. Tak-
ing the amount kBT�26 meV as a suitable reference value
for thermal energy at room temperature, we realize that our
description should be restricted to the low-temperature re-
gime, especially in the case of higher-order Fibonacci DNA
approximants. In addition, when temperature effects are ex-
plicitly taken into account a broad collection of additional
transport mechanisms can be present, such as activated hole
transport68 �including variable-range hopping�,69 phonon-
assisted polaron hopping70–72 �including large molecular ro-
tations effects,73 as well as disorder effects related to both the
base sequence and the counterions distribution�,74 or ionic
conduction due to the counterions.70 Accordingly, the exis-
tence of extended states should not be considered as a pre-
requisite for efficient transport along DNA at relatively high
temperatures.
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