PERSIMMON
A VISUAL DATAFLOW LANGUAGE FOR MACHINE LEARNING

Álvaro Bermejo García

Supervised by Manuel Freire Moran
Cosupervised by Pablo Moreno Ger
Abstract

Persimmon is a visual programming interface that leverages scikit-learn to provide a drag and drop interface for developing Machine Learning and Data Mining pipelines. It is based on the dataflow programming principles, giving the user a functional visual language with a type safety system that checks connections at write time, non-strict evaluation, task parallelization, and execution visualization. It has been evaluated by participants on a three-task form, overall receiving good reviews, being praised by the use of colors to indicate types, consistent design, easy to navigate and shallow learning curve.

Keywords: Machine Learning, Data Mining, Visual Programming, Dataflow Programming, Functional Programming.
Contents

1. Introducción
 - Descripción ... 7
 - Motivación ... 9
 - Objetivos ... 9
 - Que no es el proyecto 10
 - Estructura de la memoria 10

2. Introduction
 - Description ... 11
 - Motivation ... 12
 - Objectives .. 13
 - What the project is not 14
 - Project Structure 14

3. Focus .. 15

4. Literature Review 16
 - On Machine Learning 16
 - On Dataflow Programming 17
 - On Visual Programming 18
 - State of the art 18

5. Workflows .. 21
 - Simple .. 21
 - Regular .. 21
 - Complex ... 22

6. Milestones .. 23
 - Tree .. 23
 - Gantt Chart .. 24
 - Development Methodology 25
 - Source Code ... 25

7. Risk Analysis ... 27
 - Stakeholders ... 27
 - Prevention & Mitigation 27
8. **Interface Design**
 - Sketches .. 29
 - Colour Palette ... 31
 - Typography .. 31

9. **Implementation**
 - First Iteration ... 32
 - Second Iteration 33
 - Third Iteration ... 33
 - Model View Controller 35
 - Making a Connection 36
 - Visualizing the Data Flow 38
 - Binary Distribution 39

10. **Type Checking**
 - Gradual Typing .. 41
 - Write Time .. 41
 - The two languages 41
 - Actual Types .. 42
 - Intermediate Representation 43

11. **Evaluation**
 - Method .. 45
 - Proposed Tasks ... 45
 - Evaluation Results 46

12. **Conclusiones**
 - Revisión de Objetivos 49
 - Retrospectiva .. 50
 - Conclusión .. 50
 - Trabajo Futuro .. 51

13. **Postmortem**
 - Objectives Review 52
 - Retrospective .. 53
 - Conclusion ... 53
 - Future Work ... 54

Bibliography

A. **Package Organization**
 - Backend .. 59
 - View ... 59
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. How was this document made?</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>60</td>
</tr>
<tr>
<td>Diagrams</td>
<td>60</td>
</tr>
<tr>
<td>References</td>
<td>60</td>
</tr>
<tr>
<td>C. Persimmon Evaluation</td>
<td>61</td>
</tr>
<tr>
<td>Preparation</td>
<td>61</td>
</tr>
<tr>
<td>Previous Questions</td>
<td>61</td>
</tr>
<tr>
<td>Tasks</td>
<td>61</td>
</tr>
<tr>
<td>Additional Feedback</td>
<td>62</td>
</tr>
</tbody>
</table>
List of Figures

4.1. Graph Execution algorithm .. 17
4.2. Azure ML Studio web interface ... 19
4.3. Unreal Engine 4 Blueprint system ... 20
5.1. Just validation of the model .. 21
5.2. Prediction using the whole dataset 21
5.3. Adjustment of hyper parameters .. 22
6.1. Milestones Tree ... 23
6.2. Gantt Diagram of the project development 24
8.1. Sketch of the first interface .. 29
8.2. Sketch of the second interface ... 30
8.3. Types colors .. 31
9.1. Implementation of the first interface 32
9.2. Second iteration implementation ... 34
9.3. Third iteration interface showing a warning 35
9.4. Widget Tree .. 36
9.5. Connections between elements ... 37
9.6. Connection modification handling 38
10.1. Type hierarchy .. 43
10.2. IR definition on Haskell ... 44
11.1. Participants familiarity ... 46
11.2. Task score per task per participant 47
12.1. Persimmon en el extranjero .. 50
13.1. Chinese machine learning forum 53
A.1. Persimmon package hierarchy ... 59
1. Introducción

En este capítulo se presenta Persimmon, así como los objetivos y las motivaciones del proyecto. También se incluye una sección sobre temas relaciones con el proyecto pero que quedan fuera del ámbito del mismo. Finalmente se encuentra una breve revisión de la estructura de la memoria.

Descripción

El campo de Data Science ha visto un incremento exponencial de mercado en los últimos años, con predicciones vaticinando que hasta un millón de científicos de datos serán necesarios para 2018 (Rajpurohit, 2016). Los científicos de datos se encuentran en una situación excepcional, para el Harvard Business Review es “the sexiest job of the 21st century” (Davenport and Patil, 2012). Y sin embargo, a pesar de todo esto faltan profesionales que puedan cubrir estos puestos, la disciplina es inherente multidisciplinaria (Taylor, 2016), incluyendo conocimiento de estadísticas, matemáticas, programación y del dominio. Esto hace que el camino para convertirse en un experto sea largo y complejo, lo cual desemboca en las llamadas “cazas de unicornios” (Harris and Eitel-Porter, 2015) y (Press, 2015).

Herramientas como scikit-learn¹, Weka o Tableau permiten un acceso simplificado y de alto nivel a las herramientas necesarias para hacer Data Science, suavizando la curva de aprendizaje y aumentando la oferta de profesionales capaces de desarrollar análisis de datos.

Estas herramientas por otro lado requieren programación, se centran en tareas de limpieza y pre-procesamiento de datos, o proveen una interfaz muy limitada.

Persimmon pretende proporcionar una interfaz visual para scikit-learn, dando la habilidad de crear complejos procesos de análisis sin escribir una sola línea de código, dando al usuario una expresividad comparable a la programación tradicional a la vez que se le ayuda mediante estímulos visuales.

Para poder conseguir esto el proyecto explora las siguientes disciplinas,

¹Scikit-learn es una librería de Python que trae una multitud de algoritmos de aprendizaje automático a una API que permite el uso y comparación del os mismos en un alto nivel de abstracción.
• Dataflow Programming. Este paradigma representa programas como grafos acíclicos dirigidos, iniciado en los 60 en el MIT y los laboratorios Bell (Kelly et al., 1961). Modela los programas como un flujo de datos que pasa por una serie de instrucciones en vez de una serie de instrucciones que operan en unos datos externos, i.e. los datos fluyen por las instrucciones, no al revés (de ahí el nombre de dataflow). Esto produce programas paralelos por naturaleza, más cercanos al paradigma funcional que al imperativo y a la arquitectura Von Neumann (sección 15, Backus, 1978).

• Programación Visual. La elección por naturaleza para representar un lenguaje de dataflow es una interfaz visual, pudiendo representar el grafo de forma clara y precisa (Shu, 1988). Mejorar más avanzadas que se pueden implementar gracias a la presentación visual incluyen comprobación de tipos en tiempo de escritura, indicador de ejecución (señalando que funciones se están ejecutando en el momento), etc.

• Experiencia del Usuario. El proyecto se nutre de la experiencia de los participantes en los experimentos con el prototipo. La interfaz debe indicar el camino para realizar la acción deseada por el usuario, dando facilidades para reducir la dificultad de uso.

• Ingeniería del Software. Comunicación con múltiples librerías y frameworks, definición de interfaces y organización del código mediante tecnicas de programación orientada a objetos y modulos.

• Aprendizaje Automático. Aunque no se implementan los algoritmos en sí, es necesario extenso conocimiento de la implementación, ya que hay que proporcionar un punto de acceso a los hyperparametros y otros tipos de configuración que permite sklearn (Varoquaux et al., 2015).

• Transformación de Datos. Algunas precondiciones sobre los datos han de ser asumidas o el usuario ha de ser provisto con las herramientas necesarias para realizar las transformaciones necesarias.

• Compiladores. El grafo visual que el usuario dibuja tiene que ser compilado a código fuente en Python (Transcompilación).

La hipótesis del proyecto es que la representación visual del programa y los conceptos asociados puede ayudar con el aprendizaje y uso de técnicas de aprendizaje automático, así como acelerar el trabajo de exploración temprana típico del análisis de datos.

Esta hipótesis converge con el espíritu de sklearn (Varoquaux et al., 2015, pp29) en el hecho de que intenta simplificar el uso y acceso a herramientas de aprendizaje automático.

Esta estrategia parece haber funcionado para sklearn, convirtiéndose en uno de los proyectos de aprendizaje automático de código libre más importantes, con más de 16000 estrellas en Github, siendo usado por compañías como Spotify, Facebook o Evernote (scikit-learn, 2016).
Motivación

Tras cursar Aprendizaje Automático el año pasado tuve una beca en una empresa de trading algorítmico como parte del equipo de quants\(^2\).

Allí mi principal responsabilidad era reescribir parte de las herramientas de MATLAB a Python, durante ese proceso observé como algunos de los integrantes del equipo experimentaban dificultades con el cambio de lenguaje.

Todos los integrantes venían de disciplinas más “puras” (Física, Matemática, Estadística, Ingeniería Aeroespacial, etc..).

Los expertos de estos campos están acostumbrados a trabajar con lenguajes de dominio específico como MATLAB, R, Simulink o Julia, y el cambio a un lenguaje de uso general trae dificultades como la programación orientada a objetos, complejas estructuras de datos, optimización o tipos más “fuertes”.

La situación es aún mas difícil para aquellos que comienzan el aprendizaje, ya que no solo tienen que lidiar con la barrera de la programación, sino que además tienen que superar la dificultad de los algoritmos en sí.

Objetivos

Estudio Viabilidad: El proyecto tiene que explorar el espacio de posibles soluciones visuales de aprendizaje automático, evaluando distintas estrategias en el front y backend de la aplicación.

Diseño y Usabilidad: El sistema ha de ser diseñado acorde a los requerimientos, tanto en términos de hacer sencillo el progreso a través de milestones, como produciendo software usable en cada release. En todos los casos se debe balancear la complejidad contra la expresividad del sistema, proponiendo al usuario una herramienta potente sin producir una interface compleja.

Evaluación: El sistema será evaluado por participantes que pertenecen a la audiencia potencial del software, un formulario debe ser preparado detallando las actividades que tendrán que realizar, así como serán tratados sus datos.

Herramienta de aprendizaje: El software debe ayudar con la barrera de programación, facilitando el aprendizaje de Machine Learning, ayudando al estudiante a centrarse en las conexiones, intuiciones y bases matemáticas de los algoritmos y no en los detalles de implementación y peculiaridades del lenguaje.

Acelerar análisis exploratorio: Proveyendo una interfaz visual fácil de usar con la capacidad de arrastrar y soltar el usuario puede provar una plétera de algoritmos, ajustando los hyperparámetros acorde a la evaluación sin escribir una sola línea de código.

\(^2\)Analista Cuantitativo, en inglés Quantitative Analyst, abreviado Quant.
Implementación: Hay ciertos requerimientos no-funcionales que deben ser cumplidos como el proyecto ocurriendo en las principales plataformas de escritorio, ser distribuido en un ejecutable fácil de instalar para facilitar la evaluación, tener un framerate que permita el uso prolongado, y hacer uso de múltiples hilos de ejecución para que la interfaz se mantenga usable mientras el grafo se ejecuta.

Que no es el proyecto

El proyecto no lidia con los siguientes temas:

- Procesado de datos genéricos. Aunque hay algunas funciones de manipulación de datos que son necesarios y/o están incluidas en sklearn, la manipulación de datos está fuera del ámbito del proyecto. Persimmon trabaja con datos ya limpios. Esto se hace porque estas funciones son difíciles de presentar de manera visual, requiriendo interfaces especiales para ser útiles.
- Visualización de Datos. Ya que esto suele requerir código específico para cada caso, y depende de las características concretas de los datos a visualizar.
- Programación Visual de uso general. Ya que centrando el sistema en el aprendizaje automático permite hacer asunciones sobre los posibles programas que se pueden crear, permitiendo características como simplificación de tipos (capítulo type) o eliminar la necesidad de especificar el orden de ejecución (capítulo literature review).

Estructura de la memoria

La estructura de la memoria sigue la cronología del proyecto. Iniciando con la revisión de la literatura académica y la definición de workflow (proceso). En el siguiente capítulo las milestones del proyecto son explicadas, incluyendo un diagrama de Gantt. Siguiendo se encuentra el capítulo de análisis de riesgos, con una tabla de riesgos así como una review de la metodología de desarrollo.

Hacia la mitad de la memoria en el capítulo de interfaz se expone las razones que llevan al actual aspecto de la interfaz. El capítulo de implementación explica el proceso iterativo del proyecto, centrándose en problemas complejos e interesante que el proyecto ha tenido que superar. En la sección de type checking múltiples conceptos teóricos son introducidos, sobretodo teoría de lenguajes funcionales, compiladores, teoría de tipos y la representación inmediata.

La última sección antes del post-mortem explica el proceso de evaluación y los resultados. En el post-mortem se exponen las conclusiones del proyecto, así como posible áreas de trabajo futuro.
2. Introduction

On this chapter Persimmon is introduced, along its main objectives and motivations. It also includes a section about topics that are related but beyond the scope of this project. Finally, it includes an overview of the project report structure.

Description

Data Science has seen exponential growth in the market on recent years, with some predictions stating that one million data scientists will be needed by 2018 (Rajpurohit, 2016). Data scientists find themselves on a golden age, for the Harvard Business Review it is the sexiest job of the 21st century (Davenport and Patil, 2012). Despite all the hype, there is a shortage of skilled data scientists, the field is inherently multidisciplinary (Taylor, 2016), as coding, statistics and domain knowledge are required, making the path to mastery long and complex, leading to the so called Unicorn hunts (Harris and Eitel-Porter, 2015) and (Press, 2015).

Tools such as scikit-learn\(^1\), Weka or Tableau provide a very high level access to some of the required tools data scientists require, easing the learning curve and widening the pool of available data scientists. However these tools either require coding, focus on just preprocessing tasks (cleaning of the data) or provide a very limited interface.

Persimmon aims to provide a visual interface for scikit-learn, giving the ability to create pipelines without a single line of code, thus giving most of the power of hand coding the pipelines with a helpful visual representation.

In order to accomplish this the project explores the following topics,

- Dataflow Programming. This paradigm presents programs as a directed acyclic graph, pioneered on the 60 at MIT and Bell labs (Kelly et al., 1961). It models programs as a stream of data that is run through a pipeline of instructions rather than a set of instructions that operates on external data, i.e. the instructions are flowing through data, not the other way around. This results in parallel programs by default, closer to the functional paradigm than imperative programming and the Von Neumann architecture, as mentioned in functional programming seminal paper (Backus, 1978).

\(^1\)Scikit-learn is a python library that aims to bring machine learning to a more general public, by providing a high-level API that allows the ease of use and interchange of different estimators.
• **Visual Programming.** The natural fit for a dataflow representation is a visual interface, as we can present the graph visually (Shu, 1988). Further improvements include type-checking at write time, i.e. when connecting the blocks only allow for connections that are type safe.

• **User Experience.** The project is driven by the users’ feedback and engagement with the prototype. The interface needs to convey the intended course of action, and give the user hints in order to ease the difficulty curve.

• **Software Engineering.** Interfacing with previous existing code, laying well-defined interfaces and organizing code though object-oriented techniques.

• **Machine Learning.** Although there is no writing implementation of new algorithms extensive knowledge of current implementations is needed in order to surface all the available options, as sklearn provides many ways to modify their configuration through parameters (Varoquaux et al., 2015).

• **Data Wrangling.** Some preconditions about the data have to be assumed or the user has to be provided with the tools to perform the transformation.

• **Compilers.** The graphical form of a workflow involving several steps is compiled down to Python source code (Transcompilation).

The hypothesis of the project is that the visual representation of the workflow and the associated concepts can help to both learn and use Machine Learning techniques and to accelerate early exploratory datascience work.

This hypothesis converges with the spirit of sklearn, (see Varoquaux et al., 2015, pp29) that also tries to bring the Machine Learning techniques out of PhD dissertations and niche libraries into the mainstream, providing high-level, easy to use access to those resources. This strategy seems to have worked for sklearn, becoming one of the most important open source machine learning libraries in the process, with over 16000 stars on Github, and is being used on companies such as Spotify, Facebook or Evernote (scikit-learn, 2016).

Motivation

After learning about Machine Learning at university last year I got an internship on an algorithmic trading company as part of the quant team.

My main task was helping moving the existing codebase from MATLAB to Python, and during that process I observed how some of my co-workers were struggling with the language switch.

They all came from backgrounds such as Maths, Physics, Electric Engineering, Statistics or Aerospace Engineering. But there were no Computer Scientists even though their...
role as quants requires, apart from maths and stats knowledge, a very good level of programming expertise.

Experts from these fields tend to have weaker programming skills, as they mostly work with scientific computing oriented languages such as MATLAB, R or Julia, and moving to a general purpose language such as Python involves learning about a plethora of additional topics, such as Object Oriented Programming, custom complex Data structures or cache optimization.

The situation is even more complex for newcomers to Machine Learning, as they not only have to deal with the programming barrier but also have to overcome the difficulties of learning the algorithms themselves.

Objectives

Feasibility: The project has to explore the space of possible solutions on visual machine learning approaches, trying different strategies for both the front and backend of the application (Flow based programming, Dataflow programming, etc).

Design and Usability: The system has to be designed in accordance to requirements, both in terms of making it easy to progress through the milestones, as well as producing usable software at each stage. In all cases it must balance complexity against expressivity, trying to provide the user with a powerful tool while avoiding complex and unusable interface.

Evaluation: The software will be evaluated by participants that belong to the intended audience of the system, a form must be prepared detailing the task they will have to perform, as well as how their data will be treated.

Learning Tool: The software will help both with the programming barrier, easing the learning curve of Machine Learning as to allow the learner to focus on the connections, intuitions and mathematical basis of the algorithms and not on the implementation details and the quirks of the language.

Faster Exploratory Work: By providing an easy to use, drag and drop interface the user can try a plethora of different estimators and adjusting the hyper-parameters as they see fit faster, and without writing a single line of code.

Implementation: There are some non-functional requirements, such as the project running on the desktop platform, being able to pack it into an executable (to make evaluation easier for participants), have a framerate good enough for pleasant use (minimum 30 FPS), or support multithreading (as to not block the main/UI thread from running when executing the backend),
What the project is not

The project is not concerned with the following:

- General Data Cleaning/Wrangling. Although there is some data manipulation that is necessary and included on sklearn it is outside the scope of the project, Persimmon only works with clean data. This is done because it is very hard to translate code-based data manipulation into a visual representation.
- Data Visualization. Since this kind of work is very hard to represent without requiring explicit coding on a case by case basis, as it is highly dependent on the characteristics of the data to visualize.
- General Purpose Visual Programming. Since focusing on Machine Learning allows Persimmon to make assumptions about the possible programs that enable features such as type simplification (check type chapter) or removing explicit flow management (more on the literature review chapter).

Project Structure

The project structure follows closely the development timeline of the system. Firstly the literature review is introduced. On the following chapter the project milestones are explained, including a Gantt chart. Following is the risk analysis table as well as the development methodology.

The implementation chapter explains the iterative process on each of the iterations of the project, some interesting technical problems, and the immediate representation of Persimmon.

After this, the important concept of workflows is explained, and the interface design, including the sketches or the color palette. The type checking sections introduces a lot of theory from functional programming and type theory. The final section before the post-mortem explains the evaluation process and results. On the final post mortem sections the conclusions of the project are laid down, as well a recap of what went wrong, what went right, what was achieved, and the potential future improvements.
3. Focus

Here is where we thought about contacting the “e-learning UCM” research group at Complutense University because we saw an opportunity to bring the power of the data-science to the educational world, in this case via the educative games.

We thought this would be a good stress test for the software, and giving investigators that may not be datascience experts the ability to measure if serious games were achieving their purposes, meaning if they are really helping to teach their users what they are supposed to.

It was an obvious decision to make it Open Source, many of the tools we use are Open source, and it was the ability to engage with them the reason that we have become Computer Scientist.

This helps many educational games do not have a big budget and in this way our program would be accessible to all of them and they can even tweak some parts of the software if they really need to.

Here is where we started thinking about which technology to use and Python was the obvious choice in order to keep all the project on the same language.

So after looking for several Python UI libraries kivy seemed the most appropriate UI framework.
4. Literature Review

On this chapter the main sources used for the project are explained as well as some of the learning needed in order to build the project.

On Machine Learning

Although the project aims to provide a very high-level tool for machine learning without needing to get too deep into the algorithms, it is necessary to understand the library that is used for performing the actual machine learning (from here onwards referred as ml).

While from the conception of the project python was set as the main language, a comparison between ml libraries was done in order to evaluate scikit-learn against the competitors. There comparison over different solutions (Ryan, 2016), but they mostly look at deep learning frameworks. In fact, while deep learning is going through a golden age right now (no doubt helped by the push from companies such as Google or Facebook) it is a bleeding edge field (Gschwind, 2017). Neural networks with many layers and complex connections between them are also very difficult to visually represent compared to traditional statistical methods that can be represented as functions more easily, and whole frameworks are dedicated just to represent them such as Tensorflow (Abadi et al., 2016).

On the other hand, traditional machine learning libraries are either embedded on purpose-specific languages (such as R, Matlab, Julia) or have less users than others (Torch has only 7k Github starts).

And finally, cluster-oriented computing frameworks like Spark or Hadoop are usually in compiled languages like Java or C++ for performance reasons.

Persimmon main tool is scikit-learn (Varoquaux et al., 2015), scikit-learn (also known as sklearn) is based on Numpy (a n-dimensional array for Python (Walt et al., 2011)) and scipy (a scientific computing framework (Jones et al., 2014)). Persimmon also uses pandas (McKinney and others, 2010) for input and output handling.

Others papers related to the pitfalls of machine learning that proved useful when analyzing workflows were (Hughes, 1968), (Khabaza, 2005).
On Dataflow Programming

After reviewing dataflow seminal paper Kelly et al. (1961), and Sousa (2012) it was clear the fundamental step to have a working system was writing a compilation algorithm from the visual representation to python code.

There are different ways to implement dataflow programming compilers, for now let’s just consider the language representation as formed by blocks that have pins. Pins on the left side of a block are called input pins and each must come from a single output pin. Pins on the right side are called output pins and one can be connected to multiple input pins.

This results in what is effectively a directed acyclic graph, in order to compile and run the program (actually it is theoretically possible to have multiple parallel programs on the same blackboard) the graph has to be explored, checking the dependencies of each block, executing them if necessary, executing the function and adding the next blocks to be executed until there is no block left to be executed.

Require: G is a Directed Acyclic Graph that does not break type safety on all the relationships.

```python
1: function execute(G : Graph)  
2:    queue ← Queue()  
3:    seen ← Map()  
4:    queue.put(G.get_input_blocks())  ▷ We can start in a random vertex  
5:    while ~queue.empty() do  
6:      queue, seen ← EXPLORE(queue.get(), queue, seen)  
7:  
8: function EXPLORE(current : Vertex, queue : Queue, seen : Map) → Queue, Map  
9:    for all in_pin ∈ current.get_in_pins() do  
10:      corresponding ← in_pin.origin.uid  
11:      if ~seen.has(corresponding) then  
12:        dependency ← corresponding.block  
13:        if dependency ∈ queue then  ▷ Remove if already in queue  
14:          queue.remove(dependency)  
15:        queue, seen ← EXPLORE(dependency, queue, seen)  
16:        in_pin.value ← seen.get(corresponding)  
17:      current.function()  ▷ function uses in_pins and sets out_pins  
18:    for all out_pin ∈ current.get_out_pins() do  
19:      seen.put(out_pin, out_pin.value)  
20:    queue.add(pin.destinations)  
21:  return queue, seen
```

The algorithm looks each input pin on the block. If the corresponding value has already been computed (i.e. is already on a hashtable) it is assigned, else that block is processed first and then the execution of the current block resumes. Then the function inside the
block is executed and after that the value of each output pin is saved on the hashtable.

There is an alternative way of doing the compilation without needing to check dependencies when compiling/executing. Through a topological sort on the graph the graph can be processed “forward only”, no recursive step is needed, both approaches are $O(N)$, more closely they are $O(n \times m)$ where n is the number of blocks and m the number of pins.

On Visual Programming

For designing the interface many notes were taken from Shu (1988), but most importantly from the blueprint system (Shah, 2014) and Azure ML studio web interface (Barga et al., 2015), all these influences are discussed on the state of the art section, and the interface design itself along with the sketches can be seen on the Interface Design chapter.

State of the art

Before implementing the system it was necessary to look at existing solutions on the field of visual programming and visual Machine Learning for inspiration and avoiding common pitfalls.

Microsoft Azure ML Studio (Barga et al., 2015) is one of the most direct inspirations for this project; it is a Microsoft cloud-based platform for creating predictive analytic solutions on data using a drag and drop interface.

There is plenty to like, lots of different pre-processing steps, multitude of estimators, runs on the cloud, and a web interface that runs on any platform. However, some of these features are also shortcomings, the web interface feels basic, especially on the classifiers parameters view, lack of native support means that dragging and dropping do not feel as smooth as they should. Cloud support is very good, as it integrates with the rest of Microsoft’s Azure platform, but for sensitive data such as financial or medical records a self hosted version is a must.

The variety of algorithms is interesting, but the limited ability to extend them is a shortcoming, azure is written on compiled languages (Ericsson et al., 2017), unlike most ml that is written on either R or Python (Puget, 2017), and running custom code is very limited, as scripts are treated as black boxes. This in turns severely handicaps the extensibility of the given primitives in any meaningful way.

Weka (Hall et al., 2009) is a popular machine learning suite, written in Java and developed at the University of Waikato. It provides both a command line interface and a graphical interface.
However it is starting to show its age, the interface feels dated and the composition of algorithms through graphical means is very restricted. Because it is written on Java it also means that it need the JVM\(^1\), which is a bit of a disadvantage, especially in production servers where dependencies bring a long and arduous process of review and approval (Zmud, 1980).

Epic’s Unreal Engine 4 (Shah, 2014) introduced Blueprints as an alternative to C++ programming. It represents all the programming structures as blocks that can be connected, for example an “and” is a block that takes to inputs and returns one output. Because it provides what is essentially a general-purpose programming language it has constructs to represent state, because of this it also needs an explicit flow mechanism, meaning that blocks do not only need to be connected through data but also by execution order, this is necessary because the order in which side-effects are performed is important, and many procedures do not return meaningful values. With this knowledge, it is clear that in order to not have an explicit flow line the visual language represented must be pure, constraining side effects to either the start or the end of a pipeline (McBride and Paterson, 2008).

\(^{1}\)The Java Virtual Machine is the underlying platform where the Java language is usually run on top of. It provides a single platform in which is abstracted of the underlying hardware architecture at the cost of paying some performance overhead.
Blueprints provides an intuitive interface, when one cable is dragged from a block and a prompt appears with only the blocks that make sense to be connected to the previous block. Another example is how different types are represented by different colors in both pins and cables, making it easier to predict whether a connection makes sense or not without even trying to create it.

These small details improve the user experience, making it faster and easier to use.
5. Workflows

A workflow in the context of this project refers to the typical ML exploratory work analysis, i.e. the pipelines that are used early on the project when it is still not known what strategies will work best for the given data.

This concept is generalization of sklearn pipelines.

Simple

The simplest workflows are those that involve no pre-processing, no adjustment, and just either test how good the model works (validate) or predict using both the train file and another file without class feature.

![Figure 5.1. Just validation of the model](image1)

![Figure 5.2. Prediction using the whole dataset](image2)

Regular

A more usual workflow involves also tunning the hyper-parameters of the selected hyper-parameters, this involves making a grid of the possible hyper-parameters and trying all
of them, resulting in finding the best possible value.

```
Estimator → Adjustment → Validation → Prediction → .CSV
```

Figure 5.3.: Adjustment of hyper parameters

Complex

More complex workflows involve pre-processing, or automating multiple classifiers hyper-parameter tuning at the same time through the use of pipelines, this varies widely on a case by case basis, and can often involve data cleaning, feature engineering (such as combining two features into one) or dimensionality reduction (like PCA).

However, there are even further examples of pipelines where the whole process is automated to the maximum, even going as far as identifying the suitable data features, selecting classifiers for bagging, boosting and other meta-classifiers, etc... (Thakur, 2016).

It should be noted that this kind of workflow is outside the scope of the project, as this is far away from exploratory work, and either requires manual data cleaning anyway or an extremely complex pipeline.

In fact, this kind of use case would result unwieldy and messy on a visual form, visual programming gets too bloated when representing programs that are too complex. On Dalke (2003) some workarounds are proposed, such as modules, different shapes for different kinds of blocks, etc... But even with these techniques visual programming languages never truly fulfilled their promises and gained mainstream adoption (Simões, 2015).

However, visual languages managed to become relevant in small niches such as PLCs design (Minas and Frey, 2002) or music composition (Twells, 2016). Presumably because the complexity can be predicted and accounted for when the number of actions is limited, this is the basis for the project programming interface being limited on the number of blocks, as not to allow the graphs to become inscrutable, and as mentioned on the introduction this also allows making assumptions about the interface which reduce the complexity such as not needing an explicit flow line, more on the explicit flow line can be read in the implementation chapter.
6. Milestones

In order to guarantee the delivery of the software an incremental approach has been chosen, this implies breaking down the objectives into smaller milestones that can be accomplished more easily, so in case the last milestone is not reached there is still a substantial product to submit.

Tree

![Milestones Tree]

Capped is more than a minimum viable product, a extensive proof-of-concept, with a few limited algorithms and the ability of inputing `.csv` files, with a restricted interface in which algorithms are not dragged and dropped but merely selected through buttons.

Parity means a more or less complete parity in terms of features and visual interaction. It is not very important to have the same number of underlying algorithms because that’s not the focus of the project, and creating new blocks having the underlying algorithm is easy.

And the final milestone is **Compilation**, the ability to get the python source code from the visual representation, also improving the interface to have a better flow, more akin to Unreal Engine, as discussed on the literature review chapter, state of the art section. This milestone would bring Persimmon utility beyond the realm of learning tool, as it would be a convenient tool for the exploratory work of any ML solution (business case,
a Kaggle1 competition, etc…).

Out of scope, but possible further applications of the system are web/junyper integration, which would mean the system would be accessible from a website interface, and script synthesization, which is the opposite of compilation, in other words the ability to translate a python source file to the Persimmon visual representation.

Gantt Chart

With the defined milestones a Gantt chart of the project development was drawn.

![Gantt Diagram of the project development.](image)

Figure 6.2.: Gantt Diagram of the project development.

1Kaggle.com
Development Methodology

The chosen methodology is based on agile methodologies such as **Scrum** or **Extreme Programming**, meaning that there is not a complete model of the desired system like in model-driven development (Selic, 2003), nor a complete planning of every development detail at the start of development, such as on Waterfall (Petersen et al., 2009), instead there are continuous iterations, faster and smaller than traditional development iterations that allow for more opportunity to react and adapt to change (Beck et al., 2001). These iterations last two weeks and are called sprints, and a board is used to keep track of all current and future tasks.

On a traditional Scrum methodology, the product owner puts uses cases (items) into the product backlog. Each sprint the scrum master and the development team have a meeting called **Sprint Planning event** (Schwaber and Beedle, 2002), where items the current sprint items from the product backlog to be done are decided and broken down into tasks to be done. Items can also be pushed back into the backlog if they are not achievable or have a lower priority.

However, this methodology does not really fit the development of this project, since there is no team, there is no need for superfluous and unnecessary processes. There is no retrospective after each sprint and there is no specific weight or cost assigned to each task. During a sprint the next sprint tasks are moved from the product backlog into the sprint planning column and broken down further if necessary.

Task are defined by use cases and can be broken down further by using checklists on the tasks.

If a task is not fully completed it can be moved back onto the product backlog.

The planning board can be found at https://trello.com/b/JmG3xy0U/persimmon

Source Code

The source code for this project is hosted on https://github.com/AlvarBer/Persimmon, the organization of the code follows the feature branch workflow (Atlassian, 2014), it can be described in terms of its branches.

Master branch. The master is the main branch, meaning that it is the default on the remote web interface, and the only branch where deployments happen, there is no actual development apart from hotfixes, instead it merges commits from dev, forming a release on each merge.

Dev branch. The dev branch represents the most recent commits, commits are made usually direct to this branch. Test are run when commits from this branch are pushed to the repo, but not deployment.
Feature-specific branches Sometimes feature specific branches are done in order to test whether the feature is feasible or not. This branches are usually short lived, and if it is decides to merge that code it must be to dev.

Continuous Integration runs on travis CI, more on that on the Appendix How was this document made?
7. Risk Analysis

Since there is a significant number of different stakeholders with different interests on the project it is necessary to lay down the risk associated and planning for the biggest and more probable risks.

Stakeholders

I. Project author.
II. Academic Reviewers (Project Supervisor, Moderator...).
III. Users.

On the case of the project author is the main stakeholder, his aim being developing a satisfactory project.

The academic reviewers play a support role on the project, they are concerned with ensuring the report follows the university guidelines and making sure the development stays on course.

Prevention & Mitigation

Using Boehm (1991) let’s create a table of risks ordered by impact and risk factor. Take into account all risks presented on the table are probable.

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Low Impact</th>
<th>Medium Impact</th>
<th>High Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
<td>Ethics Denial</td>
<td>Project Denial</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>Not defined enough</td>
<td>Change at late stage</td>
<td>Unreachable goal</td>
</tr>
<tr>
<td>Technology</td>
<td>Performance issues</td>
<td>Interoperability</td>
<td>Major errors</td>
</tr>
</tbody>
</table>

Starting with Project Risks the denial of the proposed hypothesis would be fatal. In order to mitigate this mistake a solid report skeleton has to be made early on, and getting in contact with suitable project supervisors in order to start morphing the project as soon as possible if required.

Same goes for Ethics Approval denial, in the worst case self-experience of the software
would have to be the main tool to measure user engagement.

If a requirements is not defined enough a break by user goals and use case diagrams can help make clear what the requirement details are. If a requirement change appears at a late stage the impact is mitigated by the employment of an agile methodology that allows working on smalls sprints and refocus on ever-changing requirements.

In the case of an unreachable goal partial objectives could established that would be easier to archive, splitting the main goal into several smaller goals, making it easier to at least accomplish some, if not all. This is explored on the milestones chapter.

Performance issues can be countered reducing the data used for processing, making it more of a proof of concept while retaining the validity of the project claims. Another solution is caching the results of the bottlenecks (expensive operations) and using those results in the final application. On the other hand there is no easy solution for interoperability issues, besides changing development platform/core language there is not a lot that could be done.

Same goes for major errors on the used platform, some alternatives were considered but in case of a major failure later down the line the only real solution is rewriting those parts. For preventing these issues a technical analysis of the capabilities of the platform must be carried out before starting the project, identifying possible faults and providing possible solutions and or alternatives.
8. Interface Design

The main way users interact with the system is through the visual interface, and as such is very important that all the information and operations available are easily accessible on an intuitive manner, removing the need for extensive training with the software.

Sketches

![Sketch of the first interface]

Figure 8.1.: Sketch of the first interface

On the first interface, there was a focus on getting a prototype done as soon as possible. For this reason, the interface had to be easy to implement and easy to use, with the few navigations steps required to perform all possible actions as to allow for quick debugging. This meant sacrificing flexibility in favour of usability, because the algorithms implement
were so few the button-based interface worked as intended for this prototype. No special considerations were taken for color palettes, shapes or any other kind of visual aid.

Figure 8.2.: Sketch of the second interface

For the second iteration, however, the extensibility had to be present, meaning the old interface was not reusable for the new functionality. The block based interface gives a lot more of control to the final user, still some underlying mechanisms such as optional parameters or saving into file were not present.

Finally, on the third iteration the proposed improvements to the interface were:

- Adding a smart bubble\(^1\) that shows the blocks that make sense to spawn according to the connection.
- Optional parameters.
- Hide/Toggle parameters.
- Data transfer visualization, meaning that the connection between two blocks starts signalling when data from one is moved onto the other.
- Type safety indicator while dragging a connection, such as turning the connection cable to a bright red to signal that if the cursor is unpressed at that location a connection will not form.

\(^1\)A bubble is a form of menu or a small popup where the menu options are stacked either vertically or horizontally. They are usually associated with the right click action.
• Make connections bézier curves instead of straight lines.

Some of these points are not realistic goals to be achieved during the short development time, but they are possible further improvements of the interface.

Colour Palette

One of the most important parts of the system where colour played a vital role was connections, symbolizing types with colours. The relations go as far as each types has a colour associated with it on code, meaning that pins are not coloured, their type is specified and their colour is derived from the type.

The color palette is based on (Staníček, n.d.), on a tetrad (4-colours) scheme plus additional primary colours for representing additional types, the *Any* colour is represented as almost white to symbolize it is consistent with any other type.

![Types colors](image)

Figure 8.3.: Types colors

Typography

The default font for kivy is Roboto, and for a good reason, as one of Kivy targets is Android, which has Roboto as the most commonly used font. Roboto is a neo-grotesque sans-serif with a modern robotic feel, it really feels at home on mobile screens, and it is also used on other Google’s products and websites. However on the desktop it feels a bit too cold and ubiquitous, as John Gruber calls it “Google’s Arial’. The better solution would be platform-dependent, but since Mac default choice, Helvetica, has trouble rendering in some Window and Linux desktop environments, Roboto was left as the choice for font rendering.
9. Implementation

On this chapter the implementation of the system is detailed, explained what was done in each iteration. After the iterations Persimmon intermediate representation is explained. Finally, some of the most complex technical problems along their respective solutions are detailed.

First Iteration

![Implementation of the first interface](image_url)

Figure 9.1.: Implementation of the first interface
For the first iteration, the priority was to get a proof of concept in order to see where the difficulties can appear, with a few simple classifiers and cross-validation techniques. As such a button-based interface with very limited workflow creation was chosen.

The chosen classifiers were simple and well-understood methods such as K-Nearest Neighbors, Logistic Regression, Naive Bayes, Support Vector Machines and Random Forest, which a slightly more complex method that involves ensemble of Decision Trees, but gives good results in wide variety of problems.

All these classifiers have few parameters on their respective sklearn implementations, and for this prototype the interface did not allow modifying any of them, as the it would have cluttered and it was not a necessary feature. Also, all of them are classifiers, as it simplifies the interface, since regression and clustering have some incompatibilities.

Apart from the temporary interface the backend had to be built. Since the workflow was fixed the backend simply received the node as arguments and executed those, meaning the previously explained execution algorithm was not needed for this iteration.

Second Iteration

For the second iteration the drag and drop feel was the main priority. As such after developing the tab panel draggable boxes were developed, these boxes needed to be connected through pins. The logic behind the pins and the blocks is quite heavy, as there is a tight coupling between the blackboard\(^1\), blocks and the pins on them, as all of these parts relay information to each other while the user is dragging a cable between two pins, this is further explained on the “Making a connection” section.

This tight coupling means there is a noticeable lag when moving the cable too fast on low-end computers, there are several solutions to this, but the most convenient is optimizing the method. If more optimization is needed for this particular function tools such as Numba\(^2\) or Cython could be used.

Third Iteration

For the third and final iteration, the focus was on improving the visual aspect, adding helpful aids to the user experience. The main addition being adding a notification systems that gives feedback to the user about the outcome of their actions and the type systems that prevents creating malformed pipelines. Other minor improvements to the system were the addition of a warning when the intended connection is not possible, by

\(^1\)Blackboard is where the blocks and connections reside.
\(^2\)Numba is a python library that allows the compilation and jitting of functions into both the CPU and the GPU [http://numba.pydata.org/]
Figure 9.2.: Second iteration implementation
changing the color line to red, and a warning showing up when a block has only some of their inputs connected.

![Third iteration interface showing a warning](image)

Figure 9.3.: Third iteration interface showing a warning

Model View Controller

Since the beginning of development separation of logic and presentation has been a priority. For this reason, the Model View Controller\(^3\) pattern has been applied, separating Model (represented by the subpackage backend), View (represented by the `.py` files on view subpackage) and Controller (corresponding to the `.kv` files on view subpackage).

This way coupling is kept as minimal as possible, enabling swapping the current kivy framework for another one by just changed the view, no modifications to the backend needed.

\(^3\)Model View Controller is a software pattern.
In order to avoid repetition extensive use of classes coupled with reusable custom Kivy Widgets were used. This for example meant that each individual pin on each block is a class, this proved useful for defining matching pins in different blocks (like when connection a pin that sends data to a pin that receives it).

For more information about internal package distribution check appendix A.

Making a Connection

One of the most complex parts of the system is starting, reconnecting and deleting a connection between blocks, it involves several actors, asynchronous callbacks and a very strong coupling between all elements.

![Widget Tree](image)

Figure 9.4.: Widget Tree

In order to understand how connections are made it is necessary to understand how Kivy handles input. At surface level Kivy follows the traditional event-based input management, with the event propagating downwards from the root. However, while traditionally inputs events are only passed down to components that are on the event position Kivy passes the events to almost all children by default, this is done because in phones (one of Kivy targets is Android) gestures tend to start outside the actual widget they intend to affect.

On Kivy there are three main inputs events, `on_touch_down` that gets called when a key is is pressed, `on_touch_move` that is notified when the touch is moved, i.e. a finger moves across the screen, or on this cases when the mouse moves, and `on_touch_up` that is fired when the touch is released.

Let’s represent the possible actions as use cases, the outer * represents `on_touch_down`, - represents `on_touch_move`, and the inner * `on_touch_up`:

- (On pin) Start a connection.
- (On connection) Modify a connection.
 - Follow cursor.
 - (On pin) Type check.
 * (On a pin) Establish connection if possible.
Logic is split in two big cases, creating a connection and modifying an existing one. Creating a connection involves creating one end of the connection, both visually and logically and preparing the line that will follow the cursor. On the other hand, modifying a connection means removing the end that is being touched. These two cases can be handled by different classes, pin on the first case and connection for the last. Moving and finishing the connection use the same code for both.

![Figure 9.5. Connections between elements](image)

Without getting too deep into implementation details, ends cannot just be removed, there are visual binds that have to be unbound and removed from the canvas, and when a connection is destroyed (this only happens inside `on_touch_up`, but it can be either the pins or the blackboard `on_touch_up` depending if the connection is destroyed because the pin violates type safety or there is no pin under the cursor respectively) it has to unbind the logical connections of the pins themselves. For this reason, connection has high-level functions that do the unbind, rebind and deletion of ends, as long as the necessary elements are passed (dependency injection pattern).

This is the reconnecting logic, notice how the reconnecting is forward or backwards depending on which edge the touch has happened, of course if neither has been touched the touch event is not handled.

```python
def on_touch_down(self, touch):
    """
    On touch down on connection means we are modifying an already existing connection, not creating a new one. """
    if self.start.collide_point(*touch.pos):
        self.forward = False
        self.unbind_pin(self.start)
        self.uncircle_pin(self.start)
        self.start.on_connection_delete(self)
        touch.ud['cur_line'] = self
        self.start = None
        return True
    elif self.end.collide_point(*touch.pos):
        self.forward = True
        self.unbind_pin(self.end)
        self.uncircle_pin(self.end)
        self.end.on_connection_delete(self)
```
touch.ud['cur_line'] = self
self.end = None
return True
else:
 return False

Figure 9.6.: Connection modification handling

Visualizing the Data Flow

One of the latest features that made it into Persimmon is the visualization of the data flowing through the cables between blocks, this was an interesting technical problem, since it involving relaying data back from the backend into the frontend (previously the communication between front and backend was unidirectional). But in order to preserve the decoupling between both the backend IR had to remain untouched. For this reason it was decided that the backend has an event where it announces it has finished executing a block and the frontend has to subscribe to it.

But the frontend does not receive the block, only the hash, since that is all the backend has, and it has to compare with all block hashes to find the actual block.

After this, the backend has to make the outgoing connections of that block pulse, meaning for example changing the value of the width of the line between certain values, a function that works well for this is the sin function. The tricky part is that each time the function is called it has to remember the previous value in order to grow or decrease the width accordingly, this cannot be done on a regular function since using `sleep` would freeze the entire application, and the best way to maintain state between executions is using a generator (also known as semi-coroutines).

But what happens when coroutine needs to be stopped from being called? Kivy has a mechanism where if the scheduled function returns `False` it will stop calling, by default our coroutine does not return any meaningful value, but it is possible to yield a final `False` that will stop the calls. But how is that yield triggered? The proper solution solution is using a full coroutine (either a generator-based one of the newer asyncio ones), but then concurrency issues appears, such that since the coroutine is being called 20 times per second if the coroutine is called while it is executing the scheduled interval it will ignore the second call.

The solutions comes from executions, similar to a fast interrupt in hardware it is possible to throw a execution on a coroutine that (maybe) is running, this also mean that the throwing hijacks the current execution, leading to two different returns needed, one for the interrupt execution and another for the previous running execution (if it was running, if not it will be on the next scheduled call).
With the throw solution there is no need for a full coroutine anymore, and a generator can be used again.

```python
def pulse(self):
    self.it = self._change_width()  # Create iterator
    Clock.schedule_interval(lambda _: next(self.it), 0.05)  # 20 FPS

def stop_pulse(self):
    self.it.throw(StopIteration)  # Hijacking execution

def _change_width(self):
    try:
        for value in self._width_gen():
            self.lin.width = value
            yield
    except StopIteration:
        self.lin.width = 2  # Return width back to default
        yield  # This yield is for the hijacking execution
        yield False  # And this for the regular execution

def _width_gen(self):
    """ Infinity oscillating generator (between 2 and 6) """
    val = 0
    while True:
        yield 2 * np.sin(val) + 4
        val += pi / 20
```

Binary Distribution

The interpretative nature of Python does not make creating an executable binary easy, particularly cPython the standard implementation and reference provides no tooling to create an executable binary.

For this task PyInstaller was chosen, the process of creating a binary is mostly automated, given a script it tries to read the imports and include them, finally it embeds a small interpreter to run this code. The problem with this approach is that Python allows for alternative ways of importing, it also breaks resource loading at execution time (since it has to create a temporary folder). This results in manually specifying hidden dependencies and non python files (on this case mostly kv files).

Unfortunately, this process has to be done on a windows system, and as such cannot be done on the CI\(^4\) server, to see how Persimmon utilizes CI check the appendix B.

\(^4\)Continuous Integration is a term that refers to the idea of testing, building, generating documentation
and even deploying automatically through a commit on the version control system.
10. Type Checking

Although Python has no robust type checking step it is possible for our visual language to have hard guarantees of correctness at write time, meaning that the building of incorrect pipelines can be avoiding altogether.

Gradual Typing

Python allows for gradual typing since 2014 (Rossum et al., 2014), meaning that function parameters can be specified and tools such as mypy will check for possible type errors, if some parameter or function type is not specified the tool will simply ignore the associated checks.

These tools provide a useful tool to introduce type checking in current and new python code, however they run outside the python execution (i.e. they run on the non-existent python compile time) and Persimmon needs run time type checking for dynamic block connections.

Nevertheless, this is a useful tool for improving the code quality, specially for the backend code, because it is much pure that the frontend. It is also a reference for Persimmon type system.

Write Time

On the previous section runtime type checking was mentioned, this is because on the Python side the type checks have to be done at runtime due to blocks being spawned and connected dynamically. But from the visual language perspective the checks are done even before compile time (on the literature referred as write time).

The two languages

As seen on the previous sections and the implementation chapter Python and Persimmon are essentially two different languages, but just how different are they?
<table>
<thead>
<tr>
<th>Paradigm</th>
<th>Python</th>
<th>Persimmon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic or Static</td>
<td>Dynamic</td>
<td>Static</td>
</tr>
<tr>
<td>Strong or Weak</td>
<td>Weak (Duck typing)</td>
<td>Strong</td>
</tr>
<tr>
<td>Evaluation strategy</td>
<td>Eager</td>
<td>Non-strict</td>
</tr>
</tbody>
</table>

- **Paradigm.** Although Python is multi-paradigm (it supports OOP, Module programming) and it even has some functional tools (map/filter/functool) they are very weak compared to a truly functional language, even Python creator Guido van Rossum has hesitations with the current state of functional programming in Python (Biancuzzi and others, 2009). On the other hand Persimmon is functional, as there is no assignment, nor statements, there is only functions.

- **Dynamic or Static.** Static types refer to the notion of the language using the type information to check for type safety on compilation time/before runtime. The only close thing Python has to this is type hinting, but it is still a relative young addition to the language, most of the existing code bases have not been annotated yet, and the community debates whether it is necessary or not. Persimmon on the other hand checks the type safety of the relations on write time, meaning before execution. Dynamic types is the oposite concept, where type information is used at run time, this can be useful for concepts such as dynamic dispatch.

- **Strong or Weak.** This refer to the notion of the language coercing the types or certain expressions without the explicit command of the programmer. On some languages this is done only where the type conversion is always safe (most common example is converting an integer to a float) and it is known as *upcasting*. A very strong language does not perform implicit type coercions [madsen1990strong].

- **Evaluation strategy.** Most imperative languages have eager evaluation, meaning that expressions and statements are evaluated as soon as encountered. It is also possible to have a non-strict evaluation, meaning that expressions are evaluated at a latter time. When exactly depends on the exact strategy, optimistic evaluation for example tries to run statements early only if they are fast, if they fail to complete before a certain time they are pushed to a later time (Ennals and Jones, 2003). In fact the extreme version of non-strictness is lazy evaluation, that evaluates only at the last possible time (and only if needed) (Launchbury, 1993).

Actual Types

As explained before the type checks must be done before the execution of the pipeline. However the actual types of the python code underlying functions and parameters do not support this, as duck typing makes interfaces not defined on explicit manners but on the methods used by the underlying code. For example, most algorithms accept Numpy arrays, panda dataframes, Scipy sparse matrices and almost any array type that
implements \texttt{__get__} in a manner Numpy understands, but there is no actual interface that can be used to know which objects will run without crashing unless the code is executed.

![Type hierarchy](image)

Figure 10.1.: Type hierarchy

Because of this, types had to be invented, sometimes they correspond to underlying duck typing based interfaces, but sometimes they do not have a direct equivalent on Python. Types on Persimmon follow a simple tree structure, checking whether a connection is safe on the notion of the types having a is-consistent-with relation, this is based on Rossum and Levkivskyi (2014). A is-consistent-with notion extends the more typically used is-subtype-of relation used in type theory, with \texttt{Any} representing the notion of a type that is-consistent-with every type (meaning that it is not a subtype of other types but all types are consistent with any and vice versa). Adding to this blocks of the respective edges of a connection must be different, one of the pins must be an \texttt{InputPin} and the other an \texttt{OutputPin}, and the \texttt{InputPin} must have no connection already.

These are all the rules used for checking if a connection is safe, it is a primitive type system, with further improvements ranging from the ability to define arbitrary subtypes to type classes.

Intermediate Representation

The visual blocks represent a visual-dataflow language, however the backend uses a simpler representation of the relations between the blocks, this in turn helps decoupling backend and frontend.

The frontend blocks are translated on function \texttt{to_ir}, which apart from translating the blocks it avoids considering orphaned blocks to achieve the desired intermediate representation. Runs on $O(n)$ with n being the number of pins.

Let’s represent the types on a more strongly typed language than Python.

```haskell
{!
  type \texttt{Id} = \texttt{Int} -- The hash is an integer
  data \texttt{Inputs} = \texttt{Inputs} \{\texttt{origin} :: \texttt{Id}, \texttt{block} :: \texttt{Id}\}
  data \texttt{Blocks} = \texttt{Blocks} \{\texttt{inputs} :: [\texttt{Id}], \texttt{function} :: \texttt{IO} a \rightarrow \texttt{IO} a,
                           \texttt{outputs} :: [\texttt{Id}]\}
  data \texttt{Outputs} = \texttt{Outputs} \{\texttt{destinations} :: [\texttt{Id}], \texttt{block} :: \texttt{Id}\}
}  
```

43
As we seen on figure 8.2 the intermediation representation is just three Maps\(^1\), one for blocks, one for input pins and one for output pins. But the maps do not contain pins themselves, merely unique hashes (Int on this case). This reflects the fact that pins model only relationships, not state. The only non-hash value on IR are the blocks functions. These functions are indeed impure\(^2\), but earlier on the literature review it was established that dataflow programming was mainly side-effect free, so why do they involve side effects?\(^3\).

There are two reasons, first on the actual python programs this types do not exist, at least not on an enforceable way, so when translating them to Haskell the function field represents the “worst case”, that is to say only a few functions will actually end up producing side-effects. The second and more important reason is that blocks actually execute themselves, meaning the block function does not has parameters, it relays on getting the values from the pins values and sets the values of the output values, leaving us with the work of setting those input pins and retrieving results from the output pins.

This goes against the previously stated “pins represent relationships, not state”, in fact an alternative implementation was created in which the function returned a tuple of results, and it is the compiler job to now associate the output pins to each of the elements on the tuple. This was done using the same current mechanism, saving into a dictionary, the difference being that while currently the values appear on the output pins and have to be moved into the dictionary (or otherwise a reference to the pin itself must be kept on the dictionary) on this case the values were fed directly to the algorithm. However, this proved limiting, as code became more complex since more checks have to be done, there was no obvious advantage and side-effects did not disappeared but merely were harder to do.

With this kind of language it is possible to create arbitrary functions as a composition of functions, all the inputs are either omitted if they are connected through the blocks, else they are promoted to the output of the new function. This works as long as side effects blocks do not depend on each other, this only happens when having both “entry” and “exit” blocks.

\(^1\)A Map is Haskell is called a dictionary in Python and Hashtable in other languages. It represents a data structure in which keys are used to retrieve values in a very efficient manner (on hashmap \(O(1)\)).

\(^2\)The term purity here refers to the absence of side effects on a function, so a impure function is a function that performs side effects.

\(^3\)Value manipulations other than the arguments passed and the returned value.
11. Evaluation

From the conception of the project it was intended to be tested by participants, evaluating the usability of the prototype. This chapter explains that evaluation process, how the survey was designed, and the analysis of the results.

The evaluation corresponding to this system has been subjected to ethics approval by the SCIENCE & TECHNOLOGY ECDA with protocol number COM/UG/UH/02090, and titled ‘An Evaluation of Persimmon’ at date 22/02/17, amended by the HEALTH SCIENCES ENGINEERING & TECHNOLOGY ECDA at date 20/04/2017.

Method

The method for conducting the evaluation is based on conducting a series of increasingly difficult closed tasks that consist of creating workflows and giving feedback on each of them, as well as some free forms questions at the end of the form. The complete form can be seen at appendix C.

The questionnaire selected is the Single Ease Question as explained in Sauro (2012). It based on of asking how difficult a task was on a seven point scale after it has been performed. Research shows that it provides equal or greater accuracy than more difficult measures of task-difficulty (Sauro and Dumas, 2009).

Along this questions, the participant knowledge and familiarity with Data Mining and Machine Learning is saved, as well as any additional feedback about the system.

Proposed Tasks

The evaluation consists of three different closed tasks. The task are defined as to gradually introduce more complex concepts, following the seen workflows on the workflow chapter, being introduced to the concepts of modifying an existing connection and complex block that require more interaction from the user.

- First task is the creation of a simple workflow, the objective of this task being to introduce Persimmon to the participants in the simplest terms. Using the iris dataset they perform a cross validation evaluation of their chosen classificator.
• Second task is modifying the previous workflow to create a more complex workflow that fits and predicts using an estimator and two sources of files. It is only slightly more complex than the previous one, but it introduces the concept of re-cabling to the participants.
• Third task and final task. This one involves adding hyper-parameter tuning, which in turns means providing a dictionary with desired parameters.

To see the complete form please check Appendix C.

Evaluation Results

At time of submission the population of the evaluation is \(n = 3 \).

All participants showed a good level of familiarity with the subject, defining themselves as quite familiar in the fields of Machine Learning, Data mining and Visual Machine Learning/Data Mining tools (76%, 71.4% and 57.14% average score respectively).

![Figure 11.1: Participants familiarity](image)

The scores for the tasks were quite good, averaging 85.71%, 90.47% and 85.71%, compared to the average score SEQ questions tends to have (which is 71.42%, or a 5 in a 7
point scale). This means that the participants found the tasks relatively easy, they also performed the tasks on schedule (30’ or less).

The tasks standard deviation were quite uniform, with σ equal to 1, 1.15 and 0 for tasks one, two and three respectively. This indicates that the population largely agrees, with no visible outliers.

![Bar chart showing task scores per participant](image)

Figure 11.2.: Task score per task per participant

While these are good indicators that the interface of the system succeeded on its intentions, the most important data from the evaluation is perhaps the free form questions, where participants unanimously agreed on the need for the ability to delete blocks.

Another complain is the placements of the blocks, by default they all spawn at the same point, that can result in blocks stacking on top of each other,

The blocks participants struggled with the most are those including file dialogs, citing how the path does not reset on cancel, sometimes responding to single click and sometimes not responding at all, and the need for a way to show the current selected file without clicking on the file dialog.

Some other complains/suggestions align with the suggestions on the final interface pro-
posed, such as adding a zoom ability, a bubble spawning block system instead of tabs. Also some new ideas were proposed, such as undo functionality, or visualization options.

On the other hand participants praised the drag and drop nature of the interface, the wide selection of ml algorithms and test options, the use of colors to indicate types, consistent design, easy to navigate and shallow learning curve.

The error handling and the resilience of the application were mentioned, as well as the simple installation process without the need for dependencies installation.
12. Conclusiones

Tras la evaluación es una oportunidad para observar lo que el sistema ha conseguido.

Revisión de Objetivos

Estudio de Viabilidad: La evaluación parece demostrar que es posible crear una interfaz de aprendizaje automático visual que es flexible a la vez que relativamente fácil de usar, incluso para estudiantes, incluyendo un sistema de tipos y notificación de errores en tiempo de escritura.

Diseño y Usabilidad: La implementación final sigue los bosquejos iniciales, demostrando que el diseño inicial tenía fundamentos sólidos. Los buenos resultados de la evaluación, incluyendo los comentarios finales de los participantes, parecen indicar que la interfaz satisface los objetivos manteniendo una interfaz simple.

Evaluación: A pesar del bajo número de participantes la evaluación resultó en resultados mayormente positivos, incluyendo feedback que influyó la fase final de desarrollo.

Herramienta de Aprendizaje: Con la mayor parte de los objetivos cumplidos el sistema ha alcanzado un estado en el cual tiene suficiente funcionalidad como para ser usado como herramienta de aprendizaje, especialmente gracias al soporte de los workflows más simples y usados. Incluso dos participantes reseñaron la facilidad de uso y la capacidad de realizar acciones complejas (como ajuste de hyper-parametros) de manera sencilla comparado con otros frameworks y librerías.

Acelerar análisis exploratorio: Al igual que en el último objetivo, el sistema ha alcanzado un nivel de funcionalidad suficiente en el que realizar análisis de datos e iterar sobre distintos métodos es relativamente rápido (simplemente desenganchar y enganchar las conexiones a otro bloque). Cuando un bloque necesario no estaba implementando la implementación era relativamente sencilla (la mayoría de bloques son menos de 20 líneas de código).

Implementación: Al final del proyecto los requerimientos no-funcionales han sido cumplidos, culminando en un ejecutable sin dependencias que los participantes han usado para la evaluación. Este proceso de fácil instalación ha sido comentado por varios participantes, así como el rendimiento del sistema, manteniendo la interfaz sensible al input mientras se renderizan múltiples bloques y el proceso se ejecuta simultáneamente (multihilo).
Retrospectiva

Con más de 7000 líneas de código, 10 releases, y más de 200 commits, Persimmon se ha convertido en un proyecto de tamaño medio, desde su concepción ha llamado la atención, con más de 3000 visitas y 100 estrellas en Github.

Ha aparecido en múltiples, páginas web, e incluso ha ganado el premio al mejor proyecto en el compshow 2017 en la universidad de Hertfordshire.

Conclusión

En conclusión el sistema ha conseguido alcanzar un estado testeable en el cual los participantes han evaluado la usabilidad, flexibilidad y potencial, valorándolo positivamente. Esto parece indicar que es posible mejorar la situación de herramientas visuales de aprendizaje automático con pequeñas mejoras que impactan la experiencia de usuario. Características como el menú de búsqueda inteligente usa la introspección para sugerir bloques adecuados, usando el sistema de tipos para ayudar al usuario a crear procesos más rápida y fácilmente.

Esto se corresponde con la hipótesis del proyecto, así como con el objetivo de que el sistema no debería solo hacer difícil o imposible crear procesos incorrectos, sino hacer más fácil y rápido crear grafos correctos.
Dar más poder al usuario no significar complicar la interfaz, de hecho puede ser lo contrario.

Trabajo Futuro

- Exponer parámetros opcionales.
- Pulir aspectos visuales.
 - Categorías en el menú de búsqueda.
 - Más indicadores durante acciones de arrastre.
- Serialización de los grafos.
- Soporte de movimiento y zoom sobre el grafo.
- Generación automática de bloques desde funciones en Python.
- Capacidad de deshacer (Command pattern).
- Selección en área.
- Creación de workflows comunes mediante plantillas.
- Unit/Integración/End to end testing.
- Deployment automático en Windows
- Integración contigua.
- Cacheado de resultados similares a un REPL\(^1\).

\(^1\)Un Read Eval Print Loop es una consola interactiva proveniente de LISP que permite la ejecución interactiva de expresiones, guardando los resultados intermedios para el uso exploratorio.
13. Postmortem

After the evaluation it is time to make a retrospective, look what Persimmon has achieved.

Objectives Review

Feasibility: Evaluation seems to show that it is possible to create a machine learning visual interface that is both flexible and relatively easy to use, even for learners, including a type system and errors in compilation time.

Design and Usability: The final implementation closely followed the initial sketches, proving the initial design had solid fundamentals. The good evaluation scores, and final remarks given by participants, seem to demonstrate that the interface has accomplished its objectives of producing a powerful yet simple to use interface.

Evaluation: Despite having a low number of participants the evaluation resulted in a mostly unanimous good reviews of the software, as well as providing very useful feedback for future improvements.

Learning Tool: Because most of the milestones were achieved the final system has reached a state where it is useful enough for its use as a learning tool thanks to supporting the simplest (and most common) workflows, it was even remarked by two participants how easy it was to use, and how easy it was to do complex actions (such as hyper-parameter tuning) compared to other frameworks/libraries.

Faster Exploratory Work: Like last objective thanks to the current state of the system it is pretty fast to perform early ml analysis, when limited by the lack of a block it was pretty easy and fast adding a block that solved the problem (in around ~20 lines of code).

Implementation: At the end of the project the non-functional requirements have been met, delivering a windows single executable file that participants used for the evaluation, while keeping a good performance, handling many blocks without a hitch, and keeping the frame rate steady while modifying connections and running the execution of the pipeline simultaneously.
Retrospective

With over 7k lines of code, 10 releases, and more than 200 commits, Persimmon stands as a medium size codebase, since its inception it has gathered attention, with over 3000 visits, and more than 90 stars on Github.

It has been featured on multiple websites, and even won best project at the 2017 comp-show at University of Hertfordshire.

![Chinese machine learning forum](image)

Figure 13.1.: Chinese machine learning forum

Conclusion

In conclusion the system has managed to reach a testable state in which participants have remarked its usability, flexibility and potential. This seems to indicate that is is possible for small improvements on visual machine learning tools do make an impact on the user experience Features like the smart bubble that use introspection to suggest suitable blocks to connect leverage the type system to help the user create the pipelines faster and easier.

This corresponds with the hypothesis of the project, as well as the objective that the system should not only make it hard or impossible to construct incorrect graphs, but should make it easier and faster to create correct graphs.
Giving more power to the user does not mean convoluting the interface, in fact it can be the opposite.

Future Work

- Surface of optional parameters.
- Visual Polish.
 - Smart Bubble breakdown by category.
 - More indicators when dragging/dropping.
- Graph Serialization.
- Support move and zoom in background.
- Automatic block generation from Python function.
- Undo functionality (Command pattern).
- Area drag select.
- Skeletons of common workflows.
- Unit/Integration/End to end testing.
- Automatic windows deployment.
- Continuous integration.
- Cache results similar to a REPL\(^1\).

\(^1\)A Read Eval Print Loop is an interactive console many modern programming languages that allows for the interactive execution of expressions, saving the results in a local session.
Bibliography

Biancuzzi, F. and others. (2009), Masterminds of Programming: Conversations with the Creators of Major Programming Languages, “ O’Reilly Media, Inc.”

Staníček, P. (n.d.). “Paletton.com (aka color scheme designer 4)”.

A. Package Organization

Persimmon source code is written on the form of a typical python package, on the following section the specifics of how the different subpackages are distributed and what is on each of them.

![Persimmon package hierarchy](image.png)

Figure A.1.: Persimmon package hierarchy

Backend

The backend performs all the calls to sklearn, as it receives the graph of execution and performs the desired calls to the estimators.

The backend does not know anything about the view, and as such the current kivy frontend could be replaced by any other visual framework.

View

The view contains all of the kivy code, both python source files and kivy lang files.
B. How was this document made?

This document was written on Markdown, and converted to PDF using Pandoc.

Process

Document is written on Pandoc’s extended Markdown, and can be broken amongst different files. Images are inserted with regular Markdown syntax for images. A YAML file with metadata information is passed to pandoc, containing things such as Author, Title, font, etc... The use of this information depends on what output we are creating and the template/reference we are using.

Diagrams

Diagrams are were created with \LaTeXpackages such as tikz or pgfgantt, they can be inserted directly as PDF, but if we desire to output to formats other than \LaTeXis more convenient to convert them to .png files with tools such as `pdftoppm`.

References

References are handled by pandoc-citeproc, we can write our bibliography in a myriad of different formats: bibTeX, bibLaTeX, JSON, YAML, etc..., then we reference in our markdown, and that reference works for multiple formats
C. Persimmon Evaluation

Preparation

Please go to https://github.com/AlvarBer/Persimmon/releases and download the latest executable. You will also need to download the iris dataset along with it.

Previous Questions

Please tell us something about yourself first.
How familiar are you with Machine Learning? very familiar → not familiar at all
How familiar are you with Data Mining?
How familiar are you with tools such as Weka, RapidMiner, Azure ML Studio, etc?

Tasks

For the first task you will create a small pipeline using persimmon blocks.

• Execute Persimmon.exe, spawn a “Read csv” block from the Input/Output tab and using the file dialog locate the iris.csv file you have downloaded earlier.
• Spawn a classificator block from the Classificators tab (any will suffice), and a “K-fold block” (from the Cross Validators tabs).
• Now spawn a “cross-validation score block” (which can be found at the Model Selection tab) and connect the previous three blocks to the “cross-validation score” block.
• Finally pipe the result from that block into a “print” block (again on the Input/Output tab).

Congratulations! You just made your first pipeline.

Overall, how did you find this task? very easy → very difficult
For the second task you will learn about reconnecting cables, if you have not already, you will also change the output, putting the result into a file instead of on the screen.

- Spawn a “Fit” block (Fit & Predict tab), and reconnect the previous input block and the estimator to it. Make sure you leave the previous “cross validation score block” completely unconnected, another possibility is to restart the program to delete all blocks.
- Spawn another “Read csv” block and load file “iris_no_class.csv”.
- Spawn a “Predict” block, and connected the result from the fit block onto the first input pin and the new “Read csv” to the second one.
- Now pipe that result into a “Write csv” (Input/Output tab) block. Put a valid filename on the file dialog text input and execute.

You just predicted a dataset using a previously fitted estimator! ← very difficult

Overall, how did you find this task?

For the final task you will use several complex blocks, and by doing so will also perform hyper-parameter optimization using a grid search.

- Spawn “Grid Search” block from the Model Selection tab. Orphan both the “Fit” and “Predict” blocks you previously created and connect the first “Read csv” block (the one with “iris.csv”) to the “Grid Search” block.
- Spawn a “SVM” block from the Classificators (if you had not before). Connect it to the “Grid Search”.
- Spawn a “Dictionary” block (State tab). This block is a bit different to the previous, it requires that you write a Python dictionary with the params you want to test, write “{'C': [0.03, 0.3, 1], 'tol': [0.00001, 0.0001, 0.001]}” (without the outer double quotes but take care to write the inner single quotes). Once you are done connect the params block to the “Grid Search”.
- Finally pipe the second result of the grid search into a “Print” block.

The results on the screen are the best parameters along the best score.

Overall, how did you find this task?

Additional Feedback

List 2 negative aspects of the application.

62
List 2 positive aspects of the application.

__

__

Please tell us any additional feedback you may have.

__

__

Thanks for taking the time to participate on this evaluation.