Universidad Complutense de Madrid
E-Prints Complutense

Thermal conductivity of one-dimensional Fibonacci quasicrystals



Último año

Maciá Barber, Enrique Alfonso (2000) Thermal conductivity of one-dimensional Fibonacci quasicrystals. Physical review B, 61 (10). pp. 6645-6653. ISSN 1098-0121

Vista previa

URL Oficial: http://dx.doi.org/10.1103/PhysRevB.61.6645

URLTipo de URL


We consider a general Fibonacci quasicrystal (FQC) in which both the masses and the elastic constants are aperiodically arranged. Making use of a suitable decimation scheme, inspired by real-space renormalization-group concepts, we obtain closed analytical expressions for the global transfer matrix and transmission coefficient for several resonant critical normal modes. The fractal structure of the frequency spectrum significantly influences both the cumulative contribution of the different normal modes to the thermal transport and the dependence of the thermal conductivity with the temperature over a wide temperature range. The role of resonant effects in the heat transport through the FQC is numerically and analytically discussed.

Tipo de documento:Artículo
Información Adicional:

©2000 The American Physical Society
I gratefully thank Francisco Domínguez-Adame for his collaboration on these topics during these years. I also thank M. Victoria Hernández for her illuminating questions. I warmly thank Miguel Angel García for many interesting conversations on Fibonacci numbers. This work was supported by Universidad Complutense de Madrid through Project No. PR64/99-8510.

Palabras clave:Extended electronic states; Quasi-periodic lattices; Renormalization-group; Energy-spectrum; Wave-function; Cantor-set; Crystals; Chain; Transport; Systems
Materias:Ciencias > Física > Física de materiales
Ciencias > Física > Física del estado sólido
Código ID:44842
Depositado:08 Nov 2017 17:46
Última Modificación:08 Nov 2017 17:46

Descargas en el último año

Sólo personal del repositorio: página de control del artículo