Universidad Complutense de Madrid
E-Prints Complutense

Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory

Impacto

Descargas

Último año



Asai, Manabu y McAleer, Michael y Peiris, Shelton (2017) Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory. [ Documentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE); nº 26, 2017, ISSN: 2341-2356 ]

[img]
Vista previa
PDF
Creative Commons License
Esta obra está bajo una licencia de Creative Commons: Reconocimiento - No comercial - Compartir igual.

421kB

URLTipo de URL
https://www.ucm.es/icaeInstitución


Resumen

In recent years fractionally differenced processes have received a great deal of attention due to their exibility in nancial applications with long memory. In this paper, we develop a new realized stochastic volatility (RSV) model with general Gegenbauer long memory (GGLM), which encompasses a new RSV model with seasonal long memory (SLM). The RSV model uses the information from returns and realized volatility measures simultaneously. The long memory structure of both models can describe unbounded peaks apart from the origin in the power spectrum. Forestimating the RSV-GGLM model, we suggest estimating the location parameters for the peaks of the power spectrum in the rst step, and the remaining parameters based on the Whittle likelihood in the second step. We conduct Monte Carlo experiments for investigating the nite sample properties of the estimators, with a quasi-likelihood ratio test of RSV-SLM model against theRSV-GGLM model. We apply the RSV-GGLM and RSV-SLM model to three stock market indices. The estimation and forecasting results indicate the adequacy of considering general long memory.


Tipo de documento:Documento de trabajo o Informe técnico
Palabras clave:Stochastic Volatility; Realized Volatility Measure; Long Memory; Gegenbauer Polynomial; Seasonality; Whittle Likelihood.
Materias:Ciencias Sociales > Economía > Econometría
JEL:C18, C21, C58
Título de serie o colección:Documentos de Trabajo del Instituto Complutense de Análisis Económico (ICAE)
Volumen:2017
Número:26
Código ID:45359
Depositado:14 Nov 2017 09:20
Última Modificación:14 Nov 2017 09:20

Descargas en el último año

Sólo personal del repositorio: página de control del artículo