Publication:
A novel visible light responsive nanosystem for cancer treatment

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2017-09-19
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Royal Society of Chemistry
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
A novel singlet-oxygen sensitive drug delivery nanocarrier able to release their cargo after exposure to visible (Vis) light of a common lamp is presented. This nanodevice is based on mesoporous silica nanoparticles (MSN) decorated with porphyrin-caps grafted via reactive oxygen species (ROS)-cleavable linkages. In presence of Vis light the porphyrinnanocaps produce singlet oxygen molecules that break the sensitive-linker, which triggers pore uncapping and therefore allows the release of the entrapped cargo (topotecan, TOP). This new system takes advantage of thE non-toxicity and greater penetration capacity of Vis radiation and a double antitumor effect due to the drug release and the ROS production. In vitro tests with HOS osteosarcoma cancer cells reveal that TOP is able to be released in a controlled fashion inside the tumor cells. This research work constitutes a proof of concept that opens up promising expectations in the seeking for new alternatives for the treatment of cancer.
Description
Keywords
Citation
1 M. Vallet-Regí, F. Balas and D. Arcos, Angew. Chem. Int. Ed. Engl., 2007, 46, 7548–58. 2 M. Vallet-Regí, A. Rámila, R. P. del Real and J. Pérez- Pariente, Chem. Mater., 2001, 13, 308–311. 3 C. Argyo, V. Weiss, C. Bra and T. Bein, Chem. Eur. J., 2013, 26, 435–451. 4 A. Popat, S. B. Hartono, F. Stahr, J. Liu, S. Z. Qiao and G. Qing (Max) Lu, Nanoscale, 2011, 3, 2801–2818. 5 J. L. Vivero-Escoto, I. I. Slowing, B. G. Trewyn and V. S.-Y. Lin, Small, 2010, 6, 1952–1967. 6 Z. Li, J. C. Barnes, A. Bosoy, J. F. Stoddart and J. I. Zink, Chem. Soc. Rev., 2012, 41, 2590–2605. 7 D. A. Scheinberg, C. H. Villa, F. E. Escorcia and M. R. McDevitt, Nat. Rev. Clin. Oncol., 2010, 7, 266–276. 8 M. Martínez-Carmona, M. Colilla and M. Vallet-regí, Nanomaterials, 2015, 1906–1937. 9 J. M. Morachis, E. A. Mahmoud and A. Almutairi, Pharmacol. Rev., 2012, 64, 505–519. 10 M. Martínez-Carmona, A. Baeza, M. A. Rodriguez-Milla, J. Garcia-Castro and M. Vallet-Regí, J. Mater. Chem. B, 2015, 3, 5746–5752. 11 N. Ž. Knežević and V. S.-Y. Lin, Nanoscale, 2013, 5, 1544– 51. 12 N. K. Mal, M. Fujiwara and Y. Tanaka, Nature, 2003, 421, 350–353. 13 Q. Jin, F. Mitschang and S. Agarwal, Biomacromolecules, 2011, 12, 3684–3691. 14 Scientific Committee on Emerging and Newly-Identified Health Risks, The appropriateness of the risk assessment methodology in accordance with the Technical Guidance Documents for new and existing substances for assessing the risks of nanomaterials, 2012. 15 B. A. Jurkiewicz, R. B. U. E. Tner and R. Buettner, Photochem. Photobiol., 1994, 59, 1–4. 16 Z. Wang, M. Boudjelal and S. Kang, Nat. Med., 1999, 5, 0–4. 17 M. Podda, M. G. Traber, C. Weber, L. J. Yan and L. Packer, Free Radic. Biol. Med., 1998, 24, 55–65. 18 Y. Shindo, E. Witt and L. Packer, J. Invest. Dermatol., 1993, 100, 260–265. 19 K. Jariashvili, B. Madhan, B. Brodsky, A. Kuchava, L. Namicheishvili and N. Metreveli, Biopolymers, 2012, 97, 189–198. 20 R. P. Sinha and D.-P. Häder, Photochem. Photobiol. Sci., 2002, 1, 225–236. 21 J. Olejniczak, C. J. Carling and A. Almutairi, J. Control. Release, 2015, 219, 18–30. 22 N. Z. Knezevic, B. G. Trewyn and V. S. Y. Lin, Chem. Commun., 2011, 47, 2817–2819. 23 C. Carling, M. L. Viger, A. Nguyen, V. Garcia and A. Almutairi, Chem. Sci., 2014, 6, 335–341. 24 A. S. Lavado, V. M. Chauhan, A. Alhaj Zen, F. Giuntini, D. R. E. Jones, R. W. Boyle, A. Beeby, W. C. Chan and J. W. Aylott, Nanoscale, 2015, 7, 14525–14531. 25 H. Kolarova, P. Nevrelova, K. Tomankova, P. Kolar, R. Bajgar and J. Mosinger, Gen. Physiol. Biophys., 2008, 27, 101–105. 26 M. Y. Jiang and D. Dolphin, J. Am. Chem. Soc., 2008, 130, 4236–7. 27 A. Schlossbauer, J. Kecht and T. Bein, Angew. Chemie- International Ed., 2009, 48, 3092–3095. 28 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834–10843. 29 James O. Alben, S. S. Choi, A. D. Adler and W. S. Caughey, Ann. N. Y. Acad. Sci., 1973, 206, 278–295. 30 O. Terasaki, T. Ohsuna, Z. Liu, Y. Sakamoto and A. E. Garcia- Bennett, Stud. Surf. Sci. Catal., 2004, 148, 261–288. 31 M. Martínez-Carmona, D. Lozano, M. Colilla and M. Vallet- Regí, RSC Adv., 2016, 6, 50923–50932. 32 F. Balas, M. Manzano and M. Vallet-Regí, Acta Biomater., 2008, 4, 514–522. 33 P. Agostinis, K. Berg, K. A. Cengel, T. H. Foster, A. W. Girotti, S. O. Gollnick, S. M. Hahn, M. R. Hamblin, A. Juzeniene, D. Kessel, M. Korbelik, J. Moan, P. Mroz, D. Nowis, J. Piette, B. C. Wilson and J. Golab, CA. Cancer J. Clin., 2011, 61, 250–281. 34 V. M. M. Herben, W. W. ten Bokkel Huinink and J. H. Beijnen, Clin. Pharmacokinet., 1996, 31, 85–102. 35 P. Tardi, E. Choice, D. Masin, T. Redelmeier, M. Bally and T. D. Madden, Cancer Res., 2000, 60, 3389–3393. 36 A. M. Sauer, A. Schlossbauer, N. Ruthardt, V. Cauda, T. Bein and C. Bräuchle, Nano Lett., 2010, 10, 3684–3691. 37 S. A. Mackowiak, A. Schmidt, V. Weiss, C. Argyo, C. Von Schirnding, T. Bein and C. Bräuchle, Nano Lett., 2013, 13, 2576–2583. 38 J. L. Paris, M. V. Cabanas, M. Manzano and M. Vallet-Regí, ACS Nano, 2015, 9, 11023–11033.
Collections