VALOR PRONÓSTICO DE LOS FACTORES CLÍNICOS E INMUNOHISTOQUÍMICOS EN LA RECIDIVA PRECOZ DEL CARCINOMA DUCTAL INFILTRANTE DE MAMA

MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR
Ángel Martín Louredo Méndez

Bajo la dirección de los doctores
Álvaro Larraz Jiménez
Jesús María Andrés de LLano

Madrid, 2002

UNIVERSIDAD COMPLUTENSE DE MADRID
FACULTAD DE MEDICINA
DEPARTAMENTO DE CIRUGÍA

TESIS DOCTORAL

VALOR PRONÓSTICO DE LOS FACTORES CLÍNICOS E INMUNOHISTOQUÍMICOS EN LA RECIDIVA PRECOZ DEL CARCINOMA DUCTAL INFILTRANTE DE MAMA

ANGEL MARTÍN LOUREDO MENDEZ

MADRID, SEPTIEMBRE DE 2000
INDICE GENERAL

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>ESTADO ACTUAL DE LOS MARCADORES</td>
<td></td>
</tr>
<tr>
<td>TUMORALES MOLECULARES</td>
<td>3</td>
</tr>
<tr>
<td>Receptor de estrógeno</td>
<td>3</td>
</tr>
<tr>
<td>Receptor de progesterona</td>
<td>21</td>
</tr>
<tr>
<td>pS2</td>
<td>32</td>
</tr>
<tr>
<td>Hsp27</td>
<td>37</td>
</tr>
<tr>
<td>EGFR</td>
<td>42</td>
</tr>
<tr>
<td>C-erbB-2</td>
<td>52</td>
</tr>
<tr>
<td>Ki-67</td>
<td>65</td>
</tr>
<tr>
<td>PCNA</td>
<td>72</td>
</tr>
<tr>
<td>p53</td>
<td>79</td>
</tr>
<tr>
<td>Catepsina D</td>
<td>91</td>
</tr>
<tr>
<td>Glicoproteína P</td>
<td>97</td>
</tr>
<tr>
<td>JUSTIFICACIÓN DEL TRABAJO</td>
<td>103</td>
</tr>
<tr>
<td>HIPÓTESIS DE TRABAJO</td>
<td>104</td>
</tr>
<tr>
<td>OBJETIVO</td>
<td>105</td>
</tr>
<tr>
<td>MATERIAL Y MÉTODOS</td>
<td>106</td>
</tr>
<tr>
<td>DISEÑO</td>
<td>106</td>
</tr>
<tr>
<td>POBLACIÓN</td>
<td>106</td>
</tr>
<tr>
<td>RECOGIDA DE DATOS</td>
<td>107</td>
</tr>
</tbody>
</table>
VARIABLES DEL ESTUDIO ... 107
PARÁMETROS CLÍNICO-PATOLÓGICOS ... 108
MARCADORES TUMORALES MOLECULARES .. 111
 Determinación inmunohistoquímica .. 111
 Método de la peroxidasa-antiperoxidasa (PAP) 111
 Método de la avidina-biotina (ABC) ... 112
 1. Determinación inmunohistoquímica del RE 113
 2. Determinación inmunohistoquímica del RPg 114
 3. Determinación inmunohistoquímica de la pS2 115
 4. Determinación inmunohistoquímica de la Hsp27 115
 5. Determinación inmunohistoquímica del EGFR 116
 6. Determinación inmunohistoquímica del C-erbB-2 117
 7. Determinación inmunohistoquímica del Ki-67 118
 8. Determinación inmunohistoquímica del PCNA 118
 9. Determinación inmunohistoquímica de la p53 119
 10. Determinación inmunohistoquímica de la catepsina D 120
 11. Determinación inmunohistoquímica de la glicoproteína P. 120
ANÁLISIS ESTADÍSTICO DE DATOS ... 121
RESULTADOS .. 122
I-A. DESCRIPCIÓN GENERAL DE LA SERIE .. 122
I-B. ANÁLISIS DE LA ASOCIACIÓN ENTRE LOS MARCADORES TUMORALES MOLECULARES Y LOS PARÁMETROS CLÍNICO-PATOLÓGICOS ... 127
1-a) Análisis de la asociación entre el receptor de estrógeno y los parámetros clínico-patológicos. 127
1-b) Análisis de la asociación entre el receptor de estrógeno y los marcadores tumorales moleculares. 127
2-a) Análisis de la asociación entre el receptor de progesterona y los parámetros clínico-patológicos. 130
2-b) Análisis de la asociación entre el receptor de progesterona y los marcadores tumorales moleculares. 130
3-a) Análisis de la asociación entre la expresión de la proteína pS2 y los parámetros clínico-patológicos. 133
3-b) Análisis de la asociación entre la expresión de la proteína pS2 y los marcadores tumorales moleculares. 133
4-a) Análisis de la asociación entre la expresión de la proteína Hsp27 y los parámetros clínico-patológicos. 136
4-b) Análisis de la asociación entre la expresión de la proteína Hsp27 y los marcadores tumorales moleculares. 136
5-a) Análisis de la asociación entre el receptor del factor de crecimiento epidérmico y los parámetros clínico-patológicos. .. 138
5-b) Análisis de la asociación entre el receptor del factor de crecimiento epidérmico y los marcadores tumorales moleculares. .. 138
6-a) Análisis de la asociación entre la expresión del oncogen C-erbB-2 (p185C-erbB-2) y los parámetros clínico-patológicos. .. 140
6-b). Análisis de la asociación entre la expresión del oncogen C-erbB-2 (p185C-erbB-2) y los marcadores tumorales moleculares. ... 140

7-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular Ki-67 y los parámetros clínico-patológicos. .. 141

7-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular Ki-67 y los marcadores tumorales moleculares. .. 142

8-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular PCNA y los parámetros clínico-patológicos. ... 143

8-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular PCNA y los marcadores tumorales moleculares. ... 144

9-a) Análisis de la asociación entre la expresión del oncogen supresor p53 y los parámetros clínico-patológicos. 145

9-b) Análisis de la asociación entre la expresión del oncogen supresor p53 y los marcadores tumorales moleculares. 146

10-a) Análisis de la asociación entre la expresión de catepsina D y los parámetros clínico-patológicos. 147

10-b) Análisis de la asociación entre la expresión de la catepsina D y los marcadores tumorales moleculares. 148

11-a) Análisis de la asociación entre la expresión de la glicoproteína P y los parámetros clínico-patológicos. 149

11-b) Análisis de la asociación entre la expresión de la glicoproteína P y los marcadores tumorales moleculares. 149
I-C. ANÁLISIS DE LOS TUMORES QUE DESARROLLARON
METASTASIS DURANTE LOS 36 MESES DE SEGUIMIENTO 153
1-a) Análisis de la asociación entre los parámetros clínico-
patológicos y las recidivas precoces. 153
1-b) Análisis de la asociación entre los marcadores tumorales
moleculares y las recidivas precoces. 155
2-a) Análisis de la asociación entre los parámetros clínico-
patológicos y las recidivas precoces en pacientes con
ganglios axilares positivos. ... 157
2-b) Análisis de la asociación entre los marcadores tumorales
moleculares y las recidivas precoces en pacientes con
ganglios axilares positivos. ... 158
3-a) Análisis de la asociación entre los parámetros clínico-
patológicos y las recidivas precoces en pacientes con
ganglios axilares negativos. .. 160
3-b) Análisis de la asociación entre los marcadores tumorales
moleculares y las recidivas precoces en pacientes con
ganglios axilares negativos. .. 161

II. ANÁLISIS DEL INTERVALO LIBRE DE ENFERMEDAD A 36
MESES CON RELACION A LOS PARÁMETROS CLÍNICO-
PATOLÓGICOS Y LOS MARCADORES TUMORALES
MOLECULARES. METODO DE KAPLAN-MEIER Y ANÁLISIS
UNIVARIANTE. ... 162
1) Análisis del intervalo libre de enfermedad a 36 meses con
relación a los parámetros clínico-patológicos. 162
2) Análisis del intervalo libre de enfermedad a 36 meses con
relación a los marcadores tumorales moleculares. 163

III. ANALISIS MULTIVARIANTE DE LOS PARÁMETROS CLINICO-PATOLÓGICOS Y DE LOS MARCADORES TUMORALES MOLECULARES. 173

DISCUSIÓN 179
I-A. DESCRIPCIÓN GENERAL DE LA SERIE 179
I-B. ANALISIS DE LA ASOCIACIÓN ENTRE LOS MARCADORES TUMORALES MOLECULARES Y LOS PARÁMETROS CLINICO-PATOLÓGICOS 182

1-a) Análisis de la asociación entre el receptor de estrógeno y los parámetros clínico-patológicos. 182

1-b) Análisis de la asociación entre el receptor de estrógeno y los marcadores tumorales moleculares. 183

2-a) Análisis de la asociación entre el receptor de progesterona y los parámetros clínico-patológicos. 186

2-b) Análisis de la asociación entre el receptor de progesterona y los marcadores tumorales moleculares. 187

3-a) Análisis de la asociación entre la expresión de la proteína pS2 y los parámetros clínico-patológicos. 189

3-b) Análisis de la asociación entre la expresión de la proteína pS2 y los marcadores tumorales moleculares. 190

4-a) Análisis de la asociación entre la expresión de la proteína Hsp27 y los parámetros clínico-patológicos. 192

4-b) Análisis de la asociación entre la expresión de la proteína
Hsp27 y los marcadores tumorales moleculares. 194

5-a) Análisis de la asociación entre el receptor del factor de crecimiento epidérmico y los parámetros clínico-patológicos. ... 194

5-b) Análisis de la asociación entre el receptor del factor de crecimiento epidérmico y los marcadores tumorales moleculares. ... 195

6-a) Análisis de la asociación entre la expresión del oncogen C-erbB-2 (p185C-erbB-2) y los parámetros clínico-patológicos. .. 197

6-b) Análisis de la asociación entre la expresión del oncogen C-erbB-2 (p185C-erbB-2) y los marcadores tumorales moleculares. .. 198

7-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular Ki-67 y los parámetros clínico-patológicos. .. 201

7-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular Ki-67 y los marcadores tumorales moleculares. .. 202

8-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular PCNA y los parámetros clínico-patológicos. .. 203

8-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular PCNA y los marcadores tumorales moleculares. .. 204

9-a) Análisis de la asociación entre la expresión del oncogen supresor p53 y los parámetros clínico-patológicos. 205
9-b) Análisis de la asociación entre la expresión del oncogen supresor p53 y los marcadores tumorales moleculares. 206

10-a) Análisis de la asociación entre la expresión de catepsina D y los parámetros clínico-patológicos. 208

10-b) Análisis de la asociación entre la expresión de la catepsina D y los marcadores tumorales moleculares. 210

11-a) Análisis de la asociación entre la expresión de la glicoproteína P y los parámetros clínico-patológicos. 211

11-b) Análisis de la asociación entre la expresión de la glicoproteína P y los marcadores tumorales moleculares. 212

I-C. ANÁLISIS DE LOS TUMORES QUE DESARROLLARON METASTASIS DURANTE LOS 36 MESES DE SEGUIMIENTO 212

1-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces. 212

1-b) Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces. 215

2-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces en pacientes con ganglios axilares positivos. ... 221

2-b) Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces en pacientes con ganglios axilares positivos. ... 221

3-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces en pacientes con ganglios axilares negativos. .. 222

3-b) Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces en pacientes con
ganglios axilares negativos. .. 223

II. ANÁLISIS DEL INTERVALO LIBRE DE ENFERMEDAD A 36
MESES CON RELACIóN A LOS PARáMETROS CLíNICO-
PATOLOGICOS Y LOS MARCADORES TUMORALES
MOLECULARES. METODO DE KAPLAN-MEIER Y ANÁLISIS
UNIVARIANTE. ... 224

1) Análisis del intervalo libre de enfermedad a 36 meses con
relación a los parámetros clínico-patológicos. 224

2) Análisis del intervalo libre de enfermedad a 36 meses con
relación a los marcadores tumores moleculares. 229

III. ANALISIS MULTIVARIANTE DE LOS PARáMETROS CLíNICO-
PATOLOGICOS Y DE LOS MARCADORES TUMORALES
MOLECULARES. ... 239

CONCLUSIONES ... 245

BIBLIOGRAFÍA ... 247
INDICE DE ABREVIATURAS

AgNOR: regiones organizadoras nucleolares teñidas con plata.
Am: anticuerpo monoclonal.
AP-1: proteína nuclear activadora de la transcripción tipo 1.
CAF: ciclofosfamida, adriamicina, fluorouracilo.
Catep. D: catepsina D.
CDKN: cinasas de las ciclinas D.
C-erbB-2: proteína receptor producto de expresión del oncogen de la familia ERBB.
CMF: ciclofosfamida, metrotexate, fluorouracilo.
DMBA: 7,12 dimetilbenzeno antraceno.
DNA: ácido desoxirribonucleico.
EGFR: factor de crecimiento epidérmico.
EIA: enzimoinmunoanálisis.
ELISA: ensayo por absorción ligado a enzima.
ERE: elemento de respuesta estrogénico específico.
FEC: fluorouracilo, epirrubicina, ciclofosfamida.
FGF: factor de crecimiento de los fibroblastos.
FISH: hibridación in situ con fluorescencia.
GH: grado histológico.
Glicopot. P: glicoproteína P.
GN: grado nuclear.
HIV: virus de inmunodeficiencia humana.
Ho: hipótesis nula.
H-R: razón de riesgos
HRG: heregulina.
HSF-1: factor de transcripción de choque térmico tipo 1.
HSP: proteína cinasa de choque térmico.
I.C.: intervalo de confianza.
IGF-1: factor de crecimiento insulínico tipo 1.
IHQ: inmunohistoquímica.
IL-1: interleucina tipo 1.
ILE: intervalo libre de enfermedad.
IRMA: análisis inmunorradiométrico.
JAK: cinasas asociadas al receptor de interferón.
kDa: kilodaltones.
KI-67: antígeno nuclear de proliferación celular.
LBA: ensayo de unión al ligando.
MAPK: cinasas asociadas a la cascada de señales.
MDR: resistencia a múltiples drogas.
NDF: factor de diferenciación neuronal.
NMBCs: proteínas de la matriz nuclear del cáncer de mama.
p53: proteína supresora 53.
PAF: mostaza L-fenilalanina, adriamicina y fluorouracilo.
PBP: proteína de unión al receptor proliferador-peroxisoma.
PCNA: antígeno nuclear de proliferación celular.
PF: mostaza L-fenilalanina, fluorouracilo
PKC: proteína cinasa C.
pS2/TFF1: proteína S2 o proteína en forma de trébol 1.
RE: receptor de estrógeno.
RNAm: ácido ribonucleico mensajero.
RNAr: ácido ribonucleico ribosomal.
RPg: receptor de progesterona.
RR: riesgo relativo.
RT-PCR: transcripción inversa-reacción en cadena de la polimerasa.
SG: supervivencia global
SH: regiones homólogas Src
SIE: secuencias específicas de unión inducibles.
SIF: factor de transcripción específicos inducibles.
SRC: coactivadores de receptores esteroideos.
SRU: unidad de respuesta esteroidea.
SSCP: análisis de polimorfismos de la conformación uncatenaria del DNA.
Stat: transductores de señales y activadores de la transcripción.
SV40: virus de sarcoma.
TAF: función de activación de la transcripción.
TGF alfa: factor de crecimiento transformante alfa.
TNF: factor de necrosis tumoral.
uAP: activador del plasminógeno.
Expreso mi profunda gratitud a los Dres. Alvaro Larrad Jiménez y Jesús María Andrés de Llano por su constante estímulo y orientación científica, haciendo posible la culminación de este trabajo.

Quiero agradecer muy sinceramente la colaboración de los Dres. Luis Carretero Albiñana y Emilio Alvarez Fernández del Departamento de Anatomía Patológica del Hospital General Universitario Gregorio Marañón.

Asimismo, quiero agradecer al Dr. Alberto Muñoz-Calero, Jefe de Departamento de Cirugía, al Dr. Modesto Trinchet Hernández, Jefe del Servicio de Cirugía I y a todas aquellas personas que con su incesante apoyo han contribuido al buen fin de este trabajo.
INTRODUCCIÓN

El cáncer de mama es una de las principales causas de muerte por neoplasias malignas de la población femenina en los países desarrollados. En España constituye el tumor maligno más frecuente en la mujer y su incidencia, según los registros de población, varía entre 40 y 75 por 100.000 mujeres. El riesgo estimado de padecer un cáncer de mama antes de los 75 años es de un 5% (AETS, 1995). Según las bases de datos del Instituto Nacional de Estadística en 1997 fallecieron 164.426 mujeres, 34.269 de las muertes fueron causadas por tumores malignos y de éstas 5.766 se debieron al cáncer de mama. La media de edad de los fallecimientos es de 64, 38 años, con una tasa cruda de mortalidad de un 29,43 por 100.000 habitantes, una tasa ajustada por edad con la población europea de 25,02, una tasa ajustada a la población mundial de 17,75 y una tasa truncada (35-64 años) ajustada con la población europea de 37,01. Estos datos le convierten en la primera causa de muerte por cáncer en la población femenina. (Martínez de Aragón y Llácer, 1997; López-Abente et al., 1997; INE, 2000)

Gracias a los programas de prevención, mediante mamografías de cribado e información a la población, se ha incrementado el diagnóstico de cánceres menores de un centímetro, de cánceres sin afectación ganglionar, de carcinomas in situ y de cánceres en pacientes en edad inferior a los 40 años. También se han obtenido avances importantes en el tratamiento quimioterápico adyuvante y se están ensayado nuevas estrategias terapéuticas en el campo de la inmunología. Sin embargo, a pesar de estos logros la mortalidad global no ha experimentado el descenso deseado, aunque algunos estudios atribuyen este efecto al incremento observado en la incidencia. Desde 1940 la mortalidad en España ha mostrado una tendencia creciente que es además evidente en todos los grupos de edad e independiente de los avances obtenidos en el tratamiento. Si se compara con el inicio de los años 80 el incremento ha sido de un 29 %. No obstante, desde 1992 la mortalidad con pequeñas variaciones no ha sufrido cambios significativos, observándose una estabilización en todos los grupos de edad (AETS, 1995; INE, 2000).

En la VI Conferencia de Consenso Internacional sobre el tratamiento primario del cáncer de mama celebrada en febrero de 1998 en St. Gallen, se definieron categorías de riesgo mínimo, intermedio y elevado en pacientes con ganglios axilares negativos. Los factores de riesgo para la recidiva incluyeron, el tamaño tumoral, la afectación ganglionar, el estado de los receptores de estrógeno y progesterona, el grado histológico y la edad, especialmente considerada factor de alto riesgo por debajo de los 35 años. La mayoría se han estudiado ampliamente,
considerándose en la actualidad el tamaño tumoral y el estado y número de los ganglios axilares como las variables pronóstico más importantes. Por ello, la estadificación del cáncer de mama que incorpora ambos parámetros es en la actualidad, sin lugar a dudas, uno de los mejores indicadores del pronóstico. Destaca que los receptores hormonales (estrógeno y progesterona) fueron los únicos marcadores tumorales moleculares con valor pronóstico y además su determinación constituye una base para establecer tratamientos quimioendocrinos y predecir las futuras respuestas. El producto del oncogén C-erbB-2 se cita como un marcador tumoral de investigación cuyo valor pronóstico se encuentra en fase de evaluación clínica y experimental como futura diana terapéutica (Ravdin, 1998; Zujewski y Liu, 1998).

Si bien es cierto que las pacientes con enfermedad limitada a la mama y con ganglios axilares libres de colonización tumoral gozan de un pronóstico favorable, entre un 20 y un 30% de este grupo registra una recidiva durante los primeros 5 años de seguimiento. Por desgracia, hasta un 30% o más de las metástasis aparecen durante los tres primeros años tras la mastectomía, y en estos casos los factores de pronóstico clásicos han demostrado tener limitaciones. Esta realidad explica porqué en los últimos años se han doblado los esfuerzos por incorporar nuevos factores pronóstico adicionales a los utilizados clásicamente. Los avances en biología molecular han determinado un mejor conocimiento de la biología tumoral y a su vez han permitido la incorporación de nuevas variables con un potencial valor pronóstico aún por definir. Por tanto, se hace necesario conocer el comportamiento, utilidad y rendimiento en la clínica de ciertos marcadores tumorales, que comprenden el receptor de estrógeno (RE), el receptor de progesterona (RPg), la proteína pS2 (TFF1), la proteína p29 (Hsp27), el receptor del factor de crecimiento epidérmico (EGFR), la proteína 185 C-erbB-2, el antígeno nuclear de proliferación celular Ki-67, el antígeno nuclear de proliferación celular (PCNA), la proteína p53, la catepsina D y la glicoproteína P.
ESTADO ACTUAL DE LOS MARCADORES TUMORALES MOLECULARES.

La primera alusión a la hormonodependencia en el cáncer de mama se le debe al cirujano escocés George Beatson (1896), al señalar que la ablación ovárica inducía la regresión de cánceres de mama inoperables. La disponibilidad de estrógeno tritiado permitió inicialmente demostrar y medir receptores específicos y de alta afinidad para el estradiol (Glascock y Hoekstra, 1959) y más tarde para el receptor de progesterona (Milgrom et al., 1972). Jensen et al., (1972) indicaron que la presencia del receptor de estrógeno se relacionaba con la respuesta al tratamiento endocrino. McGuire (1975) hizo referencia al valor predictivo y a la importancia de la medición del receptor de estrógeno en el cáncer de mama. Los trabajos posteriores de Bishop et al., (1979), Cooke et al., (1979) Saaman et al., (1981) y Clark y McGuire (1988) confirmaron el valor pronóstico de los receptores de estrógeno al demostrar una mayor supervivencia en pacientes con tumores RE+.

Desde 1968 el RE ha sido cuantificado por métodos bioquímicos empleando homogeneizados de tumores incubados con estrógenos marcados radioactivamente. La cantidad del estrógeno unido al receptor se determinaba después de la separación del estrógeno libre con carbón dextrano (DCC). Con este método se ha logrado la identificación del 60% de los tumores RE+ (Wittliff, 1984; Lluch et al., 1987). Los estudios inmunohistoquímicos y de hibridación in situ progresivamente han logrado desplazar a los métodos bioquímicos y, a su vez, han permitido demostrar la localización nuclear del RE. Los porcentajes de positividad con la tinción IHQ en algunos casos superan el 70% (Keshegian et al., 1988; Ramos-Fernández et al., 1998).

El receptor de estrógeno pertenece a la clase 2 de receptores esteroideos de la superfamilia de receptores nucleares; se une específicamente y con alta afinidad \(\text{kd: } 1 \times 10^{-10} \text{ M} \) al estradiol, su ligando. El RE es una fosfoproteína, un factor de transcripción nuclear activado por ligando que en su estado inactivo se encuentra en complejos o agregados macromoleculares formados por monómeros del receptor y varias proteínas de unión no esteroideas como la Hsp90, Hsp70 y la p59 ó inmunofilina (Webster et al., 1988; Musgrove y Sutherland, 1994).
Walter et al., (1985) clonaron el DNA del receptor estrogénico en la línea celular MCF7 y Greene et al., (1986) realizaron la secuenciación completa del producto de transcripción del gen. El DNA consta de 1.785 nucleótidos que codifican un polipéptido de 595 aminoácidos con un peso molecular de 66,2 kDa. Cuando se realizó la clonación y secuenciación del DNA del RE se demostró que la región de unión al DNA guardaba una gran similitud con la del oncogén ERBA. Por medio de hibridación in situ, utilizando una sonda de DNA complementario conteniendo la secuencia de codificación del RE, Gosden et al., (1986) localizaron el gen del RE en el brazo corto del cromosoma 6 entre las regiones q24 y q27. Menasce et al., (1993) por FISH (hibridación in situ con fluorescencia) le asignaron al gen la región 6q25.

Mediante procedimientos bioquímicos y genéticos que incluían la clonación de genes, empleo de vectores con DNA complementarios, alineamiento secuencial y mutaciones por delección, se logró definir las funciones y estructura molecular del receptor estrogénico. El DNA del gen que codifica el RE mide más de 140 kb de longitud y consta de 8 exones que codifican 6 dominios en la proteína, designados por las letras de la A – F (Ponglikitmongkol et al., 1988). En el extremo carboxi-terminal se localiza el dominio E que une al ligando. Este dominio de unos 300 aminoácidos es codificado por parte de los exones del 4 al 8. (Evans, 1988; Katzenellebogen et al., 1987). La región del receptor que se une al DNA, o dominio C, está situado en el extremo amino-terminal y es codificada por los exones 2 y 3. (Figura 1). Es una región de 66 aminoácidos altamente conservada con múltiples residuos de cisteína y un residuo de histidina en el eje central de la proteína. La disposición de estos residuos produce una estructura en forma de dedo que es estabilizada por un ión de zinc. (Figura 2). Existen dos estructuras de dedos de zinc (CI y CII) formada cada una por dos grupos de residuos de cisteína coordinados tetraédricamente con un átomo de zinc y codificadas cada una por exones independientes. Se supone que esta configuración permite la interacción con una media vuelta del DNA y la coordinación con los elementos de respuesta específicos de estrógeno (EREs) en las regiones promotoras de los genes dependientes del RE. La diferencia en la secuencia de aminoácidos en los motivos de unión al DNA determina el elemento de respuesta que cada receptor de la super familia es capaz de reconocer (Mader et al., 1989). En el caso del estrógeno corresponden a los aminoácidos Glu, Gli, Cis, Lis, Ala/Gli. El dominio D comprende una señal de localización nuclear de unos 50 aminoácidos que se ha denominado como región de “pinza” y es independiente de la unión con el ligando. El dominio AF1 posee la capacidad de activar la transcripción en ausencia del ligando y está definido por los dominios A y B en el extremo amino-terminal. El dominio AF2, situado en el dominio E, induce la transcripción de genes al unirse con muy alta afinidad a su ligando. La mayoría de los promotores de los genes diana precisan de la interacción sinérgica entre AF-1 y AF-2 para la completa actividad del RE.
FIGURA 1. RECEPTOR DE ESTROGENO

EXONES

DNA

RNAm

NH2

COOH

Proteína

A B C D E F

______ AF1_______ _________AF2___________

Unión __Unión al ligando__

EXONES 1 2 3 4 5 6 7 8
FIGURA 2. MOTIVO DE UNIÓN AL DNA. DEDOS DE ZINC.

La unión del RE con el estradiol formando un complejo RE-estradiol induce una serie de cambios allostéricos en la proteína receptora que le permite su separación de las proteínas de choque térmico (heat shock proteins), la fosforilación de una serie de sus residuos de serina y tirosina y la dimerización. (Figura 3). Weiss et al., (1991) examinaron la función de la tirosina 537 en la respuesta transcripcional del RE, que debido a su proximidad al dominio de unión del ligando se cree fundamental en la actividad transcripcional dependiente de hormona. Al sustituir esta región por 5 aminoácidos distintos, observaron que las mutaciones tirosina-537 a alanina y tirosina-537 a serina produjeron una actividad transcripcional constitutiva, es decir, en ausencia del ligando del 20 y 100% respectivamente. La sustitución de este residuo por ácido glutámico y lisina en algunos casos ocasionó la activación constitutiva, aunque en menor intensidad. Estos trabajos experimentales reforzaron el concepto que la región tirosina537 es muy importante en la regulación de la actividad transcripcional del receptor de estrógeno inducida por su ligando y la sustitución por otros aminoácidos es capaz de generar un cambio conformacional suficiente para activar al receptor en ausencia del ligando.

Una vez producido el cambio conformacional el receptor se une a una serie de elementos de respuesta estrogénicos específicos (EREs) y la interacción con coactivadores de receptores esteroideos (SRC1, SRC2, SRC3) que le permiten inducir la transcripción de los genes mediante contactos proteína-proteína entre los dominios AF1 y AF2 con diversos componentes de la maquinaria transcripcional. Las vías de señalización son muy complejas como lo ponen de manifiesto diferentes estudios experimentales induciendo una serie de mutaciones en los dominios de unión al ligando, así, la pérdida del AF2 permite aún la activación transcripcional mediante el dominio AF1. En este caso, la actividad transcripcional constitutiva es independiente del dominio AF2, aunque de menor intensidad. Tzukerman et al., (1994) demostraron mediante experimentos de mutaciones en los dominios AF1 y AF2 del RE que la función o actividad transcripcional de éstos varía según la región promotora de los genes diana. Así, en ciertos promotores se precisa de ambos dominios, AF1 y AF2, para una completa actividad del RE, mientras que en otros promotores, AF1 y AF2, pueden ejercer sus funciones de modo independiente. Observaron además, que el tamoxifén activa intrínsecamente la AF-2 (función de activación de la transcripción, TAF-2), sin embargo, en otros promotores este agente activa eficientemente la transcripción de genes a través del RE, es decir, actúa como un agonista del receptor, y por tanto, la función de AF2 no es necesaria. Sobre la base de estos hallazgos, concluyeron que el dominio AF1 es el principal activador de la transcripción del RE y el dominio AF2 funciona como un facilitador de la transcripción. En ciertos promotores donde la función de AF2 es independiente del RE, el AF1 puede funcionar independientemente del AF2.
FIGURA 3. ACCION DE LOS ESTROGENOS SOBRE EL RE

Unión del estradiol al receptor

Cambios de conformación y fosforilación

Separación de proteínas de choque térmico (HSP) del RE

Dimerización

INTERACCIÓN CON EL APARATO GRAL. DE TRANSCRIPCION

Modulación de la RNA polimerasa
En la actualidad se han identificado dos isoformas del RE, el RE-isoforma alfa (RE clásico, RE-alfa) y el RE-isoforma beta (RE-beta), que presentan diferentes patrones de expresión tisular y celular. Se ha identificado un nuevo receptor estrogénico relacionado con la isoforma alfa, el RER-alfa, incluido como un subgrupo de la superfamilia de receptores nucleares con una gran homología al RE-alfa y compartiendo sus mismos genes dianas, aunque es incapaz de activar la transcripción de genes tras su estimulación con estradiol. No se conoce aún su ligando específico ni sus funciones exactas y por eso se ha considerado como un receptor huérfano. El RER-alfa fue clonado empleando una genoteca de DNA de células renales humanas con una sonda conteniendo el dominio de unión del DNA del RE (Giguere et al., 1988). La clonación del DNA del RER-alfa del ratón permitió demostrar la elevada expresión de este gen en tejidos como el riñón, corazón y tejido adiposo marrón caracterizados por metabolizar ácidos grasos. También se comprobó que el RER-alfa se une a un elemento de respuesta que contiene la mitad de un solo sitio consenso TNAAGGTCA. Un elemento de respuesta para el RER-alfa se ha encontrado en el extremo 5’ de la región promotora del gen que codifica la enzima acil coenzima A deshidrogenosa de ácidos grasos de cadena media (MCAD) implicada en la oxidación beta mitocondrial de las grasas. El RER-alfa interacciona con el elemento de respuesta nuclear 1 (NRRE-1) de MCAD controlando la expresión del gen de esta enzima. Además el RER-alfa a través de la unión con NRRE-1 inhibe la inducción de la síntesis de ácido retinoico. Se cree que este receptor puede desempeñar un rol en la regulación del balance energético celular. Mediante FISH, Sladek et al., (1997), localizaron el gen del RER-alfa en locus 11q12-q13. Este mismo autor identificó un seudogen RER-alfa en el cromosoma 13q12.1.

El receptor de estrógeno isoforma-beta (RE-beta) fue clonado por Mosselman et al., (1996). Kuiper et al., (1996) también identificaron el RE-beta en el tejido prostático y ovárico de la rata. La comparación de su secuencia de aminoácidos con el receptor de estrógeno (RE-alfa) demostró un grado de conservación del 96% en el dominio de unión al DNA y un 58% en el dominio de unión al ligando. En cambio, no se encontró homología con los dominios AB, F y con la región de pinza. El RE-beta codifica un dominio AF-1 diferente del RE. Moore et al., (1998), sobre la base de las diferencias en las secuencias de aminoácidos de la región carboxiterminal y por los patrones de expresión en distintos tejidos, han identificado 5 isoformas del RE-beta (RE-beta 1, 2, 3, 4, 5). Este receptor es activado por el 17-beta estradiol e inhibido por el antagonista ICI-164384. El timo, bazo, las espermatides en desarrollo en el testículo y las células de la granulosa de los ovarios expresan el RE-beta.

El RE-alfa y las variantes de su RNAm producidas por delecciones de los exones 2, 4, 5 y 7 han sido reconocidas en hipófisis normales y en adenomas hipofisarios. La mayoría de los prolactinomas expresan RE-alfa (Shupnik et al., 1998), aunque también se han demostrado en tumores que contienen la hormona del crecimiento y gonadotropinas y en tumores de células nulas. Chaidarun et al., (1998) demostraron la co-expresión del RE-beta y sus variantes RNA mensajeros con el RE-alfa en el 60% de los prolactinomas, en el 100% de tumores mixtos productores de hormona de crecimiento/prolactina y en el 29% de los gonadotrofos. También se encontró su expresión independiente del RE-alfa en el 100% de las células nulas, en el 80% de los somatotropos y en el 60% de los corticotropos. Estos autores hacen referencia a las interacciones entre estos dos receptores, con un menor rol del RE-beta en la transcripción de genes en tumores RE-alfa+, pero con una función mediadora principal en los tejidos que carecen del RE-alfa y únicamente expresan el RE-beta. Aparentemente debido a las diferencias en la capacidad transcriptiva de ambos receptores, la expresión de genes por estímulo del estradiol en la pituitaria normal y neoplásica depende de la expresión del RE-alfa y RE-beta.

En el tejido mamario sano predomina la isoforma beta, mientras que los cánceres expresan preferentemente la isoforma alfa o ambas. La presencia de la isoforma beta, en los tumores con expresión de ambas isoformas, se ha relacionado con la ausencia del RPg, invasión ganglionar, mayor tamaño tumoral y altos grados histológicos. Dotzalaw et al., (1999) objetivaron una disminución de la expresión del RNA mensajero de la isoforma beta en la línea celular T47D cuando fueron tratadas con progesterona, sugiriendo la posibilidad de que la isoforma beta constituya un marcador de respuesta al tratamiento hormonal. (Speirs et al., 1999; Dotzalaw et al., 1999).
Los estrógenos, al unirse con su receptor, favorecen el paso de células en G0 a G1 acortando la duración del ciclo celular y promoviendo el desarrollo y diferenciación del tejido mamario. Los estrógenos actúan sobre los genes de respuesta temprana (c-fos, c-jun, c-myc) de la fase G1 del ciclo celular, estimulando la actividad de las ciclinas, especialmente la D1, considerada esta como el paso limitante en el ciclo de división celular (Musgrove y Sutherland 1994). Además, el estradiol regula positivamente la proteíncinasa C (PKC), mientras que esta enzima y sus ligandos (ésteres de forbol) regulan negativamente los niveles de los receptores de estrógeno. La PKC es una serina/treonina cinasa cuya expresión varía en diferentes tejidos y que participa en las vías de señalización que generan segundos mensajeros. Activadores de la PKC como el AMPc de manera sinérgica incrementan la actividad transcripcional del RE de una manera promotora-específica. De este modo, los estrógenos, los activadores de la PKC y algunos factores de crecimiento aumentan la fosforilación del RE y las proteínas involucradas en las vías de respuestas específicas RE (Katzenellenbogen et al., 1995). El tamoxifén ejerce efectos antiestrogénicos, inhibe la actividad de la PKC y la acción de las ciclinas D, pero depende de la integridad del RE, del tipo de célula y, principalmente, del promotor para ejercer acciones antiestrogénicas o estrogénicas.

En el modelo de cascada propuesto por Schuchard et al., (1993) los esteroides interaccionan rápidamente, en cuestión de minutos, con protooncogenes nucleares de respuesta temprana que codifican proteínas reguladoras que, a su vez, controlan positivamente o negativamente la transcripción de genes estructurales de respuesta tardía y el procesamiento del RNA mensajero. Los protooncogenes nucleares funcionan como importantes genes reguladores iniciales codificando factores de transcripción y enzimas necesarias para la transcripción de genes estructurales. Los receptores esteroideos a través de la unión con sus elementos de respuesta esteroidea (ERE) regulan localmente la transcripción de genes y de las unidades de respuesta esteroidea (SRU), compuestas de 2 o más EREs. Las SRU pueden actuar a grandes distancias de los genes iniciales para incrementar la transcripción regulada por los esteroides. En el proceso de transcripción también intervienen proteínas de la matriz nuclear a través de un factor de unión (RBF-1) para los receptores esteroideos de estos genes. La matriz nuclear es un complejo RNA-proteína muy dinámico que organiza la cromatina y regula el metabolismo del DNA nuclear. Su estudio ha permitido demostrar la existencia de proteínas (NMBCs) que se asocian con el DNA nuclear de líneas celulares de cáncer de mama dependientes de hormona y líneas celulares independientes de hormonas. Hasta el momento se han identificado 3 proteínas NMBCs exclusivas de células RE+ (dependientes de hormonas) y 2 NMBCs de células RE- (independientes de hormonas). Se han observado cambios en las NMBCs en líneas celulares transformadas de un estado de dependencia hormonal (RE+) al de independencia (RE-).
La proteína vimentina se encontró asociada al DNA de las células MDA-MB-231 (RE-) que poseen un importante potencial metastásico (Spencer et al., 2000).

Un número variable de sustancias depende de la estimulación estrogénica y de un receptor funcionalmente intacto, entre ellas se incluyen: el receptor de progesterona, la Hsp27, los factores de crecimiento transformantes alfa y beta, el factor de crecimiento insulínico tipo 1, el factor de crecimiento epidérmico, la catepsina D, el activador del plasminógeno tisular, la alfa 1 antiquimiotripsina, la pS2; los protooncogenes c-fos, c-myc, C-erbB-2; ciclinas y otras sustancias reguladoras que actúan en las vías de señalización transcripcional y activación de protooncogenes cuyo resultado final es la división y diferenciación celular (Schneider y Jackisch, 1998). Los estrógenos y progesterona regulan los niveles de sus receptores, siendo esta acción necesaria para limitar la actividad de las hormonas en sus células blanco. Alarid et al. (1999) han demostrado en la línea celular PR1 (lactotropo de la pituitaria anterior) y en MCF7 (línea celular de cáncer de mama) que los estrógenos disminuyen rápidamente los niveles de sus receptores a través de la estimulación de la actividad proteolítica por el proteasoma; esta acción no requiere la transcripción, ni la síntesis de proteína, y podría constituir una vía reguladora común para el RE.

Varios trabajos experimentales basados en diversos modelos de carcinogénesis mamaria apuntan la existencia de múltiples vías de comunicación interconectadas entre sí en las que participan los esteroides, factores de crecimiento, factores de transcripción y protooncogenes. Lee et al. (1990) examinaron la relación cuantitativa existente entre el RNAm del EGF y las concentraciones de RE en 10 líneas celulares de cáncer de mama. Las líneas celulares RE- expresaron cantidades significativamente mayores de EGFR-RNAm en comparación con las líneas RE+. Este hecho se comprobó mediante análisis de regresión lineal, por tanto, parece existir una relación recíproca inversa en la regulación de los genes RE y EGR-R. Se ha constatado experimentalmente que las células de cáncer de mama que sobreexpresan el C-erbB-2 adquieren un crecimiento y desarrollo independiente de la estimulación hormonal. La activación del receptor C-erbB-2 por su ligando, la heregulina, induce la fosforilación del RE en residuos de tirosina ocasionando la interacción de éste con su elemento de respuesta con la consiguiente activación de la transcripción, dando origen a la síntesis del receptor de progesterona. Más aún, la sobreexpresión de C-erbB-2 produjo una disminución de los receptores RE que fue independiente del ligando y un retraso en la supresión de los mecanismos autorreguladores de los productos de transcripción dependientes del RE (Pietras et al., 1995).
El factor de crecimiento insulínico tipo-1 (IGF-1) es mitogénico y ejerce un efecto regulador de la expresión y actividad transcripcional del RE. La exposición de células MCF-7 a 40 ng/ml de IGF-1 causó una disminución de un 60% del RE y un 80% del RE-RNAm motivada por una inhibición de la expresión del gen RE. Aparte del efecto inhibitorio sobre el RE, el IGF-1, contrariamente indujo la expresión de RPg y pS2, dos proteínas dependientes de la vía estrogénica. La administración de un agente antiestrógenico puro (IC-164, 384) impidió la síntesis de estas proteínas y lo mismo sucedió con el empleo de inhibidores de la proteíncinasa A y del fosfatidilinositol 3- cinasa (Stoica et al., 2000). Cuando se administró un péptido antisentido al receptor del IGF-1 a ratones desnudos transplantándolos con la línea celular MDA-MB-435 (altamente metastásica) se observó una significativa disminución de las metástasis pulmonares y un aumento de la supervivencia (Chernicky et al. 2000). La relación entre las vías de comunicación de los receptores de factores de crecimiento y el RE fue estudiada en dos líneas celulares de cáncer de mama (MCF-7 y T47D) mediante la administración de un agente antiestrógenico parcial (4-OH-tamoxifén) y un antiestrógeno puro (ZM182780). La estimulación con IGF-1 y heregulina causó un aumento del crecimiento celular que fue abolido por el ZM182780 en la las células MCF-7, pero no en las células T47D. En cambio, la proliferación celular estimulada por los factores de crecimiento se incrementó en ambas líneas celulares expuestas al 4-OH-tamoxifén; efecto que pudo ser inhibido por el ZM182780. La administración conjunta de estradiol, IGF-1 y heregulina únicamente disminuyó la eficacia antiestrógenica del 4-OH-tamoxifén. Por tanto, la intercomunicación entre los RE y los receptores de los factores de crecimiento es diferente en ambas líneas celulares (Lichtner et al., 2000). Estos hallazgos apoyan la teoría que el RE es un mediador del IGF-1 y que existe una intercomunicación entre las vías de factores de crecimiento y la vía estrogénica, aunque, pueden haber variaciones dependiendo del tipo de células.

Los andrógenos también estimulan la proliferación de células de cáncer de mama a través de la activación directa del receptor de estrógeno (Maggioroni et al., 1999). La activación transcripcional del gen c-Ha-ras inducida por los estrógenos ha sido demostrada en un modelo de metástasis de cáncer de mama en el ratón (Pethe y Shekhar, 1999). Mediante experimentos de transfección, Fan et al., (1999) demostraron que la proteína BRCA1 inhibe la vía de señalización del RE activado por su ligando a través del ERE y por bloqueo del dominio AF2 en la región carboxi-terminal del RE. De este modo, la proteína silvestre BRCA1 inhibe la proliferación del epitelio mamario dependiente de la estimulación estrogénica por inhibir la vía transcripcional del RE.
Los factores de transcripción AP-2 intervienen en el crecimiento y morfogénesis del tejido mamario normal y en el control de la proliferación y diferenciación de las células de cáncer de mama (Turner et al., 1998). Se han demostrado sitios de unión AP-2 en los promotores de los receptores de estrógeno y del C-erbB-2. Los genes que codifican estos factores de transcripción se encuentran expresados en varias líneas celulares de cáncer de mama. Existe una correlación muy significativa entre la expresión del AP-2 alfa y la expresión del RE, así como de la expresión del AP-2 alfa y gamma y la sobreexpresión de C-erbB-2. La proteína AP-2 puede regular la transcripción del receptor del factor de crecimiento insulínico implicado en la vía de traducción de señales en el cáncer de mama. Un receptor coactivador nuclear, la proteína de unión al receptor activado proliferador-peroxisoma (PBP), interacciona con el receptor de estrógeno favoreciendo la transcripción dependiente de la vía de señalización de estrógenos. La región de –273 a +1 del gen contiene una caja CCAT, múltiples elementos cis (C/EBPbeta, YY1, c-Ets-1, AP-1, Ap-2) y sitios de unión NfkappaB. El gen que codifica este coactivador del RE se encuentra sobreexpresado y en algunos casos amplificado en varias líneas celulares de cáncer de mama y podría desempeñar una función importante en la diferenciación del epitelio y en la carcinogénesis mamaria (Zhu et al., 1999).

En el cáncer de mama la positividad del receptor de estrógeno y progesterona varía según el estado hormonal. Las premenopáusicas presentan niveles inferiores del receptor de estrógeno en comparación con las postmenopáusicas. En cambio, los niveles de progesterona suelen ser hasta 3 veces superiores en las premenopáusicas con RE- si se comparan con las pacientes postmenopáusicas. Este hecho ha sido atribuido a los elevados niveles de estrógeno circulante de las mujeres premenopáusicas que producen un enmascaramiento de los receptores de estrógeno y un aumento de la actividad estrogénica. En un análisis de 1095 pacientes con cánceres de mama, estudiadas por el Grupo Interdisciplinario para la Valoración y Cuidado del Cáncer en Italia, se demostró que los niveles de RE aumentan con la edad de las pacientes. Las pacientes de 66 años tuvieron una probabilidad 3 veces superior de tener un tumor RE+ en comparación con las de edad inferior a los 40, sin embargo, la proporción de tumores RPg+ fue inferior en las pacientes postmenopáusicas (G.V.I.O., 1995). Helin et al., (1988) demostraron en 190 cánceres de mama, tanto por radioinmuensayo como por IHQ, que los niveles de RE fueron superiores en las pacientes postmenopáusicas (87 fmol/mg prt y histocore de 270) en comparación con las premenopáusicas (31 fmol/mg prt y histocore de 207). Además, objetivaron niveles citosólicos significativamente superiores de RE en aquellas pacientes con bajos niveles séricos de estradiol.
Los niveles de expresión del RE son superiores en los cánceres en comparación con el tejido mamario normal. Esta sobreexpresión se ha intentado relacionar con alteraciones del gen RE. Nembrot *et al.*, (1990) analizaron el gen RE en 21 cánceres de mama y una metástasis ganglionar axilar, observando en 6 de 14 tumores RE+ una amplificación del gen que varió entre 1,6 a 3 veces. No objetivaron amplificación del gen en ninguno de los 8 tumores RE negativo y aunque señalaron que el aumento en la expresión del RE puede ser el resultado de una amplificación del gen, no pudieron establecer una relación entre éste y la cantidad de receptores presentes en los cánceres. Petrangeli *et al.*, (1994) encontraron niveles de RE significativamente mayores en tejido neoplásico que en el tejido perineoplásico atribuyendo este efecto a la hipometilación del gen. En el caso contrario Lapidus *et al.*, (1996) demostraron que la hipermetilación de islas de CpG del gen RE y RPg se relaciona con una falta de expresión de sus receptores en un porcentaje significativo de cánceres de mama humanos.

En el cáncer de mama la positividad del RE y RPg es proporcional al grado de diferenciación y del tipo histológico de los tumores, así, un 90% de los carcinomas ductales y lobulillares infiltrantes son RE+. Aproximadamente un 54% de los carcinomas in situ expresan el RE y de éstos, un 66% de las variantes no comedo, lobulares y papilares expresan el RE. Por el contrario, el 80% de la variedad comedo son RE- (Pallis *et al.*, (1992). No se han observado diferencias significativas entre los niveles del RE del cáncer primario y sus metástasis cuando se han realizado estudios secuenciales de los receptores. Coradini *et al.*, (1984) analizaron en 48 cánceres la distribución de los receptores hormonales (RE y RPg) en los primarios y sus metástasis axilares, de este modo, la positividad para el receptor de estrógeno se observó en el 73% de los primarios y el 62,4% de los ganglios afectados y el RPg se detectó en 73% de los primarios y en el 50% de sus metástasis ganglionares. La concordancia para el RE y RPg fue de 89,6% y 77,1% respectivamente, así la mayoría de los ganglios expresaron el mismo receptor que sus tumores primarios y en ningún caso objetivaron ganglios RE+ con primarios RE-. De manera similar, Li *et al.*, (1994) compararon la concordancia de los RE (n=83) y RPg (n=32) entre los tumores primarios, las recidivas y los segundos primarios. Además, analizaron la influencia que ejerce el tratamiento adyuvante sobre la expresión de los receptores. En el 71% de los casos coincidió la positividad para el RE en el primario/recidiva y en el 56% para la positividad del RPg en el primario/recidiva. Independientemente que la recidiva fuera local, a distancia o un segundo primario, no afectó la concordancia para los receptores hormonales, como tampoco lo hizo el tipo de tratamiento adyuvante. Observaron sin embargo, una disminución de la supervivencia libre de enfermedad en aquellos tumores primario RE+/recidiva RE- y primarios RPg+/recidiva Rpg-. Nomura *et al.*, (1985), en su serie de 942 cánceres de mama, objetivaron en 42 recidivas que 10 de los 27 tumores RE+ cambiaron a un
estado RE- al contrario de los 15 tumores RE- que mantuvieron la negatividad del receptor. Por otro parte, el análisis de cánceres de mama avanzados sometidos a diferentes terapias endocrinas y citotóxicas evidenció un cambio en el estado del RE de positivo a negativo. Concluyeron que algunos cánceres de mama el RE y RPg cambian de fenotipo positivo a negativo durante la progresión tumoral y con algunas terapias, especialmente la endocrina.

La actividad del RE y RPg ha servido para definir grupos de riesgo de recidiva y para valorar la respuesta a varias formas de manipulación endocrina. El 60% de los cánceres RE+ y el 10% de los RE- responden a la administración de estrógenos o a medidas ablativas hormonales. McGuire et al., (1990) observaron un 80% de respuesta objetiva a la terapia endocrina en enfermas cuyos tumores poseían niveles de RE iguales o superiores a los 100 fmol/mg prt frente a un 46% de respuesta en pacientes con niveles inferiores a este valor. Stewart et al., (1982) analizaron la respuesta a la terapia endocrina en 156 cánceres de mama avanzados con relación a 4 subgrupos fenotípicos basados en la determinación de los niveles de RE y RPg (punto de corte: 5 fmol/mg prt). La respuesta a la primera terapia endocrina según el fenotipo tumoral fue de: RE+/RPg+ 50%, RE+/RPg- 27%, RE-/RPg+ 27% y RE-/RPg- 6%. Cuatro de dieciséis tumores RE+/RPg+ respondieron a una segunda línea hormonal, hecho que no se repitió con otros fenotipos tumorales. Los tumores RE-/RPg- tuvieron una supervivencia significativamente más corta. Thorpe (1988) describe en la revisión de los resultados del estudio realizado por el Grupo Cooperativo Nacional Danés sobre 4.000 pacientes con cáncer de mama, la existencia de tres grupos de tumores biológicamente y clínicamente bien definidos. Un primer grupo estaría constituido por tumores RE+/RP+ y RE-/RP+ que responden bien al tratamiento hormonal; un segundo grupo representado por tumores RE-/RPg- que no responden a las terapias endocrinas y un tercer grupo RE+/RPg- con respuestas dudosas al tratamiento hormonal, observado predominantemente en pacientes postmenopáusicas. Clark et al., (1987), en un estudio basado en 1015 pacientes con enfermedad metastásica, citan que el lugar de la primera recidiva y el estado del RE son importantes para predecir la supervivencia. En este análisis fueron de valor pronóstico la presencia de metástasis axilares y el contenido del RE. Las recidivas óseas se objetivaron en pacientes con tumores RE+, en cambio, las metástasis viscerales y en tejidos blandos fueron más frecuentes en cánceres RE-. Los cánceres RE+ tuvieron un mejor pronóstico independientemente del lugar de asiento de las metástasis. Elledge et al., (2000) compararon la utilidad del RE y RPg determinados por IRMA e IHQ, para predecir la respuesta al tamoxifén en 205 pacientes RE+ con enfermedad metástasisica. Observaron una relación directa entre la respuesta al tamoxifén y altos índices de RE, RPg y pS2. Elevados niveles de RE, RPg y pS2, tanto por LBA como por IHQ, se relacionaron significativamente con una buena respuesta al tratamiento hormonal y a una prolongada supervivencia.
La determinación conjunta del receptor de estrógeno y la medición de la fracción de proliferación celular ha sido de utilidad para predecir la mejor respuesta a tratamientos endocrinos y quimioterápicos. Silvestrini et al., (1979), en su análisis de 199 cánceres de mama, hacen referencia a la relación inversa entre la actividad proliferativa y la cantidad del receptor de estrógeno. La medición de la actividad proliferativa mediante el índice de timidina tritiada y los niveles de RE le permitieron identificar 3 grupos con diferente cinética celular. Un primer grupo constituido por pacientes postmenopáusicas con cánceres RE+ con baja actividad proliferativa; un segundo grupo de pacientes premenopáusicas con cánceres RE+ y postmenopáusicas con cánceres RE- con actividad proliferativa intermedia y un tercer grupo de pacientes premenopáusicas con cánceres RE- con elevada actividad proliferativa. En los tumores con bajo índice de proliferación, los niveles del RE fueron más bajos en las premenopáusicas en comparación con las postmenopáusicas. Skoog et al., (1992) también analizaron la actividad proliferativa y los niveles de estrógeno en 12 pacientes postmenopáusicas con cánceres de mama en tratamiento con tamoxifén exclusivamente por rechazo a la cirugía y en 7 pacientes premenopáusicas con carcinomas inflamatorios y avanzados que recibieron quimioterapia preoperatoria. Las pacientes con buena respuesta al tamoxifén y en aquellas con enfermedad estabilizada presentaban tumores con baja actividad proliferativa y positividad para el RE. En cambio, se observó una elevada actividad proliferativa y la presencia de menos del 25% de los RE en dos enfermas con progresión de su enfermedad. La respuesta objetiva clínica a la quimioterapia también se relacionó con una baja fracción de proliferación.

Por el contrario, Romain et al., (1994), en un estudio sobre 542 cánceres de mama en pacientes postmenopáusicas, objetivaron que algunos tumores RE+ mostraban una elevada actividad proliferativa. Estratificaron los pacientes en grupos de alta, intermedia y baja expresión del RE, basándose en una curva de distribución de frecuencias de los valores de la tinción IHQ transformados a logaritmos. Una alta expresión de catepsina, un aumento de la actividad de la timidina quinasa (actividad proliferativa) y una mala evolución se apreció en el grupo con baja expresión del RE. Paradójicamente, elevados niveles de catepsina y alta actividad proliferativa también se encontraron en pacientes con altos niveles de expresión del RE. Este grupo tuvo una evolución desfavorable, al igual que sucedió con los tumores con baja expresión del RE. De manera similar, Thorpe et al., (1993), en un análisis de 952 cánceres de mama de pacientes postmenopáusicas sin tratamiento adyuvante, identificaron un grupo de pacientes (47% de la cohorte) con elevados niveles de RE (108 > fmol/mg prt) cuyo pronóstico fue tan desfavorable como las pacientes con tumores RE-. Estos autores utilizaron una escala de graduación de valores del RE (10 <, 10 – 107, y 108 > fmol/mg prt) para estratificar los
pacientes en grupos de bajos, intermedios y elevados niveles de expresión del RE. En el análisis multivariante un alto contenido de RE fue de mayor valor para predecir un menor intervalo libre de enfermedad que el grado de anaplasia y que el tamaño tumoral.

La presencia de un receptor de estrógeno inteso es fundamental para que exista una buena respuesta al tratamiento hormonal. Sin embargo, aproximadamente un 35–40 % de los tumores RE+ no responden adecuadamente a los agentes antiestrogénicos y de aquellos que responden, eventualmente algunos se hacen insensibles a pesar de expresar aún el receptor. La pérdida del RE o su funcionalidad se ha relacionado con tumores agresivos, insensibles al tratamiento hormonal y con mayor capacidad para desarrollar metástasis (Osborne et al., 1980, McGuire et al., 1982). Estos hechos han motivado la búsqueda de mecanismos que puedan explicar el fenómeno de hormonorresistencia observado en algunos cánceres de mama. Encarnación et al., (1993), investigaron el cambio de fenotipo RE y RPg por radioinmunoensayo e IHQ en 34 cánceres de mama en tratamiento con tamoxifén, de las que 30 mostraban resistencia a este agente. Ocho de once pacientes con franca progresión de la enfermedad presentaban tumores RE+/RPg+ y otras seis mostraban cánceres RE+/RPg-. Tan sólo se registraron cánceres RE-/RPg- en 12 pacientes por ambos métodos, insinuando un mecanismo de independencia hormonal. Concluyeron que en muchos tumores en franca progresión, a pesar de recibir tratamiento hormonal, existen otros mecanismos de resistencia a parte de la pérdida de expresión de los receptores. Scott et al. (1991), al explorar en 38 cánceres de mama la capacidad del RE de unirse a su elemento de respuesta afín, evidenciaron que algunos tumores RE+ eran incapaces de unirse al DNA y otros lo hacían en baja proporción. El análisis de estos receptores demostró que se trataban de formas truncadas constituidas por homodímeros de 50 kDa y heterodímeros de 67 y 50 kDa. De esta manera, la pérdida del dominio de unión al DNA del RE podría ser una de las causas de la resistencia clínica a la terapia antiestrógena. Karnik et al., (1994) analizaron por SSCP (conformación de polimorfismos de una sola banda) los 8 exones de DNA complementario del RE de 20 cánceres de mama resistentes y 20 tumores sensibles al tamoxifén, encontrando únicamente un reemplazo de 42 pares de bases en el exon 6 de un tumor resistente a tamoxifén. También, observaron la deleción de un par de bases en el mismo exon presente en un tumor metastásico resistente al tamoxifén que no estaba presente en el tumor primario. En los 18 tumores restantes resistentes a tamoxifén no se objetivaron mutaciones en ninguno de los 8 exones, lo que indica que la baja frecuencia de mutaciones no puede explicar el mecanismo de resistencia a este agente. Roodi et al., (1995) analizaron el gen RE en 118 cánceres de mama RE+ y en 70 RE- para investigar posibles alteraciones en el gen inductoras de un fenotipo RE negativo resistente a la hormonoterapia. Mediante amplificación de los exones del 1 al 8 del gen y análisis por SSCP, electroforesis y secuenciación del DNA
objetivaron, tanto en tumores RE+ como en RE-, la existencia de polimorfismos en los codones 10, 87, 243, 325 y 594. No demostraron asociación significativa alguna entre estos polimorfismos y los parámetros clínico-patológicos clásicos, aunque las alteraciones en el codón 325 mostraron una fuerte asociación con una historia familiar de cáncer de mama en pacientes pre y postmenopáusicas. Tampoco encontraron delecciones/ inserciones y tan solo dos mutaciones en los codones 69 y 396. En consecuencia, únicamente el 1% de los cánceres de mama en esta serie mostró alteraciones del gen y, por tanto, la expresión negativa del RE se debe más bien a una deficiente expresión a nivel transcripcional o postranscripcional. Por otra parte, la transfección de genes RE silvestres y mutantes a células RE negativas para revertir la hormonoindependencia produjo un efecto paradójico en el que los estrógenos en vez de estimular, inhibieron el crecimiento tumoral (Levenson y Jordan 1994).

Sluyser y Mester (1985) hipotetizaron que la pérdida de la dependencia hormonal de ciertos cánceres de mama podía ser debida a una mutación del gen o a un receptor truncado que activa la transcripción sin la presencia del ligando. Desde la identificación de variantes del RNA mensajero del receptor de estrógeno, producidas por inserciones de pares de bases, transiciones, delecciones y separaciones alternativas que producen delecciones de los exones 3, 5, 7, existe un gran interés por las alteraciones en la estructura del receptor estrogénico (McGuire et al., 1991). Estos autores en modelos de levaduras demostraron la existencia de receptores estrogénicos dominantes positivos que inducen la transcripción en ausencia del ligando y receptores dominantes negativos qué, aunque transcripcionalmente inactivos, impiden la función normal del RE (Fuqua et al., 1991; Fuqua et al., 1992; Dowsett et al., 1997). Fuqua et al., (1991), mediante un DNA complementario amplificado por PCR, detectaron la variante delta 5 originada por la delección del exon 5. Esta variante que se expresaba predominantemente en tumores RE-/RPg+ era capaz de activar constitutivamente la transcripción del gen RE y su coexpresión con el RE silvestre confería una resistencia al tratamiento con tamoxifén. (Fuqua et al., 1993), además, identificaron en pacientes con tumores RE+/RPg- una variante del RE por delección del exon 3 que inhibía la unión del RE silvestre a su elemento de respuesta (ERE) e interfería de manera dominante negativa con la función del RE. Castles et al., (1993), también demostraron variantes del RE-RNAm en las líneas celulares RE- (BT-20) y RE+ (MCF7). Encontraron delecciones del exon 5 en ambas líneas celulares, sin embargo, esta variante predominaba en células RE-. La variante delta 5 era el resultado del procesamiento alternativo del RE-RNAm originando un RE truncado de 42 kDa carente del dominio de unión hormonal. Aparte de su presencia en el tejido tumoral, también se comprobó su existencia en tejido mamario sano y endometrial. Posteriormente Zhang et al., (1993) constataron que su presencia no sólo se limitaba a tumores RE- ya que 19 de 20 tumores RE+/Rpg+ y RE+/RPg- mostraron
la variante. Además, la delta 5 siempre se coexpresaba con el receptor silvestre y en cambio, no se objetivaba en tumores RE-/RPg-. Fuqua et al., (1995) al transfectar la variante del RE delta 5 por medio de un vector a células MCF7 lograron la transcripción de un receptor de 40 kDa, la síntesis del RPg y el crecimiento de colonias independientes de la estimulación estrogénica, demostrando de este modo, la capacidad transcripcional de esta variante.

Castles et al., (1995) exploraron recientemente mediante RT-PCR las variantes producto de delecciones del exon 5 y 7 en varias líneas celulares de cáncer de mama. Al contrario de las líneas RE+, solo 3 líneas celulares RE- (BT-20, MDA-MB-33, T47-Dco) expresaron el receptor silvestre y las variantes, aunque, los niveles de expresión fueron muy inferiores en comparación con células RE +. Según estos autores, la actividad de esta variante confiere un fenotipo de independencia estrogénica y además, supone que algunos tumores RE- son clasificados inadecuadamente.

Murphy et al., (1996) descubrieron nuevos productos de transcripción del gen RE originados por la inserción de nucleótidos en el 9,4% de 212 cánceres de mama analizados mediante clonación y secuenciación de los productos de RT-PCR. Encontraron la duplicación completa del exon 6 en el 7,5% de los casos, la duplicación de los exones 3 y 4 en un tumor y la inserción de 69 nucleótidos entre los exones 5 y 6 en 3 tumores. El análisis de la lectura del exon 6 evidenció la transcripción de un RE de 51,4 kDa. Los exones 3 y 4 codifican un RE de 83,3 kDa, mientras que la inserción de 69 nucleótidos introdujo 23 nuevos residuos entre los residuos 412 y 413 para producir una proteína de 68,8 kDa. Se desconoce sin embargo, la translación estable de los nuevos RE-RNAm in vivo.

De todas las variantes, las delta 5 y 7 han sido las más estudiadas. En diferentes líneas celulares la delta 5 muestra una activación constitutiva que varía entre un 15 y un 60% en relación con de la actividad del receptor natural. Estas variantes existen en tejido mamario normal, sin embargo, las concentraciones aumentan en el tejido neoplásico y se incrementan durante la progresión tumoral. La variante delta 7 se relaciona con tumores RE+RPg-, mientras que la delta 5 lo hace con tumores RE-RPg+. Se consideran de importancia en la carcinogénesis mamaria debido a que su incremento durante la progresión tumoral se relaciona con alteraciones en la vía de señalización del estrógeno, adquisición de independencia hormonal y por consiguiente, resistencias a los tratamientos con tamoxifén y progestágenos. En el momento actual se especula sobre la importancia de estas variantes como factores pronóstico.
RECEPTOR DE PROGESTERONA.

En el cáncer de mama el receptor de progesterona (RPg), al igual que el receptor de estrógeno (RE), es un factor de pronóstico y un marcador de respuesta al tratamiento hormonal (Horwitz et al., 1978; Osborne et al., 1980; McGuire et al., 1982). Los tumores RE+/RPg+ se han relacionado con menores tasas de proliferación celular, mejor grado de diferenciación histológica, menor tamaño tumoral, buena respuesta al tratamiento hormonal y pronóstico favorable (Thorpe et al., 1987; Barbi et al., 1987.; McGuire et al., 1991; Bernoux et al., 1998).

Horwitz y McGuire, (1975) emplearon el progestágeno R5020, que se une especificamente al RPg, logrando el aislamiento del receptor en 11 de 33 cánceres de mama, estableciendo su coeficiente de sedimentación (8 S en gradiente de sacarosa) y su constante de disociación (1x10⁻⁹ M). El RPg se localiza en el núcleo y su síntesis es estimulada por el estradiol y por dosis de tamoxifén inferiores a 0,1 micromoles (Horwitz et al., 1978). La determinación del RPg se ha realizado mediante métodos bioquímicos (DCC), ensayo inmunoenzimático, tinción IHQ e hibridación in situ. Los niveles de RPg obtenidos por métodos bioquímicos e inmunoenzimáticos son comparables (Foekens et al., 1989), en cambio, los porcentajes de positividad son discretamente mayores con las técnicas inmunohistoquímicas. Las pruebas de hibridación in situ han sido de gran utilidad para el estudio de las variantes del RNAm del receptor. (Goussard et al., 1998; Tong et al., 1999; Nargessi et al., 1998)

Mediante técnicas de hibridación in situ se ha localizado el gen del receptor de progesterona en el cromosoma 11, entre las bandas q22-q23 (Rousseau-Merck et al, 1987; Mattei et al., 1988). Este gen codifica una proteína de aproximadamente 933 aminoácidos con un peso molecular de 98,8 kDa (Misrahi et al., 1987). La proteína RPg está constituida por varios dominios estructurales y funcionales designados con las letras A,B,C, D y E, codificados por 8 exones del DNA del gen. La región A/B en el extremo amino-terminal rica en prolina posee dos dominios de activación transcripcional, AF3 y AF1. La región C básica, por su alto contenido de cisteína, constituye el dominio de unión al DNA. La región E situada en el extremo carboxiterminal contiene el dominio de unión al ligando y representa, a su vez, un dominio de activación transcripcional ó dominio AF2.

Dos isoformas del RPg, la RPg-A y la RPg-B, han sido identificadas en tejido mamario normal y en neoplasias. La isoforma RPg-A corresponde a la forma truncada de la RPg-B por delección de 164 aminoácidos en la región NH2-terminal. Dos promotores distintos del mismo gen bajo el control estrogénico generan los productos de transcripción de ambas isoformas; la A se origina por inicio de la transcripción en AUG2 (codon 164) y la B en AUG1 (Kastner et al.,
El análisis de los RNAm demostró que la isoforma A carece del extremo 5′ situado por delante de AUG1 (Figura 4). La transcripción para esta isoforma se inicia en +737 y +842 (promotor localizado entre +464 y 1105), mientras que para la isoforma B el sitio de inicio se sitúa entre +1 y +15 (promotor entre –711 y +31).

La RPg-A y la RPg-B activan la transcripción de genes que poseen un elemento de respuesta a la progesterona (PRE), sin embargo, ambas exhiben diferentes funciones biológicas dependiendo del tipo de célula y de las regiones promotoras en los genes. En las células donde el RPg-A es transcripcionalmente inactivo esta isoforma actúa como un inhibidor de la función del RE-dependiente de progesterona (dominante negativo), así, la coexpresión del RE con la isoforma A, pero no con la isoforma B, causa una inhibición de la transcripción de genes mediada por el RE (McDonnell y Goldman, 1994). El RPg-B funciona como un activador transcripcional de los genes de respuesta a la progesterona. La interacción de ciertos antiprogestágenos con el tercer dominio de activación transcripcional de la isoforma B explica los efectos agonistas producidos por estos agentes (Horwitz et al., 1995). La isoforma A puede ejercer un efecto represor sobre la isoforma B y el RE (Chalbos y Galtier, 1994; Kraus et al., 1995). Las mutaciones creadas experimentalmente en la región carboxi-terminal han desvelado que la represión inducida por la isoforma A sobre el RE depende de su expresión absoluta, de este modo, parece que la acción inhibitoria ejercida sobre el RE es la consecuencia de la interacción no competitiva de la isoforma A con diferentes dianas celulares o con distintos sitios de contacto en la misma diana (Wen et al., 1994). Estos autores consideran que la RPg-A facilitaría la comunicación ligando-dependiente entre diversas vías de señalización de los receptores esteroideos dentro de una célula.

Chalbos y Galtier (1994) señalan que la expresión diferencial de las isoformas del RPg podría explicar la inhibición tisular específica causada por los progestágenos sobre los genes dianas del estrógeno. Estos autores transfecaron de manera independiente una de las dos isoformas del RPg y el RE en la línea celular MDA-MB231, exponiéndolas posteriormente a la acción del progestágeno R5020. Pudieron constatar que este agente produjo una inhibición de la transcripción de genes inducidos por el estradiol, el pS2 y la Catepsina D, sólo en las células que expresaban la isoforma B; efecto que fue confirmado en otras líneas celulares que expresaban la misma isoforma. En cambio, cuando se transfecaron ambas isoformas en una misma célula, la inhibición dependió del radio de expresión RPg-A/RPg-B; en este caso en concreto, se objetivó un efecto dominante de la isoforma B sobre la A.
FIGURA 4. RECEPTOR DE PROGESTERONA

1 2 3 4 5 6 7 8

ATG-B

1 2 3 4 5 6 7 8

TGA

DNA

RPG-B NH₂

ATG-A

A/B C D E

__AF3/AF1__

__Unión__

DNA

__AF2__

__Unión al ligando__

COOH
Por otra parte, Kraus et al., (1995), investigaron el efecto inhibitorio sobre la transcripción dependiente del RE inducida por la acción de los agonistas y antagonistas del receptor de progesterona. Comprobaron que ambas isoformas de manera ligando-dependiente pueden actuar como potentes inhibidores de la actividad del RE. La magnitud de la represión dependió de la clase de isoformas (RPg-A ó RPg-B), de los niveles de RPg y de la concentración y tipo de ligando. La región promotora del gen diana fue de vital importancia para determinar tanto la magnitud como la especificidad de la isoforma, así, la RPg-A ocupada por un ligando produjo una mayor inhibición de la transcripción mediada por el RE en comparación con la unión ligando-RPg-B. Sin embargo, la represión de la transcripción fue mayor en los casos en que el receptor de progesterona fue ocupado por un antagonista. Se sugiere que el complejo RPg-ligando inhibe la actividad del RE impidiendo la interacción de éste con la maquinaria transcripcional. Cuando se inducen mutaciones en el dominio A/B del RE que impiden su fosforilación a este nivel, se incrementa el efecto inhibitorio de la transcripción del RE causado por la ocupación de un ligando en el RPg. En el caso del RPg la sustitución de sus residuos en la posición 11-beta-fenilo causó una intensa represión de la actividad de transcripción del RE. La alteración de la estructura de los ligandos de RE y de su elemento de respuesta careció de efecto sobre esta represión. Estos datos refuerzan el concepto que el RPg ocupado por un ligando produce una interferencia que impide la adecuada interacción del RE con la maquinaria transcripcional. Más importante aún, todo parece indicar que esta represión ocurre posteriormente a la conversión del RE a una forma transcripcionalmente activa, es decir, cuando el RE ya ha sido ocupado por un ligando (Kraus et al., 1997).

La expresión normal del RPg depende de la estimulación del RE por el estradiol y, por tanto, de una vía de señalización estrogénica funcionalmente activa (Horwitz y McGuire, 1978; Clark et al., 1983). En el tejido mamario los estrógenos y la progesterona por mecanismos directos e indirectos son capaces de estimular la proliferación celular. En la fase lútea del ciclo menstrual se produce una alta tasa de actividad mitótica con una notable disminución del número de receptores de estrógeno y un aumento de la actividad sulfatasa, enzima que convierte la estrona sulfato en estradiol. En cambio, los niveles de los receptores de progesterona se mantienen elevados durante el ciclo menstrual. La administración conjunta de estrógenos y progestágenos, en comparación con la administración individual de estradiol, produce una mayor proliferación celular, una disminución de los RE y un aumento del RNAm del factor de crecimiento insulínico. La presencia del IGF-1 sugiere la participación de otras vías indirectas en la proliferación del tejido mamario. La progesterona ejerce una notable influencia en la función y crecimiento de las células mamarias normales, siendo uno de sus principales efectos regular la actividad estrogénica produciendo una disminución de la expresión de los RE y la inducción de
Los progestágenos inhiben in vivo la proliferación de células epiteliales mamarias normales y de las células de cáncer de mama in vitro. La progesterona ejerce un efecto bifásico sobre la proliferación de las células de cáncer de mama estimulando el crecimiento en la primera fase del ciclo y provocando un arresto en G1/S. Formby y Wiley (1998) utilizando dos líneas celulares diferentes, la T47-D (RPg+) y la MDA-231 (RPg-), expuestas a altas concentraciones de progesterona (10 microM durante 72 horas) similares a las observadas durante el tercer trimestre del embarazo, demostraron un efecto inhibitorio del 90% de la actividad proliferativa por inducción de la apoptosis en la línea celular que expresaba el RPg (T47-D). No objetivaron ninguna respuesta en las células MDA-231 carentes del RPg. Un 48% de las células sufrieron apoptosis; efecto que se relacionó con una disminución de la expresión del bcl-2 y un aumento de la expresión de la p53. Lin et al., (1999) también confirmaron el efecto inhibidor de la progesterona sobre la síntesis de DNA. Para poder estudiar los efectos de la progesterona de manera independiente de la vía de señalización estrogénica (RE y EREs) transfirieron vectores RPg a células MDA-MB231 (RE-/ RPg-). De este modo, pudieron demostrar que la progesterona inhibe de manera dosis-dependiente la síntesis del DNA, produciendo un arresto de las células en G0/G1. Constataron además, que este efecto podía ser revertido si se administraba un anti-progestágeno. Este estudio experimental es importante porque demuestra que la progesterona puede ejercer una inhibición del crecimiento celular si se restituye el gen RPg en células RE- y RPg-. Lin et al., (2000) empleando un modelo idéntico observaron que la progesterona induce cambios en la morfología celular y la adhesibilidad de las células de cáncer de mama. Las células en medio de cultivo tratadas con progesterona adquirieron una forma aplanada y, aunque se extendieron ampliamente sobre la superficie, se mantuvieron unidas. Este efecto se asoció con un aumento del número de fibras de estrés, de los contactos focales entre células y del citoesqueleto de actina. Se objetivó además, un incremento en la actividad de las cinasas y de las proteínas de adhesión fosforiladas en tirosina. La proteína beta1-integrina fue fundamental en la formación del citoesqueleto de actina. Este estudio muestra la implicación de...
la progesterona en el fenómeno de adhesibilidad celular y su probable relación con el desarrollo de metástasis.

Varios estudios experimentales avalan la importancia de las vías proliferativas dependiente del RPg en la tumorogénesis mamaria. Montecchia et al., (1999) a través de la administración de MPA (medroxiprogesterona) a ratones hembras BALB/c lograron inducir adenocarcinomas ductales mamarios con elevada expresión de RE y RPg. Después de varias fases de crecimiento pudieron seleccionar un grupo de células tumorales capaces de crecer en ausencia de progesterona (IP), pero que continuaban expresando el RE y el RPg. La exposición de estas células a los estrógenos y a los antagonistas del RPg (onapristona y mifepristona) causó una completa regresión tumoral. Concluyeron que la vía del RPg es esencial en el crecimiento de tumores IP. Lydon et al., (1999) mediante modelos de carcinogénesis experimental empleando en ratones la técnica de destrucción de genes, también comprobaron la importancia del RPg como mediador de las vías de señalización intracelular esenciales para el inicio y desarrollo de tumores mamarios inducidos por el DMBA (7,12-dimetilbenzeno antraceno).

Hay evidencias que muestran la convergencia de la progesterona y las vías de señalización de los factores de crecimiento y ciclinas a múltiples niveles. Richer et al., (1998) han demostrado en líneas celulares de cáncer de mama que la progesterona regula los niveles de las proteínas Stat5a, Stat5b, Stat1 y Stat3 (transductores de señales y activadores de la transcripción) necesarios para el crecimiento y diferenciación celular. Los Stat son factores de transcripción latentes citoplásmicos que pueden ser activados en respuesta a moléculas de señalización de la membrana celular. El Stat5 se transloca al núcleo al ser fosforilado en su residuo 694 por acción de la progesterona. La progesterona también aumenta la capacidad de la prolactina para estimular la actividad del Stat5 en el promotor de la beta-caseína. La progesterona y el EGF de manera sinérgica controlan la transcripción de p21 y los promotores de c-fos. Lange et al., (1998) observaron que la exposición de células de cáncer mamario al progestágeno R5020 inducía un aumento en los niveles de EGFR, C-erbB-2 y C-erbB-3 a través de la fosforilación en tirosina de las moléculas de señalización estimuladas por el EGF. Este agente, de manera independiente del EGF, produjo un aumento de los niveles de Stat 5, la asociación de Stat5 con proteínas con residuos de fosfotirosinas y la fosforilación de JAK2 y Shc. Entre otros efectos, los progestágenos potenciaron la actividad de las cinasas estimuladas por EGF (MAPK, p38 MAP) y JNK. Los niveles de ciclina D1, E y p21 se incrementaron bajo la acción del R5020, pero también lo hicieron de manera sinérgica con el EGF. Miller et al., (1997) desarrollaron 2 líneas celulares de cáncer de mama que expresaban establemente, bien el RPg-A ó el RPg-B. A un grupo de cada línea celular se les trató o no con el agente R5020 y se
determinaron los productos de transcripción generados. Únicamente se detectaron 2 RNAm en las variantes RPg-B, uno de ellos expresado de manera independiente del ligando. El R5020 indujo un tercer mensaje en las células RPg-B que codificaba la flavina-5 monoxigenasa (FMO5), enzima implicada en la activación metabólica de ciertas drogas, incluida el tamoxifén. Este hallazgo supone que la progesterona podría incrementar el efecto carcinogénico del tamoxifén en aquellos tejidos que sobreexpresan la isoforma B. Owen et al., (1998) han demostrado que la progesterona regula la transcripción del inhibidor de la cinasa dependiente de ciclinas (p21). A pesar de la falta de un elemento de respuesta progestágeno (PRE) en el promotor de este gen, la progesterona induce la transcripción de p21. La progesterona interacciona con el promotor p21 de manera indirecta por medio del factor de transcripción Sp1 (sitios de unión 3 y 4) y con CBP/p300 formando un complejo multiproteíco. La convergencia de varias vías de señalización sobre este promotor, según estos autores, explicaría el porqué la progesterona puede inducir la proliferación o diferenciación en diferentes dianas celulares.

En las células de cáncer de mama la exposición a progesterona induce una rápida disminución de más del 95% de sus receptores en aproximadamente 6 horas. La destrucción del RPg se realiza a través de dos rutas alternativas. Una de ellas es independiente de la unión con el ligando e implica la rápida degradación de intermediarios RPg a través de la vía del proteasoma 26S. La otra ruta más específica depende de un mecanismo mediante el cual la unión con el ligando activa la fosforilación del RPg en el residuo serina 294 por las MAPs cinasas (p42 y p44). La fosforilación de este residuo es fundamental para dirigir el RPg a su degradación por el proteasoma 26S (Lange et al., 2000).

Una menor proporción de mujeres postmenopáusicas expresan el RPg en comparación con las premenopáusicas, efecto que ha sido atribuido a una disminución de los niveles séricos de estradiol necesarios para una adecuada estimulación del RE y la consiguiente expresión inducida del RPg (Clark et al., 1984; Thorpe, 1988; Helin et al., 1988; Ferno et al., 1990; Romain et al., 1995). Sin embargo, el análisis de la concentración de estradiol en el tejido mamario de las postmenopáusicas muestra ser similar a las observadas en mujeres premenopáusicas, probablemente por la capacidad que posee el tejido mamario de sintetizar localmente el estradiol (van Landeghem et al., 1985). De la misma manera los fenotipos tumorales RE+/RPg- son más frecuentes en postmenopáusicas y los RE-/RPg+ en pacientes jóvenes (Thorpe et al., 1988; Bonnier et al., 1995). Thomlinson et al., (1996) señalan que la falta de expresión del RPg en algunos tumores podría estar en relación con la pérdida de heterocigocidad en la región 11q22, un área inestable con pérdidas frecuentes observadas en el cáncer de mama (Carter et al., 1994; Hampton et al., 1994). En cambio, Mialhe et al., (1999),
que analizaron mediante FISH el cromosoma 11 en 15 pacientes con cáncer de mama, no objetivaron diferencias en el número de cromosomas 11 en tumores RPg+ o RPg-. Para estos autores, la ausencia de expresión del RPg en algunos cánceres no puede ser explicada únicamente por delecciones en éste cromosoma.

El análisis simultáneo de la expresión del RPg en el tumor primario y sus metástasis concuerda en el 70-90% de los casos (Gross et al., 1984; Coradini et al., 1984; Li et al., 1994). Sin embargo, algunos trabajos describen una pérdida progresiva de expresión del RPg durante el proceso de diseminación tumoral y como ésta se relaciona con un peor pronóstico y resistencia al tratamiento hormonal. Kuukasjarvi et al., (1996) determinaron la expresión de RE y RPg en los tumores primarios y sus metástasis en 50 pacientes sin tratamiento adyuvante. En 18 casos (36%) se observó el cambio de expresión ocasionado por la pérdida de positividad del RE en 6 casos, del RPg en 6 cánceres y de ambos en otros 6 casos. La pérdida de expresión del RE se relacionó con una pobre respuesta al tamoxifén. Balleine et al., (1999) estudiaron la expresión del RE y RPg en los cánceres primarios y los secundarios y entre los primarios y sus metástasis ganglionares. El 63,3% de los tumores primarios fueron RE+ en comparación con el 45,3% de los secundarios y el 53,7% de los primarios RPg+ frente al 33,1% de los secundarios, siendo estas diferencias significativas. Al dividir las enfermas según el estado menopáusico, objetivaron una disminución significativa de la expresión de RPg en las postmenopáusicas. Las pacientes premenopáusicas mantuvieron los mismos fenotipos hormonales en los cánceres primarios y secundarios. En cambio, en las postmenopáusicas el fenotipo predominante en el primario fue RE+/RPg+ observando un importante aumento de los fenotipos RE-/RPg- y RE+/RPg- en los secundarios. El análisis multivariante confirmó que la expresión del RPg era más común en los tumores primarios que en los secundarios independientemente de la edad y el estado del RE. El examen de los tumores primarios y sus metástasis ganglionares objetivó una elevada concordancia para el RE (92%) y el RPg (93%). Únicamente 4 de 27 tumores primarios RPg+ (14,8%) presentaron metástasis ganglionares RPg-. Concluyeron sobre la base de estos resultados que la expresión de los receptores se mantiene estable durante la progresión de la enfermedad y la ausencia de expresión del RPg en los tumores primarios en estos casos se relaciona con progresión de la enfermedad, es decir, los primarios RPg- son más susceptibles de de desarrollar metástasis.

Los cánceres primarios de pacientes sometidos a tratamiento endocrino experimentan en algunos casos una significativa reducción de los niveles del RPg en sus metástasis, de tal modo, que la desaparición de la positividad del receptor podría ser atribuida al tratamiento hormonal (Nomura et al., 1985; Encarnación et al., 1993). Gross et al., (1984) observaron una pérdida de
expresión del RPg de un 44% a un 11% entre el primario y sus metástasis ganglionares. La terapia endocrina influyó notablemente en la ausencia de expresión, puesto que un 56% de tumores inicialmente RPg+ se convirtieron en RPg- tras el tratamiento hormonal. Jakesz et al., (1985) también objetivaron una falta de concordancia del 25% entre los niveles de RPg en el primario y las metástasis ganglionares. En el caso del RE la discordancia fue de un 15%. Esta diferencia se incrementó notablemente (55% para RE y 84% para RPg) entre la primera biopsia y la segunda realizada después de haber recibido tratamiento hormonal. Del mismo modo, Raemaekers et al., (1984) analizaron el grado de concordancia del RE y RPg mediante biopsias secuenciales en 75 pacientes con cáncer de mama avanzado. Encontraron una falta de concordancia en el 18,7% de los casos de tumores RE y en el 28% de los casos de tumores RPg.

En función del pronóstico algunos autores consideran al RPg de mayor valor que el RE. La falta de expresión del RPg se ha relacionado con progresión de la enfermedad y con la pérdida de la funcionalidad del RE. Para Saez et al.,(1983), a largo plazo, el RPg fue de mayor valor pronóstico que el RE en pacientes que no recibieron tratamiento adyuvante. En el análisis de 148 cánceres de mama objetivaron un 9% de recidivas en tumores RPg+ frente al 24% en tumores RPg-; en ausencia de afectación ganglionar recidivaron 6/61 tumores, 5 de estas recidivas correspondían a tumores RPg-. Clark et al., (1983), en el análisis multivariante de 189 cánceres de mama, citan que el RPg fue significativamente de mayor valor que el RE para predecir la recidiva en el estadio II. Di Fronzo et al., (1984) estudiaron el valor pronóstico del RPg en un subsiguiente de 187 pacientes (total = 1144) sometidas a mastectomía exclusivamente. A los 36 meses de seguimiento los tumores RPg- tuvieron un peor pronóstico en comparación con los tumores RPg+. Thorpe et al., (1987) analizaron el valor pronóstico del RE y RPg en 807 cánceres de mama con ganglios negativos. Durante el seguimiento (mediana de 50 meses) no observaron diferencias en el intervalo libre de enfermedad entre tumores RE+ y RE-. En cambio, los tumores RPg+ presentaron un intervalo libre de enfermedad significativamente superior a los tumores RPg-. La positividad para el RE y RPg fue de valor pronóstico únicamente en pacientes premenopáusicas, aunque en el análisis multivariante el pleomorfismo nuclear fue la única variable con verdadero valor pronóstico. Bernoux et al., (1998) examinaron 529 cánceres RE- encontrando en este grupo 62 tumores RPg+ (12%). Los tumores RE-/RPg+ fueron de menor tamaño, de grado histológico 1 y tuvieron un mayor intervalo libre de enfermedad y supervivencia en comparación con tumores RE-/RPg-. Castagnetta et al., (1999) no objetivaron diferencias en los patrones de tinción IHQ para el RPg entre premenopáusicas y postmenopáusicas, pero si advirtieron una mayor supervivencia libre de enfermedad en aquellos tumores RPg+.
La ausencia de expresión del RPg también se ha relacionado con un aumento del tamaño tumoral, con la presencia de metástasis ganglionares, con un aumento de expresión del C-erbB-2, EGFR y p53 y con una disminución de los niveles de pS2, Catepsina D y Bcl-2 (Gross et al., 1984; Thorpe et al., 1988; Thor et al., 1992; Frankfurt et al., 1997; Thor et al., 1992; Gion et al., 1995).

La respuesta a la terapia endocrina se ve favorecida por la presencia del RPg. McGuire et al., (1982) citan el valor pronóstico del RPg y sugieren que es un mejor indicador de respuesta al tratamiento hormonal que el RE. Un 78% de respuesta a la terapia endocrina se objetivó en tumores RE+/RPg+ frente al 38% observada en tumores RE+/RPg- (Horwitz, 1981). Para Alanko et al., (1985) la mayor supervivencia observada en pacientes con receptores hormonales positivos se debió a la buena respuesta al tratamiento endocrino. Nardelli et al., (1986) también analizaron la respuesta al tratamiento hormonal entre 1548 cánceres de mama (RE: n=263 y RPg: n=224). Esta se produjo en el 76% de los tumores RE+/RPg+, en el 28% de los RE-/RPg+ y tan solo en el 3,1% de los tumores RE+/RPg-. Según Vollenweider-Zerargui et al., (1986) el receptor de estrógeno fue un marcador de pronóstico más sensible que el RPg, especialmente en el estadio II o con afectación de más de 3 ganglios. Los porcentajes de predicción de respuesta a la terapia endocrina fueron de un 77% cuando se expresaba el RE, un 69% con la expresión de RPg y de un 79% cuando se expresaban ambos receptores. Ferno et al., (2000) valoraron el beneficio de dar tamoxifén durante 2 ó 5 años en función de la expresión de los RE y RPg a pacientes postmenopáusicas con cáncer ductal infiltrante en estadios precoces. Este estudio demostró que las pacientes con RE+ y RPg+ se beneficiaron significativamente del tratamiento prolongado (5 años) con tamoxifén. Un importante número de pacientes que recidivaron recibiendo tamoxifén tenían tumores con receptores hormonales negativos. En el grupo en tratamiento prolongado se objetivó una disminución de la tasa de recidivas en función de los niveles del RPg (elevadas vs baja, baja vs negativa). El tratamiento durante 5 años con tamoxifén fue beneficioso para pacientes con tumores RE+/RPg+, pues estas pacientes gozaron de una mayor supervivencia libre de enfermedad.

El RNAm producto de la transcripción de los genes RE y RPg sufre una serie de separaciones alternativas que dan origen a una amplia variedad de isoformas RNAm. Algunas han sido identificadas en tejido mamario normal y neoplásico, aunque el significado y función de algunas de ellas no se conoce aún con exactitud. Mediante amplificación por PCR y análisis de secuencia del RPg y sus isoformas, Leygue et al., (1996) aislaron en tejido mamario normal y en neoplásico las variantes RPg-RNAm por deleción del exon 4, deleción del exon 6, doble deleción del exon 3 y doble deleción del exon 5 y 6. Yeates et al., (1998) identificaron una
pequeña proteína de 78 kDa, la RPg78 kDa. Esta proteína diferente de las isoformas R Pg A y B carecía de la porción amino-terminal y era capaz de unir un ligando. Se desconoce su función exacta. Richer et al., (1998), en extractos de cánceres de mama, también aislaron diversas variantes del R Pg-RNAm por delección del exon 2 (RPg delta 2), del exon 4 (RPg delta 4), del exon 6 (R pg delta 6) y de los exones 5 y 6 (RPg delta 5,6). Estas variantes contienen delecciones de secciones que codifican dominios de unión al DNA y dominios de unión al ligando. Las variantes delta 6 y delta 5,6 mostraron ser inhibidores transcripcionales de los receptores R Pg-A y R Pg-B.

La variante delta 6 originada por una delección del exon 6 codifica un R PgA y B truncado en el dominio E que corresponde a la región de unión del ligando y donde se encuentra uno de los dominios de activación transcripcional (AF2). La delta 6 es capaz de unirse al elemento de respuesta del R Pg que une al DNA ejerciendo una actividad dominante negativa sobre la transcripción inducida por R Pg-A y R Pg-B. Leygue et al., (1999) analizaron la variante delta 6-RPg-RNAm en 10 muestras de tejido mamario sano, en 9 cánceres con elevado contenido de R Pg (> 100 fmol/mg prt) y en 8 cánceres con bajo contenido de R Pg (15 < fmol/mg prt). Este receptor alterado se encontró en mayores concentraciones en las neoplasias que en la glándula mamaria sana y en tumores R Pg- con relación a tumores R Pg+. La importancia en la clínica deriva de su probable interferencia con la detección del R Pg en las pruebas inmunohistoquímicas y su posible implicación en la tumorogénesis. Asimismo, Balleine et al., (1999) examinaron conjuntamente las variantes RE-RNAm y R Pg-RNAm en cánceres de mama RE+ exclusivamente. En 35 cánceres RE+ se detectaron las variantes RE-RNAm por: delección del exon2 y por delección del exon 7 en el 100% de los tumores; por delección del exon 4 en el 94% y por delección del exon 5 en el 83%. En 25 de estos casos que también presentaban positividad para el R Pg se detectaron en más del 90% de estos tumores las siguientes variantes R Pg-RNAm: delección del exon 4; delección del exon 6; doble delección del exon 4,2 y una variante con parte de delección del exon 4. Objetivaron mayores niveles de expresión de las variantes del RE-RNAm que de las R Pg-RNAm, siendo la RE-delta 7 la más abundante con niveles que variaron entre el 29 y 83% con respecto al RE silvestre. Las variantes R Pg-RNAm representaron menos del 10% de expresión en comparación con los niveles del R Pg silvestre.

Según las experiencias de estos autores, en el cáncer de mama, estas variantes son tan comunes y diversas que su utilidad como discriminadores de respuesta hormonal plantea serias dudas. Además, la baja expresión de alguna de ellas pone en tela de juicio el impacto que puedan ejercer sobre la función del receptor.
pS2/TFF 1.

La MCF-7 es una línea celular aislada del derrame pleural de un cáncer de mama humano ampliamente estudiada y fundamental en diversos estudios experimentales, debido a su propiedad de expresar los receptores de estrógeno y progesterona, y que depende del estradiol para lograr un adecuado crecimiento. Masiakowsky et al., (1982) aislaron por clonación, en esta línea celular, un DNA complementario cuyo RNA mensajero correspondiente era inducido por estimulación con estradiol. Jakowley et al., (1984), del mismo laboratorio, completaron la secuencia completa del RNA mensajero de 600 pares de bases y demostraron que la proteína codificada por este gen correspondía a un polipéptido de 84 aminoácidos y de 10 kDa de peso molecular. El tratamiento de las células MCF-7 con estradiol indujo la aparición precoz (15 minutos) de pS2-RNAm; efecto que no pudo ser abolido tras exposición a inhibidores de la síntesis proteica (Brown et al., 1984).

El polipéptido traducido por el RNA mensajero poseía una señal peptídica que suponía su división en dos unidades antes de ser exportado al exterior de la célula. Esta nueva proteína no guardaba similitud con ninguna otra ni con ningún factor de crecimiento. Marcando con aminoácidos radioactivos diferentes secuencias del polipéptido, Nuñez et al., (1987), demostraron que la proteína madura era secretada al exterior de la célula. La separación del polipéptido se producía en la señal peptídica por rotura enzimática en el extremo N terminal después de la alanina número 26, dando origen a una proteína final de 58 aminoácidos y 6.45 kDa de peso molecular.

La proteína pS2/TFF-1 pertenece a una familia de péptidos (TFF-1, TFF-2, TFF-3) presentes en diferentes fuentes biológicas relacionadas entre sí por su similitud estructural y por poseer características similares al factor de crecimiento insulínico (FCI) y al polipéptido espasmolítico pancreático, PSP/TFF-2, (Thim et al., 1985, Baker et al., 1988, Rose et al., 1989). La pS2/TFF-1 fue aislada en el jugo gástrico y en el medio de cultivo de la línea celular de cáncer de mama MCF-7. El polipéptido espasmolítico pancreático (PSP/TFF2) de 106 aminoácidos, fue separado en el jugo pancreático porcino y otro péptido similar de 49 – 50 aminoácidos se identificó en la epidermis de la rana Xenopus laevis (Thim 1988). Una característica común de estos péptidos es la presencia de uno o dos dominios altamente conservados de 40 aminoácidos que contienen 6 residuos de cisteína casi en la misma posición. De este modo, el dominio proteínico incluye 3 puentes disulfuro que le confieren 3 estructuras en forma de asa dando origen a una configuración muy característica similar a una hoja de trébol (Chadwick et al., 1997). Polshakov et al., (1995), al determinar la estructura tridimensional del pS2/TFF-1 mediante espectroscopia por RMN, objetivaron un dominio en forma de trébol constituido por
tres uniones disulfuro en los pares 1-5, 2-4, y 3-6 de los residuos de cisteína y una pequeña estructura secundaria en forma de hélice alfa empaquetada contra dos bandas antiparalelas de lámina beta. Este dominio constituye la cabeza compacta de la molécula y fuera de ella las bandas amino y carboxilo-terminal están estrechamente relacionadas formando una cola extendida con una estructura parcial en forma de lámina beta. Esta proteína puede formar dímeros merced a sus residuos libres en la posición carboxi-terminal (Newton et al., 2000).

El pS2-RNAm/TFF-1 consta de 3 exones. El dominio de trébol es codificado por el exon 2. Los genes TFF-1, TFF-2 y TFF-3 están localizados dentro de una región de 55 kb en el cromosoma 21, en la posición 21q22.3 (Jabowlew et al., 1984; Jelftsch et al., 1987; Seib et al., 1997). Los genes TFF-1 y TFF-2 se encuentran a una distancia de solo 12,5 kb y, todo parece indicar que, los dos se originan por duplicación y comparten elementos reguladores comunes (May y Westley 1997).

Se ha demostrado en la línea celular MCF-7 (Thim, 1988) y HCT116 (Hoosein et al., 1989) un aumento dosis-dependiente de la incorporación de 3[H]timidina tras la administración de PSP/TFF-2 sugiriendo que el polipéptido esparmolítico pancreático posee la propiedad de estimular el crecimiento. Kida et al., (1989) y Tomasetto et al., (1989) confirmaron que la pS2/TFF-1 es inducida por los estrógenos pero, a diferencia del PSP/TFF-2, fue incapaz por sí misma de estimular el crecimiento de células cebadas con estradiol. Neri et al., (1991) objetivaron la inducción del pS2-RNAm por D-Trp6-GNRH (análogo de la hormona liberadora de gonadotropina); sin embargo, la expresión de la proteína no tuvo efecto sobre el crecimiento celular.

Roberts et al., (1988) confirmaron, en las células MCF-7, que el gen pS2 era inducido por los estrógenos. El estradiol, al unirse a su RE, estimula la activación o transcripción del gen pS2/TFF-1 a través de su unión con un ERE (elemento de respuesta estrogénico) que interacciona con el extremo 5´ del gen. La región -3000 a + 10 pares de bases actúa como un promotor inducible por los estrógenos. En esta interacción según, Stack et al., (1988), interviene la región N terminal (dominios A y B) del RE a través del ERE-pS2 (elemento de respuesta al estrógeno-pS2). Giamarchi et al., (1999) han descubierto en el extremo 5´del gen dos sitios hipersensibles a las DNAasas inducidos por los estrógenos y el FCI 1: el pS2-HS1 localizado en la región promotora proximal y el pS2-HS4 localizado a –10. Kb del sitio CAP. Existe otro sitio pS2-HS2 situado inmediatamente después del pS2-HS1 y que ha sido identificado en líneas celulares que carecen del receptor de estrógeno. La secuencia 5´ del gen contiene regiones con elementos de respuesta que interaccionan con los estrógenos, con el 12-0-tetradecanoil-forbol-
13-acetato (TPA), con el EGF, con c-Ha-ras, y con c-jun. Cavailles et al., (1989) objetivaron la inducción del RNAm de la catepsina D y pS2 por diversos factores en las células MCF-7. El TPA produjo una inducción de hasta 8 veces el pS2-RNAm, el EGF 4 veces, y hasta 3 veces el factor de crecimiento de los fibroblastos, el factor de crecimiento insulínico tipo I y la insulina. Tanto el EGF como el factor de crecimiento transformante alfa y el FCI-1 fueron capaces de inducir el pS2-RNAm en ausencia de estradiol, sin embargo, se requirió de la presencia de un RE intacto (El-Tanani y Green 1997). El rojo fenol, debido a su débil actividad estrogénica, también estimuló la producción de pS2-RNAm y la síntesis proteica, efecto que fue inhibido por el tamoxifén (Berthois Y et al., 1986). La inducción de la síntesis de pS2 por mecanismos diferentes a la estimulación estrogénica podría explicar su presencia en aquellos tejidos que carecen del RE y en tumores de mama RE negativo.

La pS2/TFF-1 es una proteína estable, normalmente secretada en el estómago y aislada ectópicamente en lesiones inflamatorias de los tractos gastrointestinal y respiratorio y en diferentes cánceres. Es un factor pleiotrófico que interviene en la motilidad celular, polimerización de la mucina y en la proliferación y diferenciación celular (Lugmani et al., 1989; Tomaseto et al., 1990; Hanby et al., 1993; Itoh et al., 1996; Lefebvre et al., 1996; Hirota et al., 2000; dos Santos Silva et al., 2000). La pS2 es secretada normalmente en la glándula mamaria, (Poulson et al., 1997) en estómago (cuerpo y antro gástrico) y en intestino delgado (Rio MC et al., 1988). Sus funciones no están totalmente definidas pero se considera implicada en la protección de las mucosas, en los mecanismos de defensa mucociliar respiratorio contra agentes antimicrobianos, estabilización de la capa de moco y en la cicatrización del epitelio (Hanby et al., 1993; dos Santos Silva et al., 2000; Itoh et al., 1996; Lefebvre et al., 1996). Se detectan mayores concentraciones de pS2 en tejido mamario sano de mujeres premenopáusicas que en postmenopáusicas. Khan et al., (1997) observaron en 69 pacientes con carcinoma mamario una mayor expresión de la proteína durante la fase lútea del ciclo menstrual. Por el contrario, Pujol et al., (1999) registraron mayores concentraciones durante la fase folicular del ciclo celular en una muestra de 339 mujeres con cáncer de mama.

La determinación de la pS2/TFF1 se realiza por métodos inmunoenzimáticos, inmunoradiométricos, inmunohistoquímicos e hibridación in situ. Las concentraciones citosólicas de la proteína varían en el epitelio mamario sano y en el neoplásico. Mediante ELISA, Predine et al., (1992) objetivaron en la glándula mamaria sana concentraciones que oscilaron entre 0 y 2,16 ng/mg, elevándose esta cifra en los cánceres. Según Hähnel et al., (1993) las concentraciones citosólicas de pS2 en el tejido mamario sano fluctuaron entre 0 y 10,5 ng/mg (mediana:0,2), en comparación con los tumores malignos que oscilaron entre 0,3 y
43 ng/mg (mediana: 5,7). Por IHQ los porcentajes de tinción positiva en las neoplasias malignas varían entre un 46% – 77%, observándose un patrón de tinción citoplásmico a nivel de la membrana celular. Existe una buena correlación entre los métodos inmunorradiométricos e inmunohistoquímicos, según citan Detre et al., (1994), al comparar ambas técnicas en 35 biopsias de cáncer de mama. La tinción positiva para pS2 se relacionó con la presencia del RE en las pacientes con una edad igual o inferior a los 50 años y también, aunque en menor proporción, con el receptor de progesterona.

La proteína ha sido detectada en tumores malignos de mama, páncreas, vesícula biliar, colon, estómago, endometrio, cervix uterino, ovarios con diferenciación mucinosa, vejiga, próstata y en tumores neuroendocrinos (Henry et al., 1991; Seitz et al., 1991; Lugmani et al., 1992; Wang et al., 1997; Saegusa et al., 2000). El pS2-RNAm se encuentra en mayor cantidad en tejido cancerígeno mamario que en tejido sano, mientras que en el tejido neoplásico gástrico ocurre lo contrario, existiendo una correlación inversa con el grado de diferenciación tumoral; así, la metaplasia intestinal y los adenocarcinomas gástricos presentan niveles disminuidos de pS2. (Lugmani et al., 1989; Fujimoto et al., 2000). En el cáncer de mama la expresión de la proteína es mayor en los carcinomas intraductales (54%) que en los infiltrantes (27%) y mayor en los comedocarcinomas en comparación con otros tipos histológicos. Según señalan Yamakawa et al., (1995), existen diferencias en la expresión del pS2 en distintas zonas del mismo tumor, al observar variaciones en el patrón de tinción en diferentes zonas tumorales. La tinción IHQ de 40 cánceres de mama reveló un 52,5% de tinción positiva en el área central del componente infiltrante, un 77,5% de inmunotinción en el área central del componente intraductal y un 85% de tinción positiva en la zona que está por delante del componente intraductal.

Inicialmente los estudios sobre la pS2 fueron dirigidos al análisis de los mecanismos moleculares reguladores de la actividad estrogénica y la pS2, junto con la catepsina D, se ha utilizado en diversos experimentos para valorar y medir la integridad de las vías de señalización dependiente del RE (Westley et al., 1984; Cavailles et al., 1989; Lane et al., 1999). En el cáncer de mama la expresión de pS2 se ha relacionado directamente con la edad, el estado premenopáusico, el grado de diferenciación tumoral, la afectación ganglionar axilar, la presencia de RE y RPg, Hsp27, la expresión del oncogén c-myb y una mejor respuesta al tratamiento hormonal (Guerin et al., 1990; Schwartz et al., 1991; Thor et al., 1992; Gion et al., 1993; Detre et al., 1994; Valeron et al., 1997; Thompson et al., 1998). Su expresión varía inversamente con: el tamaño tumoral, así los tumores pequeños se tiñen intensamente; con el grado histológico, mostrando mayor tinción los tumores bien diferenciados; con la actividad proliferativa, con mayor expresión de pS2 en tumores con bajos índices de proliferación; y con
la diferenciación histológica, tiñendo intensamente los tumores bien diferenciados (Henry et al., 1991; Cappelletti et al., 1992). Los cánceres familiares asociados al BRCA-1 y BRCA-2 presentaron bajos niveles de expresión de pS2; lo mismo sucedió con los RE, RPg, catepsina D y ciclina D1 (Osin et al., 1998).

La pS2 ha sido considerada como un factor de pronóstico al objetivar en algunos estudios un mayor intervalo libre de enfermedad y mejor supervivencia de los carcinomas mamarios pS2+. La mayoría de estos estudios se han apoyado en los resultados obtenidos en la determinación de la pS2 por técnicas inmunoenzimáticas. Así Foekens et al., (1990), mediante enzimoinmunoanálisis de la pS2 en 205 pacientes con un seguimiento de 47 meses, observaron una significativa disminución del intervalo libre y la supervivencia en pacientes con tumores pS2 negativos (dintel de positividad 11 ng/mg prt). No encontraron asociación significativa con el tamaño tumoral, afectación ganglionar o grado de diferenciación. Foekens et al., (1993), en un estudio más amplio basado en la determinación de la pS2 por ensayo inmunorradiométrico en 710 tumores, confirmaron la utilidad pronóstica de la pS2 en el análisis univariante y multivariante. Los pacientes con una concentración citosólica inferior a 2 ng/mg (punto de corte) presentaron una recaída 4,5 veces superior frente a los tumores con concentraciones por arriba de este dintel. En otro estudio, Foekens et al. (1994) analizaron la concentración citosólica de la pS2 y de los receptores de estrógeno y progesterona en 230 pacientes con cánceres avanzados de mama que recibieron tamoxifén como terapia de primera línea. Elevados niveles de la proteína (10 > ng/mg-1 prt) se relacionaron, aunque sin significación estadística, con una buena respuesta al tamoxifén y una mayor supervivencia post-recidiva. Sin embargo, en el análisis multivariante, la presencia de pS2 se relacionó positivamente con la sobrevida libre de progresión de la enfermedad y mayor supervivencia post-recidiva únicamente en el grupo de tumores (n=83) con valores intermedios (10 > y 75 < fmol/mg prt) de RE y RPg. Del mismo modo, Gion et al., (1993) determinaron la pS2 por ensayo inmunorradiométrico en 446 cánceres de mama. Los tumores pS2+ se correspondieron con un mayor intervalo libre y supervivencia global. En el análisis multivariante el pS2 fue un factor pronóstico después de la afectación ganglionar. Thompson et al., (1998) midieron el pS2-RNAm por Northern blotting en 90 tumores. Durante el seguimiento de 6 años no se registraron defunciones en el grupo de tumores con ganglios negativos y pS2 positivo en comparación con el 41% de mortalidad en tumores N+/pS2-. En el análisis univariante la pS2 fue factor pronóstico para el intervalo libre y la supervivencia. En cambio, en la regresión múltiple de Cox la pS2 fue pronóstica solo para la supervivencia libre de enfermedad.
Algunos autores no han podido demostrar la utilidad de esta proteína como factor pronóstico en el cáncer de mama, destacando además, que estos trabajos se han realizado con técnicas inmunohistoquímicas. Henry et al., (1991) analizaron la pS2 mediante tinción IHQ en 172 cánceres de mama. La inmunotinción positiva de la pS2 (68%) se relacionó significativamente con un menor tamaño, mejor diferenciación histológica, presencia del RE, y una buena respuesta al tratamiento hormonal. No observaron variaciones en la positividad del tumor primario y sus correspondientes metástasis ganglionares. Tampoco objetivaron asociación significativa alguna entre la detección de pS2 y el intervalo libre de enfermedad o la supervivencia global, aunque la tinción positiva para pS2 se correspondió significativamente con una buena respuesta a la terapia endocrina en los tumores que recidivaron. Para Thor et al., (1992) la pS2 no ofrece ventajas como factor pronóstico si se conoce el contenido del RE, según lo pudieron constatar en el análisis univariante y multivariante de un estudio basado en la determinación IHQ de pS2 en 290 pacientes. Cappelletti et al., (1992) no observaron diferencias en el intervalo libre de enfermedad en tumores con tinción IHQ negativa o positiva (pS2+ = 56%, punto de corte: 5%) en una serie de 200 cánceres de mama con ganglios negativos. Sin embargo, los tumores RE-/pS2+ tuvieron un menor intervalo libre de enfermedad. Tampoco, Dookeran et al., (1993) en el análisis de 178 tumores, objetivaron una asociación entre la determinación IHQ de pS2 (77% positividad, dintel: 5%) y la supervivencia, aunque ésta fue mejor en los tumores con tinción positiva.

Se observan mayores diferencias en los dinteles de positividad con los métodos inmunoenzimáticos en comparación con los inmunohistoquímicos y esta falta de uniformidad dificulta una adecuada comparación y análisis de los resultados. En la actualidad aparte de su posible valor como factor pronóstico la proteína pS2/TFF-1 es considerada un factor de predicción de respuesta al tratamiento hormonal en tumores RE negativo.

P29/Hsp27.

La p29 es una serina fosfoproteína citoplásmica de 29 kDa de peso molecular inicialmente detectada por inmunoprecipitación con el anticuerpo monoclonal D5. Este anticuerpo monoclonal fue el producto de la selección (King et al., 1987) de una serie de anticuerpos dirigidos contra una preparación de receptores estrogénicos solubles purificados, obtenidos del endometrio humano mediante cromatografía de afinidad al estradiol. El anticuerpo monoclonal D5 reconoce la serina fosfoproteína relacionada exclusivamente con el receptor de estrógeno humano activado por su unión con el estradiol, y puede separar esta proteína de las proteínas solubles de unión al estradiol tipo I y II. El tratamiento con sulfato de amonio, fosfatasas, calor, cloruro de potasio, pH bajo, y KCNS activan la precipitación, mientras que el molibdato y el
GTP la inhiben. El anticuerpo no reconoce el receptor estrogénico nuclear ni reacciona con los receptores de andrógeno, progesterona, glucocorticoide y globulinas de unión de las hormonas sexuales (Coffer y King 1988). La proteína p29 se ha detectado en el 96% de los casos en el citoplasma (Dunn et al., 1993; Zhu et al., 1994). Su purificación se logró mediante fraccionamiento con sulfato de amonio y cromatografía por inmunofiabilidad sobre un sistema de tres columnas utilizando la sefarosa Proteína A acoplada al D5. Los estudios de la secuencia parcial de la región N-terminal de la proteína demostraron que ésta comparte un 100% de homología con la proteína del citomegalovirus murino pp89 (Hayward et al., 1990).

La proteína p29 pertenece a un grupo de proteínas que son fosforiladas rápidamente en las plaquetas humanas tras la exposición a la trombina. El anticuerpo monoclonal murino reconoce selectivamente a la proteína de 29 kDa y a una proteína básica no fosforilada de 27 kDa. Así Mendelsohn et al., (1991) aislaron y determinaron la secuencia mediante clonación del DNA de la proteína HsP27 (heat shock proteína; proteínas de choque térmico), demostrando además, mediante estudios de inmunoprecipitación, que tres de las proteínas de 29 kDa no eran más que diferentes formas fosforiladas de la proteína HsP27. Varios estudios de inmunoprecipitación e inmunoblot han confirmado que la HsP27 es idéntica a la p29 y se han identificado 3 isoformas de un solo polipéptido: la HsP27 B, C y D (Mendelsohn et al., 1991; Ciocca y Luque 1991). Estas isoformas son fosforiladas por proteína-cinasas en residuos de serina78, serina82 (Laundry et al., 1992) y, a su vez, las proteína-cinasas son activadas en una variedad de células cuando éstas son estimuladas por calor, estímulos químicos, TPA, trombina, histamina, factores de crecimiento, factor de necrosis tumoral, H2O2 e interleuquina 1, produciendo la rápida aparición de las isoformas fosforiladas Hsp27 (Chretien y Laundry 1988; Santell et al., 1992; Zhou et al., 1993; Faucher et al., 1993; Huot et al., 1995; Konishi et al., 1997). Los estrógenos y la proteína-cinasa C regulan la expresión y fosforilación de esta proteína; además, modificaciones postranslacionales pueden también afectar su función.

Las proteínas de choque térmico fueron descritas por Ritosa (1962), al observar que células expuestas al calor, a agentes químicos o cualquier otro estrés ambiental inducían la expresión de unas proteínas que de alguna manera influyen en la supervivencia o muerte celular (apoptosis). Estas proteínas constituyen un grupo de polipéptidos agrupados en familias que se diferencian entre sí, por su peso molecular y la composición de aminoácidos. Se reconocen las familias Hsp100 (hsp110, 104, 90), Hsp70 (hsp70, hsp72, hsp73, hsp78), Hsp60, Hsp40, HsP27, HsP16.5. La expresión y función de cada una varía dependiendo del tejido o linaje celular, del tipo de estímulo o estrés medioambiental y de la duración del mismo. Una de las propiedades fundamentales de algunas de ellas es la protección que confieren a determinadas proteínas
dentro de la célula, actuando como especie de escudos protectores e impidiendo de esta manera que estas puedan ser lesionadas. Las Hsp se unen a polipéptidos no plegados promoviendo su plegamiento, ensamblaje, translocación y también la secreción de proteínas recién sintetizadas. Entre otras funciones, contribuyen a la activación de las proteínas a las que se encuentran unidas, evitan la agregación no controlada de proteínas y participan en la reparación y eliminación de proteínas desnaturalizadas. También intervienen en la supresión de ciertas respuestas inflamatorias y en los mecanismos de inmunidad celular (Haley et al., 2000; Coronato et al., 2000; Feldman y Frydman, 2000; Clark y Muchowski et al., 2000; Pearl y Prodromou et al., 2000).

La transcripción de los genes de las proteínas de choque térmico requiere la activación de un factor de transcripción de choque (HSF-1) que posee capacidad constitutiva para unirse al DNA. En condiciones basales el HSF-1 se encuentra en forma de monómeros y, tras un estímulo, es fosforilado por HSP-cinasas formando oligómeros, lo que conlleva su translocación al núcleo. Allí, al unirse a un elemento de choque térmico (HSE), constituido por varias secuencias repetitivas nGAA n en la región promotora de los genes de choque térmico, induce la expresión de los mismos por transactivación (Zimario et al., 1990; Zhou et al., 1993; Mivechi et al., 1995). En los primeros 200 pares de bases del extremo 5´ de estos genes se concentra la mayor parte de su actividad transcripcional. La actividad depende fundamentalmente de una región rica en G/C que contiene regiones que coinciden con sitios de unión para los factores de transcripción Sp1 y AP2 (Oesterreich et al., 1996). La aparición de RNA-hsp27 se correlacionó con la activación de HSF en las células MDA-MB-231 estimuladas por calor (Fuqua et al., 1994). En esta misma línea celular se ha demostrado la participación de los iones de calcio y de la proteína-cinasa A en la regulación de la síntesis de las proteínas Hsp72 y Hsp90 (Kiang et al., 2000).

Hickey et al., (1986) clonaron un DNA complementario que codificaba la Hsp27 en la célula HeLa. La secuencia completa del gen Hsp27 se determinó por exposición de este cDNA a una genoteca humana. La Hsp27 de 199 aminoácidos guarda una homología estructural con la proteína alfa del cristalino y con las pequeñas proteínas de choque por calor (heat shock) de la Drosophila. El 20% de sus residuos de aminoácidos pueden ser fosforilados, siendo un proceso fundamental para algunas de sus funciones. Mediante análisis de híbridos de células somáticas, McGuire et al., (1989) localizaron el Hsp27 en el cromosoma 7q.

La Hsp27 es inducida por calor (Norris et al., 1997). Interviene en la activación y secreción plaquetaria (Zhu et al., 1994), en la regulación del ensamblaje de filamentos de actina con
Estado actual de los marcadores tumorales moleculares. 40

reorganización del citoesqueleto (Zhu et al., 1994; Huot et al., 1995; Piotrowicz et al., 1998), en la termoregulación (Chretien y Landry 1988), en las vías de transducción de señales homeostáticas contra diferentes estímulos que implican estrés celular e inmunidad mediada por células T (Mahvi et al., 1993) y en funciones ligadas con las vías de señalización del crecimiento y diferenciación celular (Konishi et al., 1997). Lemieux et al., (1997) demostraron experimentalmente que la transfección de Hsp27 a células MDA-MB-231, aunque produjo una disminución de la motilidad celular, causó un aumentó en la adhesibilidad, crecimiento e invasión celular. El efecto contrario se logró transflectando péptidos antisentidos Hsp27 en células MDA-MB-435. La correlación entre sobreexpresión de Hsp27 y el desarrollo de metástasis fue confirmada al objetivar un aumento de las metástasis pulmonares en ratones inyectados con células transfectadas con Hsp27. Por otra parte, Osterreich et al., (1993), mediante transfección del gen Hsp27 en dos líneas celulares de cáncer de mama (MDA-MB-231, MCF-7), lograron inducir resistencia a la doxorrubicina y un aumento del crecimiento celular.

Se ha clonado un DNA complementario en células de ratones que codifica una proteína antiapoptótica BAG-1. La BAG-1 interacciona con proteínas de la familia del gen Bcl-2, la quinasa de Raf-1, tirosinas cinasas de varios receptores de factores de crecimiento y receptores de hormonas esteroideas. Se considera que esta interacción se realiza merced a su capacidad de unirse y de regular la familia de proteínas de choque por calor, HSP70. Yang et al., (1995) han demostrado mediante estudios de delección, mutagénesis puntuales, y análisis de transcripción translacional que la proteína humana producto del gen BAG-1 se expresa en 4 isoformas de diferentes pesos moleculares (p50, p46, p33 y p29). Los productos de expresión de este gen se unen a varios receptores hormonales y factores de crecimiento para modular sus funciones, sin embargo, aún no se conoce con exactitud todas las propiedades de este gen, aunque se ha observado una mayor expresión de las isoformas p46 y p33 en los cánceres de mama. La proteína BAG-1 en su región amino-terminal posee un dominio similar a la ubiquitina que le permitiría su asociación con el proteasoma 26S formando un complejo proteolítico. Se ha demostrado en las células HeLa que cuando se dirige la proteína BAG-1 al proteasoma 26S se promueve la unión de las chaperonas HsC70/HsP70 con el complejo proteolítico, siendo este proceso regulado por la hidrólisis de ATP e implicado en la degradación de proteínas. (Luders et al., 2000).

La p29/Hsp27 ha sido aislada en: células osteoblásticas, epidermis, anejos de la piel, músculo liso de las arteriolas de la dermis, músculos arrectores del pelo, pulmón, tejido mamario, cérvix, endometrio, placenta, plaquetas y tejido linfóide. (Colston et al., 1989;
Kindas-Mugge et al., 1994; Kanitakis et al., 1989; Carper et al., 1990; IOCca et al., 1991; Mendelsohn et al., 1991). En el endometrio la p29 se incrementa por acción de los estrógenos y disminuye por la progesterona. La expresión de esta proteína es mayor en pacientes postmenopáusicas que en las premenopáusicas (Cano et al., 1988; Artero Mora et al., 1989).

En el cáncer de mama los porcentajes de tinción IHQ varían entre el 40 y 70%, detectándose además, una gran heterogeneidad tumoral (Ciocca et al., 1993; Araya et al., 1994). Los patrones de tinción también fluctúan en función del estado hormonal y del fenotipo tumoral. Existe una relación positiva entre la expresión de p29/Hsp27 y la presencia del RE, siendo la mayoría de los tumores RE+/p29+, aunque no todos. Los niveles de la proteína son superiores en los cánceres RE+/RPg+ en comparación con los RE-/RPg+ y RE-/RPg-. En tumores RE-, la p29/Hsp27 puede aún ser detectado en pequeñas cantidades (King et al., 1986; King et al., 1987). Asimismo, se ha observado una relación positiva con la afectación ganglionar axilar, estadios T avanzados, la presencia de pS2/TFF1, catepsina D, respuesta al tratamiento hormonal y con una disminución de la supervivencia (Heyderman et al., 1989; Thor et al., 1991; Marsigliante et al., 1992; Marsigliante et al., 1992).

Algunos autores no han encontrado diferencias entre el contenido de p29/Hsp27 en tumores primarios y sus metástasis, ni relación con el tamaño tumoral, el estado ganglionar y los niveles de RPg (Cano et al., 1988; Artero Mora et al., 1989). En el cáncer de mama la presencia de Hsp27+ se ha relacionado con una evolución favorable, sin embargo, la mayoría de los estudios otorgan un escaso valor pronóstico a esta proteína. Thor et al., (1991) determinaron inmunohistoquimicamente la expresión de Hsp27 en 300 pacientes con carcinoma mamario seguidas durante 8 años. Encontraron una asociación significativa entre la expresión positiva de Hsp27 y: la presencia de RE, positividad para pS2, estadio T avanzado, afectación vascular y ganglionar y disminución de la supervivencia. El análisis mediante regresión logística demostró que la Hsp27 era un factor pronóstico en el grupo de tumores con afectación de 1-3 ganglios. Sin embargo, en el análisis multivariante de Cox, la sobreexpresión de Hsp27 no fue de valor pronóstico. En otro estudio basado en la determinación IHQ de Hsp27 en 361 cánceres de mama, Love et al., (1994) observaron que los tumores de mama Hsp27-/ RE+ tuvieron un mayor intervalo libre de enfermedad y supervivencia en comparación con los Hsp27+/RE-; sin embargo, en el análisis multivariante la Hsp27 careció de valor pronóstico. Tetu et al., (1995) tampoco objetivaron diferencias en el intervalo libre y supervivencia global entre tumores Hsp27+ o Hsp27-, en la determinación IHQ de la Hsp27 (43% de positividad) en 890 cánceres de mama con ganglios positivos.
La importancia de esta proteína deriva de su asociación positiva con el receptor de estrógeno, sirviendo como testigo para validar la integridad de la maquinaria transcripcional dependiente de estrógeno.

RECEPTOR DEL FACTOR DE CRECIMIENTO EPIDÉRMICO. (EGFR).

El estudio de los factores de crecimiento se inició cuando Cohen *et al.*, (1954) aislaron, en un sarcoma de ratón y en veneno de serpiente, un péptido de 20 kDa (NGF) capaz de estimular el crecimiento de fibras nerviosas en ganglios simpáticos de pollos. Estos autores en 1960 descubrieron un segundo factor de crecimiento muy abundante en las glándulas salivares de ratones adultos. La inyección de extractos de éstas glándulas conteniendo el factor en ratones recién nacidos causó una rápida erupción de los incisivos y la apertura de los párpados. El factor de crecimiento epidérmico (EGF) debió su nombre a las acciones inducidas en los epitelios.

EL EGF es un polipéptido de 53 aminoácidos termoestable que se encuentra en la mayoría de las secreciones y sangre de humanos y animales. La concentración en fluidos corporales oscila entre 1 – 800 ng/ml, siendo menor de 1 ng/ml en la circulación periférica (Taylor *et al.*, 1972). Como otros factores de crecimiento es capaz de ejercer múltiples funciones en diferentes células y tejidos, efecto que ejerce a nivel local o paracrino (Partanen *et al.*, 1985; Lippman *et al.*, 1986; Ma *et al.*, 1998). El EGF por medio de su receptor situado en la membrana celular interviene en el transporte de iones, cambios morfológicos, estimulación del crecimiento, proliferación y diferenciación de múltiples células, a excepción de las células del sistema inmune que carecen de su receptor (Taylor *et al.*, 1972; Schlessinger *et al.* 1983). El EGF es mitogénico para células epiteliales, endoteliales y fibroblastos, además, inhibe la secreción de jugo gástrico, estimula la secreción de prolactina y de gonadotropina coriónica. En el tejido mamario el EGF (Kirkland *et al.*, 1979; Fitzpatrick *et al.*, 1984) junto con IGF-1 (Lippman *et al.*, 1986; Pollak *et al.*, 1988), FGF (Yang, 1980), TGF alfa (Fernández *et al.*, 1987), estrógenos (Briand *et al.*, 1999) y progesterona (Murphy *et al.*, 1985; Lange *et al.*, 1998), son necesarias para el crecimiento y supervivencia del epitelio mamario, siendo capaces de inhibir la apoptosis o revertir los efectos de sustancias (TGF beta, TNF alfa) que inducen la muerte celular (Hoffman *et al.*, 1998; Rosfjord y Dickson, 1999).

El EGF es un potente mitógeno para muchos tejidos incluyendo la mama. Osborne *et al.*, (1980) comprobaron el crecimiento dosis y tiempo dependiente de la línea celular de cáncer de mama MCF-7 tras la administración de EGF. Cohen *et al.*, (1980) por medio de cromatografía de afinidad aislaron una proteína de membrana de 170 kDa en la línea celular de cáncer de
vulva, A431. Las membranas de estas células tenían una actividad tirosina cinasa que era estimulada por EGF. Posteriormente se demostró que la actividad enzimática estaba relacionada con la proteína de 170 kDa. La fosforilación se producía en residuos de tirosina y la actividad PTK de las células A431 tras tratamiento con EGF era intrínseca del receptor (Ushiro y Cohen 1980; Hunter et al., 1984). Este hecho fue ratificado mediante estudios de clonación del DNA del gen que codificaba al receptor (Ullrich et al., 1984).

Diversos trabajos confirmaron que el receptor del EGF es una proteína transmembranal con actividad tirosina cinasa en el que destacaban dos componentes de diferente peso molecular. Ambos poseían fosfotirosina y fosfotreonina, excepto el de mayor peso molecular que además contenía fosfoserina (Carlin y Knowles 1982). El gen que codifica el receptor fue identificado en el cromosoma 7, posición 7p13-q22 (Kondo y Shimizu 1983), cuyo locus es de unos 110 kb (Haley et al., 1987).

Downward et al., (1984) demostraron la similitud existente entre el producto del oncogén v-erbB con actividad tirosina cinasa que produce la eritroblastosis de las aves y el receptor del factor de crecimiento epidérmico. La clonación de ambos DNA evidenció que sus péptidos compartían secuencias muy similares, pero a diferencia del EGFR, el producto del oncogén v-erbB carecía de parte del dominio extracelular y era capaz de activarse constitutivamente, es decir, poseía la actividad tirosina cinasa en ausencia de estimulación por un ligando.

Existe una variedad de factores capaces de elevar los niveles de EGFR, entre los que destacan los estrógenos (Dickson et al., 1986; Derthois et al., 1989), la progesterona (Murphy et al., 1985), los glucocorticoides (Ewing et al., 1989), el factor transformante alfa (Arteaga et al., 1988) y los ésteres de forbol (Bjorge y Kudlow 1987; Lee et al., 1989). La vida media del receptor depende de los niveles de EGF, así, en ausencia de éste, su vida media es de 24 horas, reduciéndose a 12 con concentraciones de 9–10 nM de EGF. La exposición de células MDA-468 (línea celular que carece de RE) al EGF produce un incremento en los niveles de EGF-RNA mensajero dosis y tiempo dependiente. El EGF es capaz de regular la síntesis y degradación de su receptor. Un exceso de receptores activados es dirigido al compartimento lisosomal donde es degradado. En estos casos la disminución del número de receptores en la membrana celular es el fruto de un proceso de degradación y no de una disminución de la síntesis. De este modo, el EGF ejerce un control negativo de su receptor (Behzadian et al., 1982; Kudlow et al., 1986; Lyall et al., 1985). La vitamina D3 ocasiona una disminución en el número de receptores de EGF en la membrana celular (Koga et al., 1988). También una deficiencia de fosfolípidos en la
membrana plasmática interfiere con la fosforilación del receptor produciendo una disminución del proceso de internalización (Kano-Sueoka et al., 1990).

El EGF-R es una glicoproteína transmembranal perteneciente a la familia de receptores tipo I (EGFR/p170, erbB2/p185, erbB3/p160, erbB4/p180) con actividad tirosina cinasa y con una estructura típica con tres dominios, común en muchos receptores de factores de crecimiento (Ullrich y Schlessinger 1990). El dominio extracelular glicosilado de 621 aminoácidos, o sitio de unión con su ligando, que en el caso del EGF es rico en residuos de cisteína, le confiere una estructura tridimensional fundamental en el proceso de dimerización necesario para la transmisión de la señal inducida por el EGF de la membrana celular al citoplasma. Otra parte de la proteína se encuentra inmersa en el espesor de la membrana celular constituyendo el dominio transmembranal y caracterizado por una secuencia de aproximadamente 23 aminoácidos hidrofóbicos responsables de esta propiedad. Por último, en el interior del citoplasma se encuentra el dominio citoplásmico o catalítico de 542 aminoácidos, representado por una secuencia peptídica que varía entre 250 a 300 aminoácidos, en donde se reconocen once subdominios conservados en los que se intercalan secuencias de aminoácidos que constituyen regiones de diversidad (Gullick et al., 1985; Hanks et al., 1988). Esta configuración produce una estructura tridimensional globular que le permite el plegamiento de las regiones variables, de tal modo, que las regiones conservadas se aproximan entre sí. Estas regiones participan en las reacciones enzimáticas de unión y transferencia del ATP a las proteínas sustratos, siendo una lisina en el subdominio II fundamental para esta actividad enzimática. En el extremo carboxitermal, entre aminoácidos cercanos a la membrana plasmática y el dominio catalítico, se han identificado residuos de tirosina implicados en la autofosforilación del receptor por su unión con el ligando (Fanti et al., 1993). También, se reconocen secuencias reguladoras que poseen residuos de serina y treonina, base de los sustratos de serina/treonina cinasas, localizadas en el citoplasma, y que son activadas en respuestas a otros estímulos diferentes del ligando, pero con capacidad de modular la actividad del receptor (Heissermann y Gill 1988).

En 1986 Schlessinger propuso el modelo de dimerización alostérica para explicar el mecanismo de activación del receptor del EGF; mediante este modelo el receptor se encuentra en un equilibrio entre formas monoméricas inactivas con dímeros activados. La unión con su ligando desplaza el equilibrio hacia el estado dimérico más estable y, de alguna forma, se produce un cambio conformacional en el dominio extracelular por el cual una molécula de EGF es capaz de unir dos receptores (Greenfield et al., 1989). En el proceso de dimerización pueden intervenir el EGF formando homodímeros o bien heterodímeros entre la familia de ligandos (erbB2, erbB3, erbB4). Una vez formado el complejo, el receptor sufre un proceso de
endocitosis, mecanismo implicado también en el proceso de degradación, regulación y reciclamiento del receptor (Findlay et al., 1982; Lyall et al., 1985; Decker 1988; Earp et al., 1995). La dimerización tiene la ventaja de producir una mayor afinidad por el ligando y permitir la interacción entre dos dominios catalíticos por proximidad, siendo este mecanismo fundamental en el proceso de autofosforilación (Honegger et al., 1990) necesario para la amplificación y transmisión de la señal.

La unión del ligando al receptor representa el primer paso en la cascada de transmisión de las señales. Los residuos de tirosina fosforilados en el dominio catalítico del receptor son esenciales para la actividad biológica, ya que son los sitios de interacción con los diferentes sustratos involucrados en la cascada de transmisión de la señal desde la membrana al núcleo. Las proteínas sustratos localizadas en el citoplasma poseen dominios bien conservados, en algunos casos de 100 aminoácidos denominadas SH2, y en otros casos de 50-75 aminoácidos denominadas SH3, que reconocen específicamente diferentes residuos de fosfotirosina en el receptor (Koch et al., 1991). En relación con estos dominios se reconocen dos tipos de proteínas: unas que poseen dominios SH2 y dominios catalíticos como es el caso de la fosfolipasa C (PLCy), la PI3 cinasa, la proteína activadora GTPasa de ras (rasGAP), la Syp y la sre (Gulbins et al., 1993; Pawson y Schlessinger 1993), y otras proteínas con dominios SH2 y SH3, que funcionan como proteínas adaptadoras estableciendo y regulando un enlace entre los receptores y otras proteínas con actividad catalítica como es el caso de la proteína p85, la Grb2/sem5 (Lowenstein et al., 1992), la Sbc (Pelicci et al., 1992), Crk (Mayer et al., 1988) y la Nck (Lehman et al., 1990). La unión de estas proteínas con el receptor, en algunos casos, induce un cambio conformacional que facilita la fosforilación y, por consiguiente, se logra una ganancia en la actividad enzimática (Carpenter et al., 1993). El aumento en la actividad catalítica permite, en otros casos, la translocación de la molécula del citoplasma hacia la membrana plasmática en donde se encuentran sustratos para ser fosforilados (PLCy, PI3K y GAP).

Se conocen varias vías de transmisión de la señal por el receptor de EGF activado. Una de ellas es mitogénica e incluye una serie de enlaces entre proteínas citoplásmicas (Grb-2, Sos, Ras, Raf) que inducen a través de la cascada de las MAP cinasas la fosforilación de factores de transcripción y proteínas en el núcleo. En ausencia de unión con el ligando el receptor se encuentra desfosforilado, la proteína p21Ras está unida a GDP e inactiva; la proteína Grb2 se encuentra en el citoplasma formando un complejo de unión con Sos, a través del dominio SH3 de Grb2 con una región rica en residuos de prolina del extremo carboxilo terminal de Sos; esta última proteína, posee actividad intercambiadora GDP/GTP (Buday y Downward 1993;
Rozakis-Adcock et al., 1993; Egan et al., 1993; Li et al., 1993; Gale et al., 1993). La unión del EGF con el receptor induce la fosforilación del residuo Y1068 del receptor que ocasiona la unión con el dominio SH2 de la proteína Grb2-Sos y su consiguiente translocación a la membrana celular (Lowenstein et al., 1992). En la membrana, el complejo por acción de la actividad intercambiadora de Sos, produce el cambio de GDP a GTP unido a Ras originando un complejo p21Ras-GTP. Este complejo es capaz de interaccionar con una proteína producto del oncogén c-Raf con actividad serina/treonina cinasa (Moodie et al., 1993; Vojtek et al., 1993; Zhang et al., 1993). Raf activada es capaz de fosforilar a la enzima MAP cinasa e iniciar una cascada de cinasas, con el objetivo de fosforilar una serie de factores de transcripción y proteínas nucleares y, en última instancia, activar la maquinaria genética produciendo una respuesta de proliferación o diferenciación (Pellecii et al., 1992; Hunter y Karin 1992). Aún no se conocen con exactitud todas las funciones de estas proteínas. (Figura 5.)

Otra vía de transmisión de la señal incluye la fosforilación y activación directa de transductores de señal y activadores de transcripción (Stats) en el citoplasma y su consiguiente translocación al núcleo. La unión en este caso del EGF con el receptor, induce la fosforilación en el residuo Y701 de la proteína p91 (Stat 1 alfa). Esta proteína posee un dominio SH2 que le permite interaccionar con los residuos de fosfotirosina del EGFR (Shuai et al., 1993; Fu y Zhang, 1993; Quelle et al., 1995). La autofosforilación del EGFR en los residuos de tirosina de su extremo carboxilo parece necesaria para estimular la unión al DNA de p91. Según este modelo la unión del receptor con la p91 precisa de la internalización del complejo. La proteína p91 o factor de transcripción (Stat 1 alfa) interacciona con un factor de transcripción inducible (SIF) formando un complejo de unión con secuencias específicas, SIE, del DNA en las regiones promotoras de los genes de respuesta temprana (c-fos, c-jun, c-myc) donde induce su transcripción. Se han identificado 3 Stats adicionales que participan en las vías de transmisión: el Stat 1 beta o proteína p84, el Stat 3 o proteína p89 y el Stat 5 a y b o proteína p92. Tras la administración de EGF se han demostrado tres complejos de unión SIE activos (SIF A, B, C) en el núcleo, uno que contiene Stat3, otro que contiene Stat1 y un tercer complejo que contiene ambas proteínas (Ruff-Jamison et al., 1993; Ruff-Jamison et al., 1994). El Stat 5, o factor inducible por la prolactina en el tejido mamario, se demostró en el núcleo de células hepáticas del ratón tras administración de EGF. Tanto el Stat 5 como los factores de transcripción anteriormente mencionados se unen específicamente a elementos inducibles por prolactina en la región promotora de la beta-caseína (Ruff-Jamison 1995).
FIGURA 5. VIA DE TRANSDUCCION DE LA SEÑAL CELULAR MEDIADA POR EL EGFR
Existe un segundo modelo por el cual la p91, en vez asociarse directamente al receptor, necesitaría de una proteína tirosina cinasa citoplasmática a modo de puente entre el receptor y la p91, de manera análoga como sucede con las proteínas citoplasmáticas tipo JAK1, JAK2, JAK3 TYK2, que poseen actividad tirosina cinasa y que son utilizadas por los receptores del interferón. Se produciría así, una dimerización por medio del dominio SH2 de p91 que interaccionaría con SIE y activaría la maquinaria transcripcional. (Montminy 1993).

El EGFR juega un papel importante en la carcinogénesis y progresión del cáncer de mama (Osborne et al., 1980; Fitzpatrick et al., 1984). Entre los mecanismos implicados en el proceso tumoral destacan: la activación o sobreexpresión del receptor por amplificación del gen; mutaciones que aumentan la transcripción y estabilidad del RNAm; sobreexpresión del receptor y su ligando induciendo un crecimiento controlado por mecanismos autocrinos y paracrinos; y sinergismo con el producto de expresión del oncogén C-erbB-2 (Ullrich et al., 1984; Filmus et al., 1987; Kern 1990; Osaki 1992). Experimentalmente Worthylake et al., (1999) han demostrado en células mamarias humanas que la sobreexpresión de erbB2 por amplificación del gen produce una activación constitutiva del erbB2 y del EGFR independiente del ligando, además, erbB2 no inhibió la actividad del receptor activado. También la presencia de C-erbB-2 dificulta la destrucción lisosómica del complejo una vez internalizado y acelera el reciclamiento e incorporación del receptor a la membrana celular. En los tumores que expresan C-erbB2, el EGF a través de su receptor estimula la actividad de la enzima hidroxi-metil-glutaril coenzima A reductasa, importante en la síntesis de compuestos isoprenoides necesarios en el crecimiento y diferenciación celular. Tanto el EGF como factores de crecimiento (IGF, IGF-1, FGF), citoquinas (TNFalfa, IL-1beta) y albúmina (HSA), inducen la síntesis de estrona (Purohit et al., 1999) sulfato en células de cáncer de mama. Se ha demostrado además, que el EGF estimula la actividad de Calmodulina-proteína cinasa III dependiente de calcio, enzima que posiblemente interviene en la interacción de receptores con factores de crecimiento, síntesis de proteína e inducción de la proliferación de células de cáncer de mama (Parmer et al., 1999). La enzima es selectivamente activada en las células en proliferación activa, y en el cáncer de mama, el incremento de su actividad es significativamente mayor que en el tejido mamario normal. La inhibición de esta enzima indujo un bloqueo de ésta células en la fase G0/G1-S.

Paradójicamente, el EGF puede actuar como un inhibidor del crecimiento. Imai et al., (1982) observaron, en 9 líneas celulares de cáncer de mama, que una concentración de EGF superior a los 10 ng/ml en el medio de cultivo, producía diferentes grados de inhibición en la mayoría de las células. Thomas et al., (1999) demostraron en la línea celular MDA-MB-468 que el efecto inhibitorio en el crecimiento celular producido por mecanismos apoptóticos tras exposición a
EGF, se debió a la inducción de p21 y alteración en la síntesis de poliaminas con la consiguiente reducción en la síntesis de DNA. Mur et al., (1999) también objetivaron una inhibición del crecimiento de la línea celular MDA-MB-231 dependiendo del tiempo de exposición al EGF.

El EGFR es expresado en la mayoría de las líneas celulares de cáncer de mama y hasta en un 83% de los cánceres de mama in vivo (Murphy et al., 1990). La medición de EGFR se ha realizado mediante ensayos de unión al radioligando. Su estabilidad a los procedimientos de fijación histológica permite su determinación en muestras parafinadas mediante IHQ. Por este método se detecta el receptor en la membrana celular, aunque la distribución varía ampliamente entre diferentes tumores y en diferentes regiones dentro del tumor. Estudios de ligando han demostrado la existencia de receptores de alta y baja afinidad importantes en las respuestas mitogénicas (Perez et al., 1984; Nicholson et al., 1988). Toi (1988) examinó la expresión de EGFR por métodos bioquímicos (ensayo con radioligando) e inmunohistoquímicos en 86 cánceres de mama. Por ensayo bioquímico un 34,4% de los tumores fueron EGFR+ y por tinción inmunocitoquímica el 31,6%, siendo ambos métodos comparables. El EGF también ha sido aislado en la orina de pacientes con cáncer de mama (Eckert et al., 1989). Mediante RT-PCR para el EGFR, Leitzel et al., (1998) demostraron que su presencia en la circulación periférica de pacientes con neoplasias malignas de mama se relacionaba con la progresión de la enfermedad metastásica.

Algunos tumores exhiben un mayor porcentaje de EGFR en las metástasis en comparación con el tumor primario y algunos trabajos experimentales sugieren su implicación en el desarrollo de metástasis. Sainsbury et al., (1985), en un estudio basado en la determinación del EGFR por técnicas inmunoenzimáticas en 61 cánceres de mama y 9 metástasis ganglionares, demostraron un mayor contenido de EGFR en los ganglios metastásicos en comparación con sus tumores primarios. Macias et al., (1986) analizando el contenido del EGFR, en 36 cánceres de mama y en su metástasis, observaron mayores niveles de EGFR en los ganglios metastásicos (48%) en comparación con los tumores primarios (25%). También Battaglia et al., (1988) objetivaron, en 89 cánceres y 23 ganglios positivos, la presencia de EGFR en el 57% de los cánceres y en el 72,2% de sus metástasis ganglionares, siendo el nivel de EGFR muy superior en las metástasis que en sus respectivos tumores primarios.

Diversos estudios en cáncer de mama han demostrado la existencia de una relación inversa entre la detección de EGFR y el contenido de los receptores hormonales (RE y RPg), traduciéndose en un peor pronóstico los fenotipos tumorales EFGR+/RE- y EGFR+/RPg-. Sainsbury et al., (1987) demostraron, mediante determinación IHQ del EGFR en 135 cánceres
de mama, una asociación negativa entre la expresión del EGFR y el RE. Los tumores EGFR+ fueron de mayor tamaño e indiferenciados. En el análisis multivariante la positividad para EGFR fue de valor pronóstico en pacientes con ganglios negativos y la segunda variable en importancia en tumores con ganglios positivos. Nicholson et al., (1988) señalan en 246 cánceres de mama analizados por enzimoinmunoanálisis (dintel de positividad 10 fmol/mg) la relación inversa entre EGFR y el RE y su asociación significativa con la recidiva precoz y la muerte.

Para Cappelletti et al., (1988) el contenido de EGFR en 136 cánceres de mama fue mayor en los tumores RE- (72,6 +/- 54,4 fmol/ml) y RPg– (63,8 +/- 54,4 fmol/ml) en comparación con RE+ (33 +/- 37,4 fmol/ml) y RPg+ (35,4 +/- 54,4 fmol/ml). Reubi et al., (1989) también observaron una relación inversa en la expresión de EGFR (positividad 27,7%) con el RE y los receptores de somatostatina. Cattoretti et al., (1988) encontraron una relación positiva entre la expresión de EGFR (anticuerpo Pab421, 67,7% de positividad) y p53. La positividad para el EGFR fue mayor en los tumores ductales (34%) que en los lobulares (21%). Ratnakar et al., (1998) objetivaron por tinción IHQ en tumores de cáncer de mama, una mayor expresión de EGFR (42,5%) y C-erbB-2 (45%) en pacientes postmenopáusicas, en comparación con EGFR (22,5%) y C-erbB-2 (15%) en premenopáusicas.

La presencia del EGFR se relaciona positivamente con: una elevada actividad proliferativa tumoral medida por el anticuerpo Ki-67; un aumento de la fracción S y aneuploidia; altos grados histológicos o peor diferenciación tumoral y con la presencia del producto del oncogén C-erbB-2. Gasparini et al., (1992), en un estudio basado en la determinación inmunocitoquímica de EGFR (56% de positividad), no evidenciaron asociación con la afectación ganglionar, tamaño tumoral y grado histológico. La relación con la actividad proliferativa medida por Ki-67 fue pobre, sin embargo, la positividad para EGFR fue indicador de recidiva. En cambio, Nicholson et al., (1993) en 105 cánceres de mama, observaron una asociación significativa entre la tinción IHQ positiva de EGFR (59%) con C-erbB-2+ y con Ki-67+. Los tumores C-erbB-2 + y tinción moderada para EGFR tuvieron un peor pronóstico. Torregrosa et al., (1997), en su estudio sobre la determinación por radioensayo del EGFR, C-erbB-2 y receptores hormonales en 825 cánceres de mama, señalan que la positividad de estos marcadores fue de valor pronóstico para el intervalo libre de enfermedad en el análisis univariante. El fenotipo EGFR+/C-erbB-2+ se relacionó significativamente con un peor pronóstico. En el análisis multivariante C-erbB-2 fue de valor pronóstico para la recidiva y EGFR para la supervivencia global. Naidu et al., (1998) también citan la asociación positiva entre el EGFR (67%) y C-erbB-2 (67%).

Por el contrario, hay estudios que no han demostrado una asociación significativa entre la expresión del EGFR y el tamaño tumoral, diferenciación histológica, estado menstrual,
afectación de ganglios linfáticos y diferenciación histológica del tumor. Toi et al., (1994) en un estudio de 126 cánceres de mama, no observaron relación entre la tinción IHQ del EGFR con el tamaño tumoral, afectación ganglionar, y expresión de C-erbB-2. La asociación fue positiva para Ki-67 y en el análisis multivariante el EGFR fue de valor pronóstico para la recidiva. Klijn et al., (1994) tampoco demostraron una asociación del EGFR con los parámetros clásicos, a excepción de la relación negativa con los receptores de estrógeno. Las pacientes con valores altos y bajos de EGFR, especialmente en el grupo con ganglios positivos, tuvieron intervalos libres de enfermedad más cortos. Para Cerra et al., (1995) el contenido del EGFR (dentel de positividad de 5fmol/mg) en 70 cánceres de mama (80% de positividad), no se relacionó con ningún parámetro pronóstico clásico. El EGFR mostró una asociación significativa directa con la tinción positiva para Ki-67 y negativa para los receptores hormonales. Schroeder et al., (1997) en la determinación IHQ de EGFR (19% de positividad) en 111 cánceres únicamente observaron una relación inversa entre la positividad del EGFR y los receptores de estrógeno.

En un estudio prospectivo basado en la determinación por ensayo con radioligando de EGFR en 459 pacientes, Koenders et al., (1993), objetivaron en el análisis univariante que niveles de EGFR de 50 fmol/mg o más se correspondieron con una disminución del intervalo libre y la supervivencia global. Sin embargo, este efecto se perdió en el análisis multivariante. Bolla et al., (1994) tampoco pudieron demostrar el valor pronóstico de la determinación de EGFR en 229 tumores T1/T2, N0/N1 en el análisis de riesgos proporcionales de Cox. Para Noguchi et al., (1994) el valor pronóstico del EGFR está ligado a la presencia de metástasis ganglionares. En el análisis multivariante de 93 pacientes con cáncer de mama, la afectación ganglionar fue de valor pronóstico para la supervivencia. Unicamente cuando se retiró del modelo el estado ganglionar el EGFR adquirió valor pronóstico.

La expresión de EGFR se ha relacionado con una pobre respuesta al tratamiento adyuvante. Nicholson et al., (1988) observaron en 61 pacientes ancianas con cáncer de mama en tratamiento con tamoxifén, una relación significativa entre la expresión de EGFR con la recidiva precoz y la muerte en el grupo con pobre respuesta a la terapia endocrina. Del mismo modo, Harris et al., (1989), mediante ensayo por radioligando contra EGFR y RE en 221 cánceres de mama, objetivaron en el grupo de pacientes con recidivas tratadas con tamoxifén como agente de primera línea, una escasa sensibilidad a la terapia endocrina en tumores RE- y EGFR+. Newby et al., (1997) también demostraron que la expresión positiva de EGFR y C-erbB-2 se relacionó significativamente con una pobre respuesta al tratamiento con tamoxifén. Mediante determinación IHQ de EGFR y C-erbB-2, en 155 pacientes con cáncer de mama en progresión de su enfermedad, observaron una peor respuesta cuando se expresaban ambos receptores.
Además evidenciaron mediante biopsias secuenciales, que los niveles de expresión de los receptores fueron los mismos antes de recibir tratamiento y después de la respuesta inicial a la terapia, es decir, que no existió un aumento en la expresión de los receptores que se pudiese atribuir a la falta de respuesta a la terapia endocrina.

El conocimiento de la estructura molecular y funciones del EGFR ha permitido el desarrollo de nuevos agentes antitumorales. Akiyama et al., (1987) demostraron en la línea celular A431 que el compuesto genistein inducía una disminución en la fosforilación de los residuos de serina, treonina y tirosina del receptor estimulado por EGF. Esta sustancia se comportaba como un inhibidor de la actividad tirosina cinasa. Ennis et al., (1989) utilizaron diferentes anticuerpos monoclonales (225 IgG, 108.4 IgG, 96 IgM, 42 IgM) dirigidos contra el EGFR en varias líneas celulares de tejido mamario benigno y cáncer de mama que expresaban el receptor. Se observó una inhibición del crecimiento debido al bloqueo por los anticuerpos del sitio de ocupación del ligando en el receptor. Baselga y Mendelsohn (1994) desarrollaron una serie de anticuerpos monoclonales obtenidos de híbridos humano:murino contra la porción extracelular del EGFR. Demostraron una inhibición del crecimiento en líneas celulares de cáncer de mama en división activa que expresaban el receptor. Experimentalmente se han ensayado diferentes sustancias que inhiben la actividad tirosina cinasa y entre las que destacan el metabolito análogo a la leflunomida que causó una inhibición del crecimiento y muerte por apoptosis del 99% de una línea celular de cáncer humano (Ghosh et al., 1998). La 2,5-dihidrometilcinamato produjo una disminución de un 20-50% de la actividad tirosina cinasa de la línea celular ZR-75-1 resistente a tamoxifén. La administración conjunta de un inhibidor de la actividad tirosina cinasa y un anticuerpo monoclonal contra el EGFR indujo una significativa disminución del crecimiento en la línea celular de cáncer de mama MD-468 (Ciardiello et al., 1999). Similares resultados se obtuvieron con el empleo concomitante de un inhibidor de la actividad tirosina cinasa, el PD153035, y un anticuerpo monoclonal contra el receptor del EGF, logrando una importante disminución del crecimiento de líneas celulares que expresaban el receptor (Bos et al., 1997).

C-erbB-2.

El oncogén v-erbB fue identificado como un gen con capacidad transformante responsable del desarrollo de las eritroleucemias y sarcomas en los pollos. Este gen constituye una parte del genoma viral de la eritoblastosis aviar que codifica la gp74v-erbB, una glicoproteína transmembranal, que corresponde estructuralmente a una forma truncada del receptor del factor de crecimiento epidérmico. Esta proteína era capaz de ser fosforilada en ausencia del ligando y compartía con el EGFR una serie de aminoácidos, pero se diferenciaba del mismo por carecer del dominio extracelular y de un número variable de aminoácidos en el dominio catalítico,
según el tipo de virus implicado (Downward et al., 1984). El análisis de la secuencia de aminoácidos demostró que el virus de la eritroblastosis aviar había adquirido parte del genoma del v-erbB del pollo (Gullick et al., 1985).

El C-erbB-2 es un oncogén que forma parte de la familia ERBB, inicialmente denominado NEU, se identificó en una línea celular de neuroblastoma/glioblastoma de ratas BDIX (Schechter et al., 1984). La transfección de DNA procedente de neuroblastomas y glioblastomas inducidos en la rata por exposición al agente etilnitrosourea, e inyectado en la placenta de ratones, dio como resultado la aparición de tumores del sistema nervioso central y periférico, cuyas células expresaban un antígeno de superficie de 185 kDa. La mitad de la gestación era el período de mayor susceptibilidad para el desarrollo de estos tumores tras tratamiento con el agente alquilante y se correspondía con el período de expresión del gen en el sistema nervioso. La transfección de clones de DNA del alelo transformante de neu insertados en un vector (pSV2) a células NIH3T3, indujo la aparición de focos de células que expresaban el antígeno p185 (Bargmann et al., 1986). El análisis de clones de DNA complementario confirmó que este gen codifica una glicoproteína transmembranal de 185 kDa con actividad tirosina cinasa y con semejanza estructural al receptor del factor de crecimiento epidérmico humano (erbB1). Aproximadamente un 50% de la secuencia de aminoácidos y más del 80% de los residuos de aminoácidos del dominio catalítico de neu eran idénticos a los del EGFR (Bargmann et al., 1986). Akiyama et al., (1986) produjeron anticuerpos dirigidos contra un péptido sintético producto de una secuencia de nucleótidos del gen ERBB2 que codificaba 14 aminoácidos de la región carboxi-terminal. De este modo, lograron la precipitación de la glicoproteína en células de adenocarcinoma y demostraron que poseía actividad tirosina cinasa.

El análisis del gen neu tras tratamiento con etilnitrosourea reveló que este agente inducía una transición T-A, responsable de la sustitución de valina por ácido glutámico en la posición 664 del dominio transmembranal del receptor (Bargmann y Weinberg 1988). Unicamente dos aminoácidos, la glutamina y el ácido glutámico, fueron capaces de producir la activación oncogénica al remplazar la valina. La sustitución de los residuos 663 ó 665 por ácido glutámico no produjo la activación transformante del gen. Esta mutación puntual (transformante) de un aminoácido no polar como es la valina produce un cambio estructural hacia una configuración en forma de hélice alfa, en vez de la configuración normal en pliegue típica (no transformante) en ausencia del ligando. La configuración en hélice alfa conferida por esta mutación facilita la formación de complejos multiméricos del receptor en la membrana, simulando el efecto que produce el ligando al unirse a su receptor. El proceso de dimerización espontáneo también es responsable de la activación enzimática del receptor (Weiner et al., 1989). Aproximadamente un
9% de las secuencias no transformantes de C-erbB-2 existen como hélice alfa, de tal modo, que si la concentración de la proteína normal aumentase 10 veces se podría inducir la transformación celular (Brandt-Rauf et al. 1990). Bargmann y Weinberg (1988) confirmaron que la actividad tirosina cinasa era intrínseca del receptor transformado, necesaria para su actividad y estaba ligada fundamentalmente a la alteración del dominio transmembranal. La delección de secuencias del gen transformante neu demostró que no se requieren mas de 420 aminoácidos de los 1260 codificados para una completa actividad transformante.

Mediante análisis southern blot (Coussens et al., 1985) y estudios de hibridación in situ en híbridos de células somáticas (Yang-Feng et al., 1985) se localizó el gen que codifica el C-erbB-2 en el cromosoma 17q21-q22. Coussens et al., (1985) le asignaron el nombre de HER2. Varios investigadores, con pequeñas variaciones en relación con las bandas, han confirmado la localización del gen en el cromosoma 17 (Fukyshige et al., 1986; Kaneko et al., 1987; Di Fiore et al., 1987; Popescu et al., 1989). Finalmente Muleris et al., (1997) por FISH (hibridación in situ con fluorescencia) demostraron que el gen se localiza en el cromosoma 17 banda q21.1.

Kraus et al., (1989) detectaron en una línea celular de cáncer humano un fragmento de DNA relacionado con la familia del gen ERBB que codificaba una proteína de 148 kDa y le denominaron HER3 o ERBB3. Los estudios de hibridación in situ desvelaron que el gen se localizaba en el cromosoma 12q13. Plowman et al., (1990) aislaron un cuarto receptor con actividad tirosina cinasa, el HER 4. Los estudios mediante expresión recombinante del DNA complementario demostraron que codificaba una proteína transmembranal con actividad tirosina cinasa de180 kDa, cuyo dominio extracelular guardaba homología con ERBB3 y el dominio catalítico citoplasmático un 79% de homología con el ERBB2. EL gen de ERBB4 se ha identificado en el cromosoma 2q33.3-33.4. Todos pertenecen a la familia de receptores tipo I con actividad tirosina cinasa y comparten ligandos similares; su expresión sin embargo, varía en diferentes tejidos y en distintos tipos de tumores.

Se sugirió la existencia de ligandos específicos para el receptor p185C-erbB-2 sobre la base de la falta de unión con los ligandos del EGFR a pesar de la semejanza estructural con esta glicoproteína. De este modo, se aisló en el medio de cultivo de fibroblastos transformados por acción del oncogén ras una glicoproteína de 44 kDa capaz de inducir la fosforilación de p185C-erbB-2 en residuos de tirosina en células de carcinoma de mama que expresaban el receptor (Peles et al., 1992). La administración de esta proteína a células de carcinoma de mama indujo alteraciones en la ploidía, arresto del crecimiento celular por parada en la fase G2/M y cambios fenotípicos de diferenciación, adquiriendo las células capacidad para secretar componentes de la
leche (caseína y lipidos). Los trabajos de Orr-Urtreger et al., (1993), en embriones de ratones de 14,5 días de vida, objetivaron la expresión normal de esta proteína en el tejido nervioso central y periférico. Al ligando de se le denominó NDF (factor de diferenciación neuronal). En la línea celular de cáncer de mama, AU-565, el NDF indujo la expresión de la proteína ICAM-1 implicada en los fenómenos de adhesión celular. Los tumores que expresaban esta proteína crecieron agrupados en forma de cúpula semejando carcinomas in situ tipo comedo (Bacus et al., 1993).

El estudio del DNA mediante clonación del gen demostró que la proteína NDF se sintetiza como un precursor transmembranal que se procesa proteolíticamente originando una proteína soluble que contiene dominios extracelulares tipo IgC2 y EGF. La forma soluble sería el ligando del receptor Neu/p185C-erbB-2, mientras que la porción transmembranal podría participar en los contactos entre células. Lee y Wood en 1993 utilizando células híbridas humanas/roedores por PCR identificaron el gen que codifica el NDF en el cromosoma 8p22-p11. Orr-Urtreger en (1993), mediante hibridación in situ con sondas marcadas con tritio en células humanas en metafase, localizaron el gen en el cromosoma 8p21-12.

Otra proteína de 45 kDa, la heregulina (HRG), fue aislada por Holmes et al., (1992) en medio de cultivo de células de carcinoma de mama humano. Esta proteína al igual que el NDF producía la fosforilación de la p185C-erbB-2, pero a diferencia de NDF, la heregulina era capaz de estimular el crecimiento de células de carcinoma de mama en medios de cultivo. El estudio de clones de DNA de heregulina permitió el aislamiento de una serie de péptidos (HRG alfa, HRG Beta 1, HRG Beta 2 y HRG Beta 3) de la misma familia que son sintetizados como precursores transmembranales.

Las neuregulinas (NDF, HRG, GGF, ARIA) al igual que sus receptores, se expresan diferencialmente en distintos tejidos y en diferentes estadios del desarrollo. Estos péptidos estimulan la fosforilación de los residuos de tirosina de la p185C-erbB-2, y son productos codificados de formas alternativas del RNAm del gen (Marchioni et al., 1993). Estos ligandos precisan de sus receptores específicos, aunque un receptor por la acción de su ligando puede interaccionar con otro receptor de la misma familia. La formación de heterodímeros produce un fenómeno denominado transfosforilación cruzada (Plowman et al., 1990). El ligando de C-erbB-2/HER2 es Neu y el de HER4 es el NDF/HRG. Mediante este proceso el NDF/HRG a través de su unión con su receptor HER4 puede estimular la fosforilación de HER2 en ausencia de su ligando NEU. Sin embargo, si no está presente HER4, el NDF/HRG no podría inducir la fosforilación de HER 2.
El receptor p185C-erbB-2 también forma un complejo con la subunidad gp130 del receptor de interleuquina 6 (IL6), de este modo, un receptor de citoquina puede ampliar sus vías de señalización involucrando un receptor de un factor de crecimiento (Qiu et al., 1998). La inhibición de la actividad del receptor HER2 produce una inhibición de la vía de señalización de la IL6 a través de la MAP quinasas (Ver vía de señalización del EGFR).

Doherty et al., (1999) describieron una proteína soluble de 68 kDa, denominada “herstatin” que corresponde al producto de transcripción alternativo por retención del intrón 8 del gen C-erbB-2. Este intrón especifica 340 residuos correspondientes a los dominios extracelulares I y II y 79 residuos de la porción carboxi-terminal de la p185C-erbB-2. Su importancia radica en que este producto capaz de unirse con el receptor C-erbB2, actúa como un inhibidor del mismo, produciendo la rotura de los dímeros con la consiguiente reducción de la fosforilación de tirosina y disminución de la actividad cinasa. La expresión de herstatin se encuentra reducida en células de carcinoma de mama que presentan amplificación del gen.

Diversos estudios experimentales y clínicos avalan la importancia del oncógén Neu/C-erbB-2 en el desarrollo, progresión y tendencia a producir metástasis en el cáncer de mama. Se observó la aparición eventual de focos de carcinoma mamario en ratones transgénicos hembras que expresaban el oncógén Neu/C-erbB-2 bajo el control de un promotor y un aumento en la cantidad de RNAm y de la proteína Neu/C-erbB-2 con una elevada actividad tirosina cinasa. Estos ratones desarrollaron metástasis pulmonares y el análisis de ellas corroboró que al igual que sus homólogos primarios sobreexpresaban el oncógén Neu/C-erbB-2. Estos hallazgos sugirieron que la sobreexpresión del gen es importante en el desarrollo y progresión tumoral (Guy et al., 1992). La transfección del gen Neu/erbB-2 normal humano en fibroblastos no provocó la transformación neoplásica; este efecto sin embargo, se consiguió al inducir la sobreexpresión mediante un LTR viral. Los estudios experimentales corroboran que tanto las mutaciones del gen como la sobreexpresión del gen normal son capaces de estimular la transformación maligna (DiFiore et al., 1987). Xu et al., (1993), utilizando una serie de anticuerpos monoclonales dirigidos contra diferentes epitopes del dominio extracelular del receptor p185C-erbB-2, lograron la inhibición del crecimiento de la línea celular SKBr3,. La presencia de receptores alterados por delecciones de parte del dominio extracelular se observó en ratones transgénicos que desarrollaron múltiples tumores de mama. Los tumores con un número elevado de receptores fosforilados en residuos de tirosina de C-erbB-2 y C-erbB3, frecuentemente producían metástasis pulmonares. El análisis de células humanas de cáncer de mama, también evidenció la presencia de formas activadas del receptor C-erbB-2 por delección de 16 aminoácidos en el dominio extracelular. La transfección de este receptor activado por una
mutación fue capaz de inducir la transformación maligna de fibroblastos Rat-1 (Siegel et al., 1999). Pietras et al., (1995) introdujeron por transfección un DNA complementario de C-erbB-2 en células de cáncer de mama carentes del receptor. Por este método demostraron que las células adquirían la capacidad de expresar el receptor y de crecer de manera independiente del estrógeno y de la acción inhibitoria del tamoxifén. Estas células al ser estimuladas por heregulina produjeron una rápida fosforilación del receptor de estrógeno y este a su vez activó la transcripción y producción del receptor de progesterona. Además, la sobreexpresión de C-erbB-2 indujo una disminución de la regulación del RE independiente de su ligando y un retardo en la autoregulación de la supresión de los productos de transcripción del RE. Este mecanismo podría explicar porqué las células que sobreexpresan C-erbB-2 desarrollan una resistencia al tratamiento endocrino. Por otra parte, Yu et al., (1998) han demostrado que la sobreexpresión de C-erbB-2 confiere una resistencia a la apoptosis inducida por taxol a través de la activación de la CDKN1. El taxol activa la cdc2 en células MDA-MB-435 lo que ocasiona un arresto en la fase G2/M y la subsiguiente apoptosis. La CDKN1 inhibe la activación de la cdc2 producida por taxol.

Se han empleado diferentes métodos para valorar la actividad del gen. El análisis del DNA cromosomal mediante Southern blot y slot blot mide la amplificación del gen y el método semicuantitativo PCR (reacción en cadena de la polimerasa) determina el número de copias del gen. Una desventaja atribuible a esta técnica es no permitir la valoración individual de las células. Las técnicas inmunoenzimáticas e inmunocitohistoquímicas miden la sobreexpresión del gen. Mediante IHQ se tiñe la membrana celular de las células de cáncer de mama C-erbB-2+; destaca la ausencia de tinción en las neoplasias benignas. Entre las desventajas de la IHQ se señalan la falta de estandarización de la técnica como consecuencia de variaciones en el procesamiento de la muestra y diferencias en la sensibilidad de los anticuerpos monoclonales. Dawkins et al., (1993) en un análisis de 74 cánceres de mama compararon la amplificación del gen medida mediante Southern blot y slot blot y la sobreexpresión determinada por ELISA e IHQ. La amplificación del gen fue detectada en el 18,9% de los casos por Southern blotting y slot blot, mientras que la sobreexpresión se determinó por ELISA en 21% y por IHQ en el 19% de los tumores. Los cuatro métodos fueron comparables en cuanto a sus resultados, sin embargo, resultaron más baratos la IHQ y el slot blot. Dalifard et al., (1998) encontraron una buena correlación (r=0,85) entre la determinación de la C-erbB-2 por ensayo inmunoenzimático y la determinación de la amplificación del gen por Southern blot.

La técnica FISH (hibridación in situ con fluorescencia de doble color) descrita por Sauter et al., (1996) aporta grandes ventajas, pues permite valorar la amplificación del gen, su
distribución espacial y heterogeneidad en el núcleo y sirve para determinar el número de copias o delecciones del cromosoma 17 (Mezzelani et al., 1999). Esta técnica ha puesto de manifiesto la existencia de un mayor número de células aneuploides, ausencia de receptores hormonales y elevadas tasas de proliferación en los tumores C-erbB-2+ por amplificación del gen (Farabegoli et al., 1999). Con este método también se ha demostrado una ausencia de sobreexpresión de la proteína cuando existe una baja amplificación del gen y explica porqué en estos casos los métodos inmunohistoquímicos son incapaces de detectar la proteína.

No se ha encontrado la sobreexpresión de C-erbB-2 en las lesiones hiperplásicas y displásicas de la mama, en cambio, un 56% de los carcinomas ductales in situ, un 77% de la variedad comedo de carcinoma ductales in situ y un 15% de los cánceres infiltrantes expresan C-erbB2 (Allred et al., 1992). Se ha observado una mayor amplificación y sobreexpresión del gen en los cánceres in situ (48%–65%) y en el componente intraductal (60%) que en los cánceres infiltrantes. Entre un 11 y 15% de los cánceres infiltrantes presentan una sobreexpresión del RNAy de la proteína sin amplificación del gen. El gen aparece amplificado en el 20% – 55% de los cánceres infiltrantes (Liu et al., 1992; Singleton y Strickler 1992). En los cánceres ductales infiltrantes RE+, la sobreexpresión de C-erbB-2 fluctúa con las diferentes fases del ciclo menstrual, siendo los niveles de expresión mas elevados durante la fase folicular en comparación con la fase lútea. Balsari et al., (1999) analizaron la expresión de C-erbB-2 en 198 premenopáusicas intervenidas en distintas fases del ciclo menstrual. Un 20% de los tumores resecados durante la fase folicular fueron C-erbB-2+ frente al 8% extirpado en la fase lútea. El análisis por Southern blot indicó que la sobreexpresión de C-erbB-2 inducida en tumores RE+ no se debió a la amplificación del gen, por consiguiente, el medio hormonal parece influir en la sobreexpresión de la proteína.

El dominio extracelular del receptor ha sido cuantificado en la circulación periférica, su concentración se correlaciona directamente con la expresión en el tumor primario y con la aparición de enfermedad metastásica. Breuer et al., (1994) compararon los niveles séricos de C-erbB-2 y myc en 36 pacientes con cáncer de mama y en 25 mujeres sanas. En las enfermas con cáncer en comparación con las sanas se detectaron niveles significativamente altos de C-erbB2 (29% vs 4%) y c-myc (19% vs 0%). Los niveles séricos elevados de C-erbB2 concordaban con un aumento de la expresión de la proteína en los cánceres primarios y se normalizaban después de la exéresis del tumor. Por tanto, los autores concluyeron que estas proteínas se encuentran aumentadas en una proporción de pacientes con cáncer de mama y su detección en la circulación debe su origen a los tumores primarios. Fontana et al., (1994) determinaron la concentración sérica de C-erbB-2 antes del tratamiento quirúrgico en 236 pacientes con cáncer
de mama no metastásico. La mediana de los niveles en suero de C-erbB-2 correspondió a 4 u/ml (4 – 150) y el dintel de positividad seleccionado fue de 8 u/ml. Se detectaron niveles positivos en el 21% de las enfermas correlacionándose esta positividad con la enfermedad metástasica y con tumores T3-T4, ganglios positivos y altos niveles de CA 15.3. Estos autores consideran que es necesaria la determinación sérica de C-erbB2 antes de cualquier actuación terapeútica debido a su posible valor para pronosticar recidivas. Watanabe et al., (1994) determinaron mediante enzimoinmunoanálisis (punto de corte 12 u/ml) niveles elevados de C-erbB-2 en el 12% de las pacientes con un cáncer primario de mama, en el 4,9% de pacientes operadas sin evidencia de recidivas y en el 31,4% de los casos con enfermedad metastásica. En las mujeres portadoras de un cáncer y en los casos de recidiva, la concentración sérica de la proteína se correspondía con la elevación de los marcadores CEA y CA15.3. También, Molina et al., (1999) compararon los niveles en sangre de C-erbB-2, CEA y CA15.3 en 250 enfermas intervenidas sin enfermedad residual y con una media de seguimiento de 2,5 años. Los dinteles de positividad para el C-erbB-2, CEA y CA15.3 fueron >20 u/ml, >10 u/ml, >60 u/ml y la expresión positiva se detectó en el 28,4%, 31,6%, 46,3% respectivamente. La elevación de al menos un marcador se produjo en el 69,5% de los casos antes de la aparición de la recidiva. Los niveles séricos de C-erbB2 mostraron una buena concordancia con sus respectivos tumores primarios y fueron, junto con los de CA15.3, de valor para pronosticar la recidiva con un intervalo de 4,2/ +/-2,4 meses antes de producirse. Por otra parte, Shimizu et al., (2000) compararon la expresión de C-erbB-2 y p53 en los tumores primarios y sus metástasis mediante tinción IHQ en 42 muestras de 21 pacientes con cáncer de mama, de las que el 67% recibió tratamiento adyuvante. No encontraron diferencias en la expresión de C-erbB-2 (38%) y p53 (39%) entre los tumores primarios y su metástasis, como tampoco existieron variaciones en los casos que recibieron tratamiento adyuvante.

Desde que Slamon et al., (1987) hicieron referencia al valor del gen neu/ERBB2 como factor de pronóstico en el cáncer de mama, se han publicado una gran cantidad de trabajos que citan el valor pronóstico de la sobreexpresión/amplificación del gen en el cáncer de mama. Estos autores demostraron la sobreexpresión del gen (2 hasta 20 veces) en el 30% de un total de 189 cánceres de mama. El C-erbB-2 fue de valor pronóstico para la recidiva y la supervivencia global superando incluso a los receptores hormonales y al estado de los ganglios axilares.

En el cáncer de mama varios trabajos han puesto de manifiesto que la activación del oncogén (amplificación/sobreexpresión) se relaciona con: el inicio y progresión del tumor, aumento en la actividad mitótica, pleomorfismo nuclear, altos grados histológicos y nucleares, ausencia de infiltrado inflamatorio peritumoral, estadios clínicos avanzados (III y IV), estado y número de
Estado actual de los marcadores tumorales moleculares.

60

adenopatías axilares, ausencia de receptores de estrógenos y progesterona, alteraciones de la p53, aumento en las concentraciones uAP, disminución de los niveles de Bcl-2, enfermedad metastásica, un menor intervalo libre de enfermedad y supervivencia global y una falta de respuesta al tratamiento hormonal y citotóxico. Stal et al., (1994) objetivaron en 172 cánceres que la expresión de C-erbB-2 medida por tinción IHQ (37% de positividad) se relacionaba significativamente con aumento de la fracción S, aneuploidia y negatividad para el RE. Los tumores C-erbB-2+ presentaron un mayor porcentaje de metástasis. Delarue et al. (1994), mediante tinción IHQ de C-erbB-2 y EGFR en 73 cánceres, también evidencieron que el C-erbB-2 se relacionaba significativamente con tumores grandes y con la presencia de metástasis ganglionares. En el análisis multivariante el C-erbB-2 fue de valor pronóstico para la recidiva a corto plazo, mientras que el EGFR lo fue a largo plazo. Por otra parte, Prost et al., (1994) determinaron la amplificación del gen por hibridación en 178 pacientes con cáncer de tipo no inflamatorio y lo compararon con 67 enfermas con carcinoma inflamatorio. El gen se encontró amplificado en el 17% de los cánceres infiltrantes y en el 36% de los inflamatorios. En el análisis multivariante el C-erbB2 únicamente se asoció a un mayor riesgo de muerte en el grupo no inflamatorio con ganglios positivos. Wiesener et al., (1998) examinaron por IHQ la expresión de C-erbB-2, Ki-67 y p34cdc2. El C-erbB-2 se asoció significativamente a una elevada expresión de Ki-67 y a un alto grado histológico. Tanto el Ki-67 como el C-erbB-2 se relacionaron significativamente con la supervivencia global. Gago et al., (1999) analizaron 205 cánceres de mama con una media de seguimiento de 5 años. Fueron de valor pronóstico en el análisis univariante el tamaño tumoral, la afectación ganglionar, el grado histológico, la presencia de RE, p53, C-erbB-2, PCNA y glicoproteína P. En el análisis multivariante el C-erbB-2 fue la variable de mayor valor pronóstico seguida por el tamaño tumoral, receptores hormonales, grado histológico y PCNA. De manera similar Quin et al. (1999) estudiaron, mediante tinción IHQ en 108 pacientes con carcinoma ductal in situ y 25 carcinomas infiltrantes, la relación entre la expresión de la proteína Bcl-2 y el RE, C-erbB2 y p53. La positividad para Bcl-2 se asoció significativamente a tumores bien diferenciados y a la presencia de RE. La ausencia de Bcl2- se relacionó significativamente con tumores indiferenciados y positividad para C-erbB-2 y p53.

En cambio, en algunos estudios el C-erbB-2 carece o es de dudoso valor pronóstico. Así, van de Vijver et al., (1988) observaron que las células de cáncer de mama tipo comedo sobreexpresaban el producto del gen Neu/C-erbB-2, sin embargo, no encontraron una asociación significativa entre la sobreexpresión y la afectación ganglionar y la recidiva tumoral. Rilke et al., (1991) en su serie basada en el examen inmunohistoquímico de muestras archivadas de 1.210 pacientes con un seguimiento de 19 años, observaron que los tumores que
sobreexpresaban C-erbB-2 y con ganglios positivos tuvieron una mala evolución. La presencia
de C-erbB-2 se relacionó con parámetros clásicos de mal pronóstico (tumores grandes, indiferenciados y con un menor infiltrado linfoplasmocitario). Sin embargo, en el análisis multivariante fueron de valor predictivo los parámetros de pronóstico clásicos. Para Gasparini et al., (1994) el C-erbB-2 y C-erbB-3 (IHQ) carecieron de valor pronóstico en el análisis multivariante de 211 cánceres de mama con ganglios negativos. Del mismo modo, Quenel et al., (1995) realizaron determinación IHQ de C-erbB2 y receptores hormonales en 942 pacientes con cáncer. Un 24% de los tumores fueron inmunorreactivos para la proteína, encontrando una asociación positiva significativa con el grado histológico y negativa con el RE y el RPg. En el análisis univariante el C-erbB-2 fue de valor pronóstico para la recidiva y la supervivencia en el grupo con ganglios negativos. Sin embargo, en el análisis multivariante el valor pronóstico de C-erbB-2 fue inferior al grado histológico, a la afectación de los ganglios axilares, al tamaño tumoral y al estado de los receptores hormonales. Igualmente, Reed et al., (2000) señalan que el C-erbB-2 y la p53 carecieron de valor pronóstico, en su estudio de 613 cánceres de mama con ganglios negativos y seguimiento durante 30 años. En estos enfermos el grado histológico y el tamaño tumoral fueron las variables que mejor predijeron la evolución de las pacientes. El 35% de las enfermas con tumores con grados histológicos 2-3 y un tamaño tumoral mayor de 2 cm (T2N0M0) habían fallecido después de 10 años de seguimiento en comparación con el 6% de las pacientes con tumores con un grado histológico I y un tamaño tumoral inferior a los 2 cm (T1N0M0).

La expresión/amplificación de neu/C-erbB-2 en cánceres de mama se ha relacionado con una mayor agresividad tumoral y una pobre respuesta a los tratamientos complementarios. Varios autores han definido un subgrupo de tumores RE+/C-erbB-2+ que responden mal a la terapia endocrina. Entre ellos destacan los trabajos de Allred et al., (1992) quienes examinaron la expresión de C-erbB-2 por tinción IHQ (14,3% de positividad) en 613 pacientes. Los dividieron en un grupo de bajo riesgo (n=307) que incluía tumores 3 < cm, RE+ y sin tratamiento adyuvante, y un grupo de alto riesgo (n=306) caracterizado por tumores grandes y ausencia del RE. Se observó una disminución del intervalo libre de enfermedad y de la supervivencia en los tumores infiltrantes/C-erbB-2+. Tuvieron un mejor pronóstico las pacientes con tumores C-erbB-2 negativo que recibieron tratamiento adyuvante en comparación con las enfermas con tumores C-erbB-2 positivo tratadas de manera idéntica. También, Wright et al., (1992) examinaron la expresión de C-erbB-2 por IHQ en 65 pacientes de un total de 72 recidivas tratadas con tamoxifén como agente de primera línea. Hubo una significativa mayor respuesta al tratamiento endocrino en los tumores C-erbB-2 negativos-, reduciéndose significativamente la respuesta de un 48% a un 20% en los tumores con el fenotipo tumoral RE+/C-erbB-2 +. Del
mismo modo, Giai et al., (1994) observaron en 159 pacientes que la expresión de C-erbB-2 se asoció a una corta supervivencia en cánceres con ganglios negativos, aunque en el análisis multivariante la afectación ganglionar fue de mayor valor pronóstico. La respuesta al tratamiento CMF y tamoxifén fue menor en las pacientes cuyos tumores expresaban conjuntamente el oncogén ras y C-erbB-2. Igualmente, Borg et al., (1994) en un análisis de 871 pacientes con cáncer de mama encontraron que la expresión de C-erbB-2 se correlacionaba con un intervalo libre de enfermedad corto y una menor supervivencia en el grupo tratado con tamoxifén en comparación con el grupo no tratado. Los tumores C-erbB-2+, RE+ y ganglios positivos tuvieron un peor pronóstico.

De una manera distinta, Leitzel et al., (1995) estudiaron el efecto que producía la sobreexpresión de C-erbB-2 en la respuesta a la terapia hormonal. Determinaron la expresión en la sangre de 300 pacientes con cáncer de mama metastásico randomizadas para recibir acetato de megestrol o fradazole. Un 19,3% de las pacientes presentaron niveles séricos elevados de C-erbB-2 y tanto la respuesta al tratamiento endocrino como la supervivencia fue significativamente menor en el grupo con tumores RE+/C-erbB-2+. Houston et al., (1999) señalan en su estudio de 241 pacientes con cáncer de mama avanzado tratadas con terapia endocrina tras la primera recaída, la peor respuesta y un tiempo de progresión de la enfermedad relativamente más corto en tumores C-erbB-2 positivos. La expresión conjunta de C-erbB-2 y el RE definió un grupo con resistencia al tratamiento endocrino.

La ausencia de expresión de C-erbB-2 se ha relacionado con una mejor respuesta al tratamiento quimioterápico adyuvante. Así lo señalaron, Bitran et al., (1996), al analizar la expresión de C-erbB-2 en 25 pacientes en estadio II y IIIA tratadas con 6 ciclos de CAF y posterior quimioterapia a altas dosis con transplante autólogo de médula ósea. Los tumores de las 4 pacientes que recidivaron tuvieron una elevada expresión de C-erbB-2 en comparación con las 21 restantes con baja o nula expresión, siendo esta asociación significativa. Igualmente, Makris et al., (1997), citan la respuesta significativa que se produjo al tratamiento neoadyuvante (mitozantrone, metrotexate, mitomicina y tamoxifén) en 90 pacientes con tumores C-erbB-2 negativo. La respuesta al tratamiento quimioendocrino fue mejor en los cánceres RE+, RPg+ y Bcl-2+, aunque en estos casos, la asociación no alcanzó la significación estadística. Del mismo modo, Willsher et al., (1998) en su serie de 50 pacientes con cáncer avanzado de mama señalan que se produce una buena respuesta (73%) al tratamiento quimioterápico neoadyuvante, en tumores C-erbB-2 negativo. Asimismo, Tetu et al., (1998) observaron en el análisis multivariante de 458 pacientes con cáncer de mama y ganglios positivos, una mejor supervivencia en aquellas enfermas con expresión negativa para c-erbB-2 y p53 y que habían
recibido ciclos prolongados (10 >) de quimioterapia. De manera similar, Vargas-Roig et al., (1999) analizaron la relación entre la presencia de C-erbB-2, p53 y glicoproteína P y la resistencia a la quimioterapia de inducción (FAC o FEC) en 60 biopsias de pacientes con cáncer de mama avanzado. No observaron diferencias significativas entre la expresión de los marcadores antes y después de la terapia. La p53 y la glicoproteína P no fueron de valor pronóstico para la supervivencia libre de enfermedad. En cambio, el 50% de las pacientes que recidivaron tenían tumores C-erbB2+ frente al 7% que se mantuvo libre de enfermedad. Los tumores C-erbB-2+ tuvieron una significativa menor supervivencia y por tanto, la relación con la progresión de la enfermedad y resistencia al tratamiento fue objetiva.

Por otra parte, Bewick et al., (1999) valoraron en 57 pacientes con cáncer de mama metastásico la expresión sérica del dominio extracelular de C-erbB-2 y su relación con la respuesta al tratamiento intensivo con altas dosis de quimioterapia y trasplante de médula ósea. En el análisis multivariante la presencia de C-erbB-2 en la circulación periférica se relacionó significativamente con una disminución en la supervivencia libre de progresión de la enfermedad y la supervivencia global. Bezwoda, (2000) estudió la sobreexpresión de C-erbB-2 y su relación con la respuesta al tratamiento adyuvante en 92 pacientes con cáncer de mama avanzado. La expresión de C-erbB-2 y RE no tuvo influencia sobre la respuesta al tratamiento endocrino, contrariamente a lo que sucedió con el tratamiento citotóxico CAF, en donde, se observó una disminución de la respuesta y del intervalo de fracaso a la terapia de tumores C-erbB-2+ frente a tumores C-erbB-2-. Debido a que previamente los tumores C-erbB-2+ habían recibido tratamiento quimioterápico, ésta variable fue la única de valor predictivo de respuesta a la terapia CAF en el análisis multivariante.

Algunos trabajos señalan que los tumores C-erbB-2+ presentan una buena respuesta a los tratamientos intensivos de quimioterapia. Así, Thor et al., (1998) analizaron en 992 cánceres de mama con ganglios positivos la expresión de C-erbB-2 y p53 con relación a la respuesta al tratamiento con dosis intensivas de CAF (ciclofosfamida, Adriamicina y fluorouracilo). Un 37% de los cánceres eran C-erbB-2+. En el análisis multivariante se objetivó el beneficio de la quimioterapia intensiva en los grupos con tinción positiva para C-erbB-2 y que habían recibido dosis moderadas y altas de CAF. De manera similar, Muss et al., (1994) valoraron en 442 pacientes seleccionadas al azar de un total de 1572 mujeres con cáncer de mama y ganglios positivos, la utilidad del índice de DNA, fracción S, expresión de C-erbB-2 y p53 para predecir la respuesta a dosis altas, medias y bajas de ciclofosfamida, doxorribicina y fluorouracilo. Unicamente objetivaron un mayor intervalo libre y supervivencia global en el grupo que recibió altas dosis de quimioterapia y cuyos tumores expresaban el C-erbB-2. Asimismo, Paik et al.,
(1998) objetivaron un beneficio del tratamiento adyuvante PAF (mostaza L-fenilalanina, adriamicina y 5-fluorouracilo) sobre PF en tumores C-erbB-2+. Este estudio se basó en el seguimiento durante una media de 13,5 años de 682 pacientes. La sobreexpresión de C-erbB-2 se relacionó con un mayor tamaño tumoral, ausencia de RE y el número de ganglios afectados. El intervalo libre de enfermedad y la supervivencia global fueron significativamente mejores en el grupo con tumores C-erbB-2+ y que incluía la adriamicina (doxorubicina) como parte del tratamiento.

El mejor conocimiento de la estructura molecular del gen y de su producto ha permitido el desarrollo experimental de terapias dirigidas contra el gen. Colomer et al., (1994) han ensayado oligonucleótidos antisentido en líneas celulares SK-BR3 y BT-474 demostrando una inhibición del 60% del crecimiento celular y una reducción de los niveles de la proteína C-erbB-2 en las células con amplificación del gen. Los oligonucleótidos antisentido carecieron de efecto en las células que sobreexpresaban el gen sin amplificación del mismo. Por otra parte, Hollywood et al., (1995) describieron la inhibición de RNAm del gen mediante la inhibición del promotor OB2-1 con el fármaco aurotiomalato sódico.

Harweth et al., (1993) demostraron in vivo la inhibición del crecimiento de tumores que expresaban C-erbB-2 tras tratamiento con 4 anticuerpos recombinantes monoclonales (FRP5, FSP16, FWP51, FSP77) dirigidos contra el dominio extracelular del receptor. Los anticuerpos FWP51 y el FSP77 inhibieron el crecimiento de células transformadas NIH3T3 implantadas en ratones desnudos. La administración conjunta de estos dos anticuerpos dirigidos contra dos regiones distintas del receptor obtuvo un mejor efecto citostático que la administración individual. Sin embargo, los tumores reanudaron el crecimiento tras la suspensión del tratamiento. Baselga et al., (1996) informaron de un 11,6% de respuesta en 46 pacientes con cánceres de mama en estadio IV que sobreexpresaban el oncogén C-erbB-2 tratadas con 10 inyecciones (100 mg/inyección) semanales del anticuerpo monoclonal recombinante humanizado, rhumAb-HER2. Observaron una buena respuesta en el hígado, mediastino, ganglios linfáticos, y pared torácica.

Boyer et al., (1999) investigaron los epitopes óptimos blanco de las inmunotoxinas. Para ello, ensayaron 7 anticuerpos combinados con inmunotoxinas (anti-HER-2 ricina A) dirigidos contra diferentes epitopes del dominio extracelular del receptor C-erbB-2 en 2 líneas celulares distintas de cáncer de mama que sobreexpresaban el receptor. Estos autores obtuvieron niveles de citotoxicidad variable que era independiente del tipo de anticuerpo, de la afinidad de unión, de la posición relativa y de la internalización del receptor. Además, observaron que los epitopes
se disponían en un arreglo lineal en la región N-terminal y fueron de vital importancia las regiones con residuos de aminoácidos del 78 – 242.

Pregam et al., (1999) estudiaron el sinergismo que se produce con la utilización del anticuerpo humanizado HER 2 y diferentes agentes quimioterapéuticos. Los estudios in vivo se condujeron en ratones desnudos implantándoles injertos de células MCF-7 transfectadas con el gen C-erbB-2 seguido por la administración de anticuerpos rhuMAb HER-2 y combinaciones de agentes alquilantes, análogos de platino, inhibidores de la topoisomerasa II, taxanos, antraciclinas y antimetabolitos. La administración conjunta de rhuMab- HER2 con ciclofosfamida, doxorrubicina, paclitaxel, metrotexate, etopósido y vinblastina fue más efectiva causando una significativa reducción del volumen tumoral que la administración exclusiva de quimioterápicos.

Wei et al., (1999) han demostrado que es posible la adquisición de inmunidad antitumoral específica contra C-erbB-2. Estos autores desarrollaron 3 mutantes DNA de C-erbB-2 que codificaban la proteína receptora completa y que posteriormente fueron utilizadas como vacunas. A uno de los mutantes se le eliminó la actividad tirosina cinasa (ErbB-2 A), a otro la posibilidad de ser procesado en el citoplasma (cyt ErbB-2) y al tercer mutante ambas posibilidades (cyt ErbB-2 A). Únicamente las vacunas de mutantes sin actividad tirosina cinasa (ErbB-2 A) inhibieron el crecimiento de tumores que expresaban C-erbB-2 en ratones BALB/c.

Ki-67.

Gerdes et al., (1983) describieron un anticuerpo monoclonal de ratón, Ki-67, que reaccionaba con un antígeno nuclear de células en proliferación activa. Sus estudios experimentales en células estimuladas con mitógenos demostraron que el anticuerpo reconocía un antígeno presente en todas las fases del ciclo de división celular (G1, S, G2, M). Sin embargo, no reaccionaba con células quiescentes ni con células en la fase G1 precoz (G1T, G1A) que habían sido estimuladas por primera vez con mitógenos. La inmunotinción con Ki-67 desvelaba una reactividad nuclear en varias líneas de células humanas en división celular activa (células corticales del timo, células germinales del centro de foliculos corticales, células de la región del cuello de la mucosa gástrica, espermatogonías indiferenciadas) y por el contrario, carecía de efecto en células bien diferenciadas (linfocitos, monocitos, hepatocitos, células renales, células parietales de la mucosa gástrica y células cerebrales). La expresión del antígeno reaparecía en linfocitos tras ser estimulados con un mitógeno (fitohemaglutinina) y desaparecía en las células HL-60 inducidas a diferenciarse a macrófagos maduros por exposición a ésteres
de forbol. Estos hallazgos sugirieron la posibilidad de utilizar el antígeno Ki-67 para valorar la fracción de crecimiento, es decir, la proporción de células que se están dividiendo en un tumor.

Entre las primeras aplicaciones clínicas del anticuerpo contra el antígeno Ki-67 destacan los trabajos de Gerdes et al., (1984) en linfomas no Hodgkin. Estos autores, utilizando la mediana de expresión como parámetro de discriminación, lograron correlacionar linfomas de alto y bajo grado de la clasificación de Kiel con elevadas y bajas tasas de división celular respectivamente. Para valorar la actividad proliferativa de células de linfoma en suspensión, Silvestrini et al., (1988), emplearon tres métodos distintos que incluían la tinción con el anticuerpo monoclonal Ki-67, la autoradiografía con timidina {(3H) TdR LI} y la tinción con bromodeuxiridina (BrdU LI). Estos autores, basándose en el valor de la mediana (punto de corte) para definir tumores de proliferación celular lenta o rápida, objetivaron que los 3 métodos, salvo algunas variaciones, servían para estimar la cinética celular. La determinación de la proteína Ki-67 era útil para medir la fracción de crecimiento de una población celular y comparable a métodos fiables como la medición de la fracción S por citometría de flujo.

Estudios en diferentes tejidos humanos han demostrado que el anticuerpo monoclonal Ki-67 se une a un antígeno de 35 – 40 kDa en las células que se están dividiendo activamente (Danova et al., 1988; Landberg et al., 1990; Landberg y Roos 1993). Valiéndose de la citometría de flujo, Sasaki et al., (1987), comprobaron que los niveles de expresión del antígeno aumentaban durante la última mitad de la fase S y alcanzaban un pico máximo durante la fase G2/M. El tratamiento de las células HeLa S3 con inhibidores de la síntesis de DNA incrementó la expresión del antígeno, mientras que el tratamiento con DNAasa le hizo desaparecer. Sobre la base de estos resultados se llegó a la conclusión que el antígeno Ki-67 se encuentra unido al DNA, que su expresión es independiente de la síntesis de DNA y que puede ser esencial para mantener el estado de proliferación celular. Con microscopía electrónica y de barrido confocal con láser en las células humanas MR65, Verheijen et al., (1989), localizaron el antígeno en la corteza del nucleolo y en los componentes fibrilares densos. Asimismo, Guillaud et al., (1989) mediante citometría de imagen objetivaron en las células MCF-7 y MRC-5, que el antígeno se encontraba principalmente en el nucleolo en la fase G1 y en el nucleoplasma en las subsiguientes fases del ciclo celular y señalaron además, que la síntesis de RNA nuclear es esencial para la expresión del antígeno. Peled et al., (1997) por Western blot y análisis inmunocitoanalógico empleando el anticuerpo monoclonal del ratón PRA72, también demostraron que el antígeno de 35 – 40 kDa presentaba una distribución nuclear periférica durante todas las fases del ciclo celular, a excepción de la mitosis, donde los cromosomas se envolvían con el mismo.
Estados con doble inmunofluorescencia han confirmado que durante la mayoría de la
interfase el antígeno Ki-67 se localiza dentro del nucleolo. En la fase G1 precoz se sitúa en un
gran número de focos repartidos en el nucleoplasma que se extienden hasta la envoltura nuclear.
Durante la mitad de la fase G1 precoz el antígeno se encuentra asociado con el nucleolo en unas
regiones distintas a los dominios que contienen los mayores antígenos nucleolares (fibrilarina y
RNA polimerasa I). En el nucleolo ya maduro, el Ki-67, se localiza en los dominios que
contienen fibrilarina o B23/nucleofosmina y está ausente en regiones que poseen RNA
polimerasa I. Cuando se induce la rotura del nucleolo se observa la translocación del antígeno a
focos nucleoplásmicos carentes de fibrilarina o RNA polimerasa I. Así, aparentemente el Ki-67
se encuentra en regiones del componente fibrilar denso del nucleolo deficientes en fibrilarina
(Kill, 1996). Estudios posteriores han corroborado que la localización de Ki-67 varía de manera
dependiente del ciclo celular. Durante la mitosis este antígeno cubre a los cromosomas, se
acumula en focos nucleares durante la fase G1 y se mantiene dentro del nucleolo en la fase
tardía de G1, en la fase S y en G2. En la fase G1 precoz se ha observado su localización en las
siguientes regiones satélites del DNA: alfa satélite (centrómero), minisatélite (telómero) y
satélite III (bloques heterocromáticos). En la fase G1 tardía existen mínimas regiones satélites
con Ki-67, desplazándose éste hacia el nucleolo. Sin embargo, las regiones centroméricas y
brazos cortos de los cromosomas acrocéntricos próximos a los genes de RNA ribosomal (RNAr)
contienen Ki-67. En la fase de reformación postmitótica y nucleogénesis disminuyen
progresivamente las regiones satélites del DNA que permanecen asociadas con Ki-67 (Bridger
et al., 1998). Sobre la base de estos hallazgos se ha llegado a la conclusión que el antígeno Ki-
67 se localiza en el nucleolo durante la interfase, mientras que en la mitosis se distribuye en la
periferia de los cromosomas.

MacCallum y Hall (1999) realizaron un detallado análisis inmunocimico de Ki-67 en las
células HeLa, descubriendo 2 isoformas, una hiperfosforilada durante la mitosis y otra
defosforilada en la interfase. El Ki-67 pudo ser fosforilado in vitro por la cdc2/ciclina B y la
proteína cinasa; ésta última causó un cambio en la motilidad del antígeno, así, la isoforma
fosforilada presentaba una baja movilidad. El tratamiento con fosfatasas produjo una conversión
de la isoforma mitótica a la isoforma de interfase. De este modo, la defosforilación ocasionó el
desvío de Ki-67 desde la periferia de los cromosomas a puntos citoplásmicos conteniendo
nucleolina. A juzgar por estos datos, parece que la localización de Ki-67 puede ser regulada por
las cinasas y fosfatasas específicas que actúan en el ciclo de división celular. Estos dos autores,
MacCallum y Hall (2000), mediante microscopía confocal de barrido con laser de alta
resolución y tinciones dobles y triples para el antígeno Ki-67, han analizado en las células
MCF7 su localización y relación con diferentes proteínas nucleolares (nucleolina, fibrilarina,
p130, p120. RH-II/ Gu helicasa y topoisomerasa II beta). Estas proteínas se hallan con Ki-67 alrededor de los cromosomas durante la mitosis, con la excepción de la fibrilarina y la p130 que muestran una distribución extra-nucleolar en la fase G1 precoz. Gran parte de la p120 y la RH-II/Gu se localizan con Ki-67 en el centro fibrilar difuso del nucleolo, mientras que con la nucleolina y la fibrilarina coincide solo en parte. De esta manera, el Ki-67 se sitúa en una zona del centro fibrilar difuso del nucleolo relacionada con el procesamiento tardío del RNA ribosomal, lo que hace suponer que el Ki-67 actuaría como un eficiente factor en la biogénesis del RNAr.

En el cáncer de mama la determinación IHQ del antígeno Ki-67 ha sido de utilidad para estimar la cinética celular. Según Dervan et al., (1989), el número de AgNOR (regiones organizadoras nucleolares, teñidas con plata) y la determinación de Ki-67 muestran una significativa correlación, aportando ambos métodos información complementaria sobre la cinética celular. Estos autores intentaron correlacionar el índice Ki-67 y el número de AgNOR en 27 lesiones benignas mamarias y en 70 cánceres ductales. Mediante tinción IHQ los índices de expresión del antígeno Ki-67 en las lesiones benignas mamarias variaron entre un 0 y 4%, mientras que en los cánceres se situaron entre un 3 y 98%. Las células de fibroadenoma y mastopatías fibroquísticas contenían un promedio de 2,65 – 6,8 pequeños y uniformes AgNOR/célula, en comparación a un promedio de 4,2 – 26,9 frecuentemente irregulares AgNOR/célula en los cánceres. La correlación entre el contaje de AgNOR y el índice Ki-67 fue altamente significativa. De manera similar, Ruschoff et al., (1990), en su serie de 30 lesiones benignas y 50 cánceres de mama, citan la buena correlación entre el número de AgNOR por células con el índice de proliferación medido por tinción IHQ. Además tanto el número de AgNOR como el índice Ki-67 se relacionaron significativamente con altos grados histológicos, aneuploidía y disminución del contenido de los RE y RPg. Isola et al., (1990) estudiaron en 102 cánceres de mama la cinética celular mediante tinción IHQ para Ki-67 y lo compararon con el índice mitotico y la fase S por citometría de flujo. El índice de células Ki-67 se correlacionó con un elevado número de mitosis y con la fase S en tumores con DNA aneuploide. Sin embargo, el pleomorfismo nuclear, la formación de túbulos y el estado de los ganglios axilares no se relacionaron con el índice Ki-67. Para Sahin et al., (1991) la tinción con el anticuerpo
monoclonal Ki-67 es comparable a la citometría de flujo para determinar la fracción de proliferación celular en diferentes tumores sólidos. Existió una buena correlación entre ambos métodos en los casos de tumores con valores intermedios y elevados de la fase S. Brown et al., (1996) valoraron en 674 cánceres de mama el valor pronóstico de Ki-67 y lo compararon con la medición de la fracción S por CMF. Estos autores constataron una buena correlación entre ambos métodos y en el análisis multivariante el Ki-67 fue de valor pronóstico para la recidiva. De manera similar McGrogan et al., (1997), al comparar en 112 cánceres de mama el método semicuantitativo basado en la inmunotinción con anticuerpo monoclonal Ki-67 con el método cuantitativo de medición de la fracción S por citometría de flujo, encontraron una buena correlación entre ambos métodos. Utilizando como dintel de positividad un valor superior a la mediana de expresión del antígeno (27,5%), demostraron que una elevada expresión del mismo se asociaba significativamente con un alto grado histológico, con un elevado índice mitótico y con la ausencia del receptor de progesterona.

La expresión del antígeno Ki-67 en los cánceres de mama, salvo con algunas leves discrepancias, se relaciona con tumores con elevada actividad mitósica, altos grados histológicos y nucleares, invasión vascular, afectación ganglionar, ausencia de receptores hormonales, aumento de la expresión de C-erbB-2 y p53. Además, se ha observado una disminución de la sobrevida libre de enfermedad y de la supervivencia en los cánceres de mama Ki-67. Varios trabajos aportan estas evidencias y entre ellos destacan los trabajos iniciales de Barnard et al., (1987) que determinaron la presencia del antígeno en 65 cánceres de mama utilizando como índice el cociente de células positivas entre el total de células tumorales. Estos autores encontraron una fuerte asociación entre la expresión del antígeno y el índice mitótico; una débil asociación con la edad, el grado histológico, y la necrosis tumoral; y una ausencia de relación con el tamaño tumoral, el estado ganglionar, el estado hormonal y los niveles de RE. Concluyeron que el antígeno era de utilidad para medir parámetros biológicos, pero de escaso valor para predecir la evolución de las pacientes. Charpin et al., (1988), en una serie más amplia de 257 tumores malignos de mama, citan una relación significativa entre la detección positiva del antígeno Ki-67 y el grado de diferenciación del tumor, la invasión vascular, la presencia de metástasis ganglionares y la ausencia de RE y RPg. En otro estudio basado en 136 cánceres, Bouzubar et al., (1989) señalan la asociación existente entre la alta expresión del antígeno Ki-67 con una elevada actividad mitótica, con una pobre diferenciación tumoral y con la recidiva precoz tras la mastectomía. Según Sahin et al., (1991), en su serie de 42 pacientes con cáncer ductal infiltrante sin afectación ganglionar, el mayor porcentaje de células con tinción positiva para Ki-67 (mediana 14) se observó en tumores con un alto grado nuclear y con una elevada actividad mitótica. En el análisis univariante la recidiva y la disminución de la supervivencia se
relacionaron significativamente con una elevada expresión del antígeno. Para Gasparini et al., (1991) la tinción con Ki-67 mostró una buena correlación con la medición de la fase S tanto en tumores diploides como aneuploides. Estos autores en una serie de 122 cánceres de mama objetivaron además, que elevados índices de Ki-67 se relacionaron con la presencia de metástasis ganglionares, con una pobre diferenciación histológica e invasión vascular peritumoral. En cambio, la inmunotinción de Ki-67 no se relacionó con la expresión del C-erbB-2 y el EGFR. En un análisis de 568 cánceres de mama, Weikel et al., (1991) encontraron una correlación positiva entre la tinción con Ki-67 y el grado nuclear. Los tumores con grado nuclear III exhibieron una fuerte inmunotinción que se correspondió con una ausencia de receptores de estrógeno, con una mayor expresión de C-erbB-2 y con un menor intervalo libre de enfermedad. No observaron diferencias en la supervivencia entre los cánceres con grado nuclear II y III, sin embargo, existió una significativa disminución de la supervivencia de ambos en comparación con los tumores de grado nuclear I.

Gaglia et al., (1993), en el análisis multivariante de 385 pacientes intervenidas por cáncer de mama, citan el valor pronóstico independiente del índice de Ki-67 (mediana 9%) y de la afectación ganglionar. Veronese et al., (1993), en un estudio de 129 neoplasias malignas de mama, describen que la probabilidad de recidiva y muerte a 4 años fue significativamente superior en los tumores que presentaban elevados índices de Ki-67 (20 % >) en comparación con aquéllos con bajos índices. Para Pierga et al., (1996) en el análisis multivariante de 127 cánceres de mama, la fracción de crecimiento determinada por la inmunotinción con Ki-67 (punto de corte: mediana 8%) fue de valor pronóstico para la recidiva, pero inferior a la afectación ganglionar y la edad por debajo de los 45 años. Molino et al., (1997), en una serie de 322 cánceres de mama, señalan una asociación significativa del Ki-67 con el tamaño tumoral, afectación ganglionar, y el contenido de RE y RPg. En el análisis multivariante la tinción positiva para Ki-67 fue de valor pronóstico para la recidiva y la supervivencia. De manera similar, Rudolph et al., (1999), hacen referencia al valor pronóstico de la medición de la proliferación celular, en un estudio de 351 pacientes con cánceres de mama sin afectación ganglionar. Las pacientes con un índice de células ki-S2 (anticuerpo monoclonal contra Ki-67) superior al 10% tuvieron un riesgo de mortalidad hasta 20 veces superior. En el análisis multivariante el índice de tinción ki-S2 fue el factor de mayor predicción para el intervalo libre de enfermedad y la supervivencia global. Otros estudios también han objetivado una disminución del intervalo libre y de la supervivencia en aquellos tumores con un alto índice de Ki-67 y: 1- la presencia de p53 (Beck et al., 1995); 2- la positividad para EGFR y C-erbB-2 y la negatividad para los receptores de estrógeno y progesterona (Archer et al., 1995; Ioachim et al., 1996; Oehler et al., 1997); y 3- la ausencia de pS2 (Racca et al., 1995).
El anticuerpo monoclonal Ki-67 ha sido de utilidad para predecir la respuesta biológica tumoral al tratamiento neoadyuvante. Así, Bottini et al., (1996) examinaron el efecto producido sobre la expresión de Ki-67, RE y C-erbB2 por la quimioterapia neoadyuvante (CMF o epirrubicina) y el tratamiento endocrino en 99 cánceres de mama T2-4 NO-1 M0. Se objetivó una reducción de más del 50% del tamaño tumoral en el 70,9% de los tumores; de éstos, un 30,3% obtuvieron una respuesta completa. El índice de Ki-67 disminuyó de un 13% antes de la terapia a un 4,5% postmastectomía. Por el contrario, no observaron diferencias en la expresión de los RE y C-erbB-2 antes y después del tratamiento neoadyuvante. En otro estudio de características muy similares al anterior basado en 76 cánceres de mama, Bottini et al., (1998), señalan que la reducción de la expresión de Ki-67 se relacionó con una buena respuesta clínica. En cambio, observaron un mayor número de recidivas y un menor intervalo libre de enfermedad en las pacientes cuyos tumores presentaron un aumento en el número de células Ki-67 al final de la quimioterapia. Además, consideraron que la reducción en el tamaño y la expresión de Ki-67 demostrada en tumores RE+ se debió a una disminución de la actividad proliferativa, en contraste con lo observado en los RE-, en cuyo caso actuaron otros mecanismos como la apoptosis. De manera similar, Makris et al., (1998) compararon los cambios producidos en los niveles de los receptores hormonales y la expresión del antígeno Ki-67, en 21 pacientes con cáncer de mama tratadas con tamoxifén antes y después de la cirugía. De este modo, objetivaron que la respuesta al tratamiento hormonal se correspondió con una disminución en los niveles de expresión del antígeno Ki-67 y de los RE, junto con el aumento de los RPg a los 14 días de estar recibiendo tamoxifén. Otro estudio realizado por el mismo autor publicado en 1999, en el que se contrastaron la expresión del antígeno Ki-67, los niveles de receptores hormonales, la presencia de p53 y la expresión de Bcl-2 en 31 pacientes con cáncer de mama que recibieron secuencialmente tratamiento con mitomicina C, metotrexato y tamoxifén, también evidenció una disminución de los RE y del antígeno Ki-67 y un aumento en los niveles del RPg, en las pacientes con una buena respuesta a la terapia. Por otra parte, cuando se valoró la relación entre el índice apoptótico y la tasa de proliferación medida por el anticuerpo monoclonal Ki-67 antes y después de recibir tratamiento quimiotérapico, se observó una reducción del índice apoptótico y de la expresión del antígeno Ki-67 con respecto a los valores pretratamiento, tanto en los casos con respuesta como en las lesiones residuales. La única excepción fue el aumento de la expresión de Bcl-2 en los tumores residuales (Ellis et al., 1998).

Aparte de su posible consideración como factor de pronóstico en el cáncer de mama, estos estudios avalan la utilidad del anticuerpo monoclonal para predecir la respuesta a tratamientos quimioterápicos y endocrinos antes de la intervención quirúrgica.
ANTIGENO NUCLEAR DE PROLIFERACIÓN CELULAR. (PCNA).

Tan et al., (1986) publicaron el aislamiento de una proteína auxiliar necesaria para la actividad de la DNA polimerasa delta, pero carente de actividad polimerasa, primasa, ATPasa y nucleasa. La proteína era incapaz de unirse a una hebra simple o doble de DNA, sin embargo, permitía a la DNA polimerasa delta duplicar moldes con bajos radios de poli dA/oligo dT, 20:1 y además, era específica para esta enzima, careciendo de efecto sobre la DNA polimerasa alfa del timo del carnero y de la DNA polimerasa I de la E.coli. La observación de una banda simple de 37.000 daltones en la electroforesis en gel de sulfato de dodecil sódico sugirió su existencia como un dímero de subunidades idénticas. Bravo et al., (1987) demostraron mediante estudios de inmunofluorescencia y autoradiografía que el antígeno nuclear de proliferación celular, PCNA, era idéntico a la proteína nuclear de 36 kDa (ciclina) cuya síntesis y aparición durante la fase S, se relacionaba con el estado proliferativo celular y que había sido identificada en líneas celulares humanas, del ratón, del hámster y de las aves. También constataron que esta proteína era semejante a una ciclina auxiliar necesaria para la actividad catalítica de la DNA polimerasa delta aislada en el timo del carnero por Tan. Los estudios sobre duplicación del genoma del virus del simio SV40 (Prelich et al., 1987), cuyo mecanismo de replicación semeja a los cromosomas humanos, permitió el aislamiento y purificación de esta proteína de 36 kDa necesaria para la fase de elongación del DNA duplicado del virus. Estos autores comprobaron que las propiedades físicas y el patrón electroforético eran similares al de una proteína que regulaba la actividad enzimática de la DNA polimerasa delta del timo del carnero. Por otra parte, Lee et al., (1989) confirmaron que el DNA polimerasa alfa y delta, el inhibidor de elongación I, el activador I y el PCNA eran necesarios en el proceso de duplicación del virus SV40.

La importancia de este cofactor en la síntesis de DNA fue señalada por Suzuka et al., (1989), al demostrar que anticuerpos contra el PCNA humano reaccionaban con los núcleos de células en proliferación de diferentes especies de animales y de plantas. La comparación de la secuencia de aminoácidos del PCNA de la rata y del hombre reveló una diferencia en solo 4 de sus 261 aminoácidos, por tanto, el PCNA es una proteína que ha permanecido muy conservada durante la evolución. El gen del PCNA consta de 6 exones y está presente en una sola copia (Travali et al., 1989). Mediante análisis Southern blot del DNA de híbridos de células somáticas, Ku et al., (1989), localizaron el gen en el cromosoma humano 20. Estudios de hibridación in situ le han asignado el locus 20p13 (Webb et al., 1990) y el 20 p12 (Rao et al., 1991).

Diversos estudios experimentales han demostrado la participación activa del PCNA en la síntesis y reparación del DNA. Jaskulski et al., (1988) objetivaron en células en proliferación...
activa Balb/c3T3, que la administración de oligodeoxynucleótidos antisentido al PCNA, inhibían la síntesis de DNA y la mitosis. La exposición de estas células a oligodeoxynucleótidos del mismo sentido al PCNA careció de efecto certificando, de esta manera, la acción inhibitoria de la síntesis del DNA producida por el bloqueo de la actividad del PCNA. Zuber et al., (1989) demostraron que el PCNA estimulaba la actividad de la DNA polimerasa delta. Inyectaron un anticuerpo humano anti-PCNA en huevos sin fertilizar de Xenopus laevis y examinaron los efectos ocasionados sobre la replicación de plásmidos y de los cromosomas. El anticuerpo inhibió la duplicación de los plásmidos en un 67% y la duplicación residual fue abolida inyectando un anticuerpo monoclonal contra la DNA polimerasa alfa. Por el contrario, en los cromosomas el anticuerpo anti-PCNA suprimió un 30% de la síntesis de DNA, siendo el resto anulado por un anticuerpo anti-DNA polimerasa alfa. Las diferencias en la inhibición de la síntesis de DNA se debieron al mayor contenido de DNA polimerasa delta en los plásmidos que en los cromosomas. De este modo, se confirmó la influencia del PCNA sobre la actividad de la enzima DNA polimerasa delta.

La DNA polimerasa delta (122 kDa) posee una actividad exonucleasa 3’ - 5’, siendo esencial en el proceso de duplicación y reparación del DNA. Esta enzima, junto con la DNA polimerasa epsilon que también posee actividad exonucleasa 3’- 5’, son necesarias para mantener la fidelidad del DNA. Estas enzimas se encargan de escindir nucleótidos que han sido incorporados erróneamente durante la replicación (Byrness, 1984; Syvaoja, 1990) permitiendo que el proceso de síntesis del DNA continúe correctamente a través de la acción de la DNA polimerasa alfa (Perrino y Loeb, 1990). La DNA polimerasa está formada por un complejo constituido por el PCNA, la DNA polimerasa delta y el factor de replicación C. El PCNA se une específicamente a la subunidad catalítica p125 (región N2) de la DNA polimerasa delta (Zhang et al., 1999). Otra enzima, la DNA ligasa I, interacciona con el PCNA produciendo una inhibición de la síntesis del DNA por la DNA polimerasa delta; a su vez a través del PCNA, la DNA ligasa es capaz de estimular la síntesis de DNA por medio de la DNA polimerasa epsilon. En consecuencia, la DNA ligasa puede influir de diferentes maneras sobre estas polimerasas a través de la acción del PCNA (Mossi et al., 1998).

Los trabajos de Podust et al., (1994) han demostrado que se requiere la presencia del factor C y el PCNA para el adecuado ensamblaje de la DNA polimerasa delta completa sobre el DNA. Además, es de importancia fundamental la estructura circular del DNA que sirve de sustrato para la correcta interacción de estas proteínas auxiliares con las DNA polimerasas. Ambas, el factor de replicación C y el PCNA, forman una especie de abrazadera que se desliza a lo largo de la doble hebra de DNA. Flores-Rozas et al., (1994) observaron que la proteína p21 (Cip1)
Estado actual de los marcadores tumores moleculares.

regulada por la p53 producida una inhibición in vitro de la síntesis del DNA del virus SV40 por interacción con el PCNA. La p21 de alguna manera interfiere con el movimiento de la DNA polimerasa delta durante el proceso de elongación de la cadena de DNA. Chen et al., (1996) demostraron que la p21 inhibe la síntesis de DNA por su interacción con el PCNA y por desacoplar el complejo PCNA-Fen1. El Fen1 es una exonucleasa 5´- 3´ que degrada las uniones DNA-primeros RNA en los extremos 5´de los fragmentos inmaduros de Okazaki previos a su unión en una hebra continua de DNA. De este modo, el complejo PCNA-Fen1-DNA pol delta participa en el proceso replicativo. Tres moléculas de p21 se unen al PCNA constituyendo un trámero que interfiere con la formación o desacopla el complejo PCNA-Fen1. Matsuoka et al., (1994), tras analizar un conjunto de mutantes con delecciones en las regiones amino y carboxitermal, comprobaron que el PCNA interacciona directamente con las ciclinas tipo D y, por tanto, el PCNA participa en el control del ciclo de división celular.

Recientemente Coll et al., (1997) mediante fraccionamiento, cromatografía, sedimentación y coinmunoprecipitación aislaron un complejo multiproteico, el DNA sintesoma, involucrado en la síntesis del DNA de las células de cáncer de mama. El DNA sintesoma está constituido por un eje central con fuertes interacciones entre las DNA polimerasas alfa y delta, la DNA primasa, el PCNA y el factor de replicación C. Otras enzimas, la polimerasa poly (ADP-ribosa), la DNA polimerasa epsilon y la DNA ligasa interaccionan con el complejo directamente por medio del PCNA o de la DNA polimerasa alfa. Estos autores afirmaron en su estudio que en el cáncer de mama las DNA polimerasas alfa, delta y epsilon participan activamente en la síntesis del DNA.

En el cáncer de mama la determinación IHQ del PCNA se ha considerado de utilidad para valorar la proliferación celular. Así, Dawson et al., (1990) midieron y compararon el contenido del DNA y la actividad proiferativa en 54 cánceres de mama y en 15 lesiones benignas empleando la medición de la fracción S por citometría de flujo (CMF) y la tinción IHQ con los anticuerpos monoclonales para Ki-67 y PCNA. La tinción positiva para Ki-67 fue mayor en los cánceres (21, 6% +/-13,1%) que en los tejidos mamarios normales (7,9% +/- 5,6%), al igual que el PCNA con un 10,2% de positividad de los cánceres frente a un 2,7% de las lesiones benignas. También los porcentajes de la fracción S fueron superiores en los cánceres (7,9%) en comparación con las lesiones benignas (3,2%). La aneuploidía y altos grados nucleares se correspondieron con una elevada fracción S y con la sobreexpresión de PCNA y Ki-67. Según estos autores, los métodos inmunohistoquímicos, salvo leves discrepancias, fueron equiparables a la medición de la fracción S por CMF en la estimación de la proliferación celular. También Visscher et al., (1992) compararon en 70 cánceres de mama, el índice cinético mediante la determinación del porcentaje de células teñidas PCNA frente a la medición de la fracción S por
CMF. Existió una buena correlación entre ambos métodos. La inmunotinción positiva para PCNA se relacionó significativamente con aneuploidía, altos grados nucleares, invasión angiolinfomatosas y necrosis tumoral. Un mayor porcentaje de células teñidas para el PCNA se observó en los tumores aneuploides (14,5%) en relación con los diploides (10,7%). Por otra parte Yu et al., (1995) compararon en 40 muestras parafinadas de cáncer de mama la capacidad para medir la actividad proliferativa de varios anticuerpos monoclonales a mínimas diluciones (PC10, PC2, PC5, PC8, 19F4 y MIB-1). Cuando se contrastaron los resultados de la tinción IHQ con la medición de la fracción S por CMF, se evidenció que sólo dos anticuerpos, el PC10 y el MIB-1 (Ki-67), eran útiles para identificar las células en proliferación, ofreciendo el resto de anticuerpos muy pocas ventajas. Por el contrario, para Gillet et al (1993) la tinción IHQ del PCNA fue de escasa utilidad para medir la actividad proliferativa.

La intensidad de la tinción IHQ para el PCNA varía en diferentes áreas del tumor y su positividad no siempre se corresponde con un aumento en la actividad proliferativa celular. Según Van Dierendonck et al., (1991), los anticuerpos monoclonales contra PCNA son excelentes para detectar in situ las células con contenido de DNA en la fase S, sin embargo, esto no significa que la inmunotinción positiva sea una medida de la actividad proliferativa. Estos autores examinaron la distribución del PCNA mediante tinción IHQ con dos anticuerpos monoclonales (19A2 y 19F4) en células de cáncer de mama en cultivo. Las células en división mostraban un patrón de tinción intensamente granular en contraste con la tinción más difusa observada en las células que no se encontraban en la fase S. En células MCF7 tratadas con tamoxifén se apreció una disminución del porcentaje de núcleos en proliferación (48% a 8%) en los primeros 8 días, en cambio, la detección de los antígenos PCNA y Ki-67 permaneció estable. La exposición de esta línea celular al agente metotexate produjo una rápida acumulación de células con contenido de DNA en la fase S precoz que fue detectada por anticuerpos anti-PCNA. De este modo, los anticuerpos detectaron un contenido de DNA en células que no se estaban dividiendo activamente o cuyo ciclo celular se había interrumpido por la acción de los agentes administrados. En otro estudio basado en la determinación IHQ para PCNA en 175 cánceres de mama, Aaltomaa et al., (1992), objetivaron importantes variaciones en la inmunotinción en diferentes áreas del tumor. Las zonas del tumor correspondientes a los márgenes infiltrantes presentaban una tinción más intensa. Elevados porcentajes de núcleos teñidos se relacionaron con peor grado histológico y con la recidiva tumoral. En el análisis multivariante la positividad para PCNA determinó un menor intervalo libre de enfermedad y supervivencia global. Asimismo, Siitonen et al., (1993) observaron en 88 cánceres de mama variaciones en los patrones de tinción (anticuerpo 19F4) en diferentes áreas del tumor debido a heterogeneidad intratumoral. La proporción del área nuclear-PCNA+ en todo el tumor varió de
un 0,7% a un 45,2% (promedio: 14,4%). En el 79% de los casos los índices de PCNA fueron más elevados en la periferia que en el centro del tumor. A pesar de las variaciones en los patrones de tinción, la actividad proliferativa medida por la tinción IHQ mostró una buena correlación con la obtenida mediante la medición de la fracción S por CMF.

Según citan varios autores, los porcentajes de positividad para el PCNA son más bajos en las lesiones benignas mamarias que en las neoplasias malignas. En los cánceres de mama, los porcentajes de núcleos teñidos también varían en función del tipo histológico y del grado de diferenciación del tumor. Además, se ha observado un incremento en los índices de proliferación celular medidos por la inmunotinción contra PCNA desde las lesiones con cambios histológicos anaplásicos incipientes hasta el establecimiento de un cáncer y el desarrollo de metástasis. Sherestha et al. (1992) determinaron la proliferación celular en 4 tejidos mamarios lactantes y en 98 lesiones benignas y malignas de la mama. Los porcentajes de células PCNA+ fueron significativamente inferiores en el tejido mamario lactante (promedio: 3,6%) en comparación con las mastopatías y los fibroadenomas (promedio: 23,7%). En los cánceres infiltrantes la tinción positiva varió entre un 2–36% (promedio: 12,3%), incrementándose en los cánceres metastásicos (promedio: 28,5%). Elevados índices de células PCNA+ se relacionaron con un alto grado histológico y con la expresión de C-erbB-2, y EGFR. De la misma manera, Kalogeraki et al., (1994) al comparar el porcentaje de positividad al PCNA en 20 pacientes con fibroadenomas, en 20 mujeres con enfermedad fibroquística y en 20 enfermas con carcinomas ductales infiltrantes, comprobaron un mayor índice de PCNA en los carcinomas (56%) que en el resto de patologías y a su vez, un mayor índice en los fibroadenomas (25%) que en la enfermedad fibroquística. Cardillo et al., (1995) también examinaron la expresión de PCNA en 74 patologías benignas, en 3 hiperplasias epiteliales atípicas, en 5 carcinomas in situ y en 13 cánceres infiltrantes. La tinción IHQ fue positiva en el 40% de las enfermedades benignas, en el 75% de las hiperplasias atípicas/carcinomas in situ y en el 92% de los cánceres infiltrantes. Cuando las lesiones se estratificaron según un índice de tinción bajo, moderado y alto, se observó que el 50% de las hiperplasias atípicas/carcinomas in situ y el 54% de los cánceres infiltrantes presentaron elevados niveles de expresión de PCNA (> 50%). Los índices fueron bajos (18% <) y moderados (18 – 50%) en los quistes, adenosis esclerosantes y epiteliosis. En cambio, Sasa et al., (1993) contrastaron en 40 casos de cáncer de mama, la proliferación celular mediante la determinación IHQ del PCNA en el componente intraductal, en el área infiltrante y en sus respectivas metástasis ganglionares. El índice fue mayor en las metástasis ganglionares que en el área infiltrante primaria y ésta mayor que en el componente intraductal. En otro estudio basado en la determinación IHQ del PCNA en 509 carcinomas de mama, Haerslev et al., (1994) encontraron elevados índices de PCNA en el
carcinoma intraductal tipo comedo y en el carcinoma infiltrante con relación a otros tipos histológicos. También las metástasis ganglionares axilares tuvieron índices superiores que sus respectivos tumores primarios. La elevada expresión de PCNA se relacionó significativamente con la afectación ganglionar, alta tasa mitótica, pleomorfismo nuclear severo, altos grados histológicos y ausencia de los RPg. En el análisis univariante la elevada expresión de PCNA se asoció significativamente a una disminución del intervalo libre y a la supervivencia global.

La relación entre la expresión de PCNA y p53 fue estudiada por Schimmelpenning et al., (1994), en 180 cánceres de mama. Existió una buena correlación entre tumores con altos índices de PCNA (20% >) y la presencia de p53, alto grado histológico y aneuploidía. La sobrevida libre de enfermedad fue menor en los pacientes con tumores PCNA+/p53+. Igualmente, Haerslev, (1995) analizaron en 490 pacientes con cáncer de mama, la expresión de p53 y su relación con la actividad proliferativa determinada por la positividad IHQ del PCNA. Aunque observaron en el análisis univariante una relación directa entre la detección de p53 y elevados índices de PCNA, la proteína p53 careció de valor pronóstico. Sin embargo, estos dos autores hacen referencia al mal pronóstico de las pacientes con cáncer de mama cuyos tumores presentaron elevados índices de PCNA y alta expresión de p53. Para Gohring et al., (1994), el PCNA fue indicador de menor intervalo libre sólo en las enfermas con ganglios axilares positivos. No observaron una asociación significativa con la edad, estado hormonal, afectación axilar y RE. También Sheen-Chen et al., (1997) demuestran en el análisis multivariante de Cox de 123 cánceres de mama con ganglios positivos, que un alto índice de PCNA (35% >) es un factor pronóstico de menor intervalo libre y supervivencia global.

Diferentes grupos consideran al PCNA como un marcador de escaso valor pronóstico. En un estudio sobre 144 casos de cáncer de mama Thomas et al., (1993) valoraron la utilidad del anticuerpo monoclonal PC10 como parámetro pronóstico. Utilizando el índice de inmunotinción positiva basado en el promedio del porcentaje de células tumorales con núcleos teñidos (18%) no observaron una asociación significativa con los parámetros clínico-patológicos clásicos y concluyeron señalando que el PCNA careció de valor pronóstico. Asimismo, Gasparini et al., (1994) analizaron el papel predictivo de la medición de la fase S por CMF y la determinación IHQ con los anticuerpos para el antígeno Ki-67 y el PC10 (PCNA) en el cáncer de mama. En el análisis univariante se relacionaron significativamente con la sobrevida libre de enfermedad la medición de la fracción S, la inmunotinción positiva para Ki-67, el grado histológico y la afectación de los ganglios axilares. Sin embargo, en el estudio multivariante únicamente fueron pronóstico la determinación de la fracción S y el estado de los ganglios axilares. En otro trabajo basado en 471 cánceres de mama, Schonborn et al., (1995), citan el limitado valor del PCNA
como factor pronóstico en comparación con los factores clásicos, aunque observaron en el análisis univariante una pobre supervivencia en pacientes con altos índices de PCNA (20% >) y ganglios negativos; efecto que desapareció en el análisis multivariante. Heimann et al., (1997) hacen referencia a la virulencia del tumor determinada por la detección del PCNA y el grado nuclear en pacientes sometidas a tratamiento quirúrgico exclusivamente y con un seguimiento a largo plazo. Aunque, no se observaron diferencias significativas en el intervalo libre de enfermedad en función del PCNA, después de los 5 años de seguimiento se apreciaron importantes discrepancias. En las pacientes con elevados índices de PCNA el 80% de las metástasis se produjeron en los 3 primeros años, en contraposición con las pacientes con bajos índices de PCNA que precisaron más de 10 años para la aparición del 80% de las metástasis. De manera similar, en tumores con un grado nuclear III, el 80% de las metástasis se hicieron evidentes en los primeros 4 años, en comparación con los 12 años transcurridos para los tumores con grado nuclear II. Así, las diferencias en la expresión del PCNA serían un reflejo de la virulencia del tumor y las observadas con el grado nuclear expresarían divergencias en la metastagenicidad.

En un intento por predecir la respuesta a la terapia con drogas citotóxicas, Botti et al., (1993), examinaron inmunohistoquimicamente la expresión de la glicoproteína P (anticuerpo C-219) y el PCNA (PC10), en 25 pacientes con carcinoma de mama avanzado. Encontraron una elevada expresión de glicoproteína P (76%) y PCNA (100%) en las pacientes que desarrollaron recidivas locorregionales y a distancia. Sin embargo, a diferencia de la glicoproteína P que mostró una asociación estadísticamente significativa con la respuesta a la quimioterapia y la supervivencia, un alto índice de PCNA careció de valor en predecir la respuesta a la quimioterapia y la supervivencia. Por otra parte, Frassoldoti et al., (1997) estudiaron los cambios celulares producidos antes y después de recibir citotóxicos en 29 cánceres de mama, mediante el análisis de la expresión de los receptores hormonales, Ki-67, PCNA, EGFR, bcl2, p53 y glicoproteína P. Objetivaron un significativo aumento en el índice apoptótico y en los niveles de PCNA, EGFR y glicoproteína P, al completar el tratamiento que fue independiente del tipo de quimioterapia empleada. Los pacientes que respondieron mostraron una significativa disminución en los niveles de RE y, por el contrario, se apreció un aumento en los índices de PCNA y EGFR en el grupo sin respuesta.

En el momento actual existen controversias sobre el valor pronóstico y predictivo del PCNA.
P53.

Inicialmente la p53 fue detectada como una proteína asociada al antígeno T en células transformadas por el virus SV40. El gen p53 fue clasificado como un gen nuclear promotor de procesos tumorogénicos debido a su capacidad de cooperar con el oncogén ras en el proceso de transformación maligna de fibroblastos primarios de ratones en cultivo. En los experimentos se utilizaron plásmidos que contenían el oncogén de genotacas obtenidas de RNA extraído de células transformadas. Estos plásmidos en cooperación con el oncogen ras eran capaces de inmortalizar, transformar y aumentar el potencial metastásico de células tumorales. Además, in vivo, inducían el desarrollo de tumores en células no tumorogénicas. Se le consideró como un oncogén tipo myc por su similitud funcional, aunque posteriormente el análisis de los alelos demostró que se habían producido mutaciones y que la proteína p53 normal en realidad no cooperaba con el oncogén ras (Rassouizadegan et al., 1982; Land et al., 1983; Quintanilla et al., 1986; Ullrich et al., 1992). Introduciendo delecciones selectivas en uno y ambos alelos de la p53 mediante la técnica de destrucción génica se pudo determinar el carácter supresor del gen. Los ratones con ausencia de los dos alelos (homocigotos) eran aparentemente normales, sin embargo, presentaban precozmente una elevada susceptibilidad al desarrollo de tumores. La incidencia de tumores en ratones heterocigotos era más baja que en los homocigotos, pero superior a la observada en ratones normales (Klein, 1993). En la clínica encontramos tumores que poseen un alelo mutado y el normal, expresando conjuntamente la proteína normal y la mutada. En estos casos el p53 se comporta como un gen dominante recesivo. En cambio, los individuos pertenecientes a familias con síndromes hereditarios de predisposición al cáncer, como es el caso del síndrome de Li-Fraumeni, heredan una mutación del gen p53 por línea germinal, adquiriendo eventualmente otra mutación del alelo normal por vía somática (Levine y Momand 1990).

La p53 es una fosfoproteína nuclear que actúa como un factor de transcripción con múltiples funciones, interviniendo en el control de la progresión del ciclo celular, la regulación de factores de transcripción, el mantenimiento de la integridad del DNA y la supervivencia de las células expuestas a agentes que causan un daño al DNA, permitiendo así su reparación y, si no es posible, conduciéndolas a la muerte celular. Uno de los principales mecanismos de protección es el arresto del ciclo de división celular posterior al daño al DNA evitando, de este modo, la duplicación de una plantilla de DNA alterado que se pueda transmitir a otras generaciones celulares. La p53 es capaz de detectar e interactuar específicamente con secuencias de DNA que han sido dañadas, acción que ejerce en el punto de control G1. Se precisa de la p53 para mantener el estado diploide durante la división celular, su deficiencia produce alteraciones en la ploidía (Cross et al., 1995). La proteína puede ser fosforilada/defosforilada por una serie de
proteínas cinasas y fosfatasas y además, puede ser activada por autoproteólisis. La rotura proteolítica se produce tras el contacto directo de la proteína con zonas lesionadas del DNA.

Los estudios en ratones transgénicos con mutaciones en uno de los dos alelos de p53 permitieron demostrar a Lee y Bernstein (1993) que la ausencia de la proteína silvestre induce una resistencia celular a la radiación gamma. La proteína p53 mutada ejerce un efecto dominante negativo evitando la apoptosis o muerte de las células sometidas a la radiación. El-Deiry et al., (1993) señalaron que la p53 no es esencial para el desarrollo celular normal, sin embargo, en situaciones de estrés o daño al DNA se produce una estimulación de p53 que a su vez activa la transcripción de ciertos genes. Entre ellos, la p53, activa la transcripción del gen WAF1 o gen CIP1 (Harper et al., 1993), cuyo producto de expresión se une e inhibe la actividad cinasa dependiente de ciclinas evitando, de esta forma, la fosforilación de las ciclinas lo que conlleva a un bloqueo en la progresión del ciclo celular. Así pues, ante un daño importante en el DNA, en la mayoría de las células se produce una parada del ciclo celular en G2. Este proceso se logra si las células contienen p53 silvestre y son capaces de activar transcripcionalmente la proteína inhibidora de las cinasas dependiente de ciclinas, p21 (Bunz et al., 1998). En consecuencia, la proteína p53 puede actuar directa o indirectamente sobre la maquinaria encargada de la reparación del DNA. En situaciones de estrés se produce un aumento en la expresión de p53 y esta a su vez es capaz de interaccionar con las proteínas p21, ERCC3 y GADD45; éstas dos últimas intervienen en los mecanismos de reparación del DNA. La GADD45 (arresto del crecimiento y daño al DNA) es una proteína nuclear que es inducida cuando se produce una lesión al DNA y en parte regulada por la p53. Esta proteína se une a las cinasas dependiente de ciclinas y al PCNA, y actúa inhibiendo la entrada de las células en la fase S y estimulando la excisión y reparación de segmentos de DNA dañados. Junto con la p53 participa en el punto de control del ciclo celular y en la reparación del DNA (Smith et al., 1994; Carrier et al., 1994).

Mediavilla et al., (1999) han demostrado el efecto inhibitorio que ejerce la melatonina a concentraciones fisiológicas sobre el crecimiento de las células MCF-7. Esta disminución del crecimiento coincidió con un aumento en la expresión de la p53 y la proteína p21WAF, de este modo, la melatonina produce un arresto del ciclo celular dependiente de p21 mediado por vía del p53. Por tanto, ambas proteínas, la p53 y la p21, son fundamentales para supervisar, controlar y mantener en G2 las células humanas. La p53 también ejerce una importante función mediadora en la muerte celular, siendo necesaria para evitar la proliferación celular inducida por la activación de oncogenes. La activación del oncogen c-Myc en fibroblastos de ratón quiescentes que expresaban la p53 silvestre, produjo reentrada en el ciclo de división celular y
apoptosis, en cambio, la activación de c-Myc en fibroblastos carentes de p53 estimuló la proliferación celular sin objetivar la muerte celular (Hermeking y Eick 1994). Experimentos bioquímicos y farmacológicos sugieren que la muerte celular o apoptosis mediada por p53 se debe a la inducción transcripcional de genes relacionados con las reacciones redox, con la formación de oxígeno reactivo y con la degradación oxidativa de componentes mitocondriales (Maxwell y Roth 1994).

El gen p53 codifica 11 exones y posee dos regiones promotoras. La primera se localiza 100 a 250 pares de bases por arriba del primer exon y la segunda, un promotor más fuerte que el primero, se encuentra dentro de las 10.738 pares de bases del primer intrón, 1.000 bases posteriores al primer exon. Reisman et al., (1996) clonaron el DNA de esta segunda región promotora asignándole al producto de su expresión el nombre de Hp53int1. Estos autores identificaron un aumento de Hp53int1 en las células HL-60 durante el proceso de diferenciación a granulocitos.

El péptido p53 consta de 393 aminoácidos con un peso molecular de 53 kDa. Posee una región central (aminoácidos 100 a 300) en la que se incluye el dominio de unión al DNA (Cho et al., 1994). El centro es resistente a la proteólisis y en los extremos se encuentran por un lado, la región carboxi-terminal relacionada con la oligomerización y en el otro extremo la región amino-terminal que contiene una potente señal de activación de la transcripción (Volgenstein y Kinzler, 1994). La estructura tridimensional de la proteína semeja un empapelado constituido por grandes láminas beta que actúan como peldaños para 3 elementos en forma de asa. El empapelado está compuesto por 2 láminas beta antiparalelas que contienen 4 y 5 hebras beta respectivamente. La primera asa se une al DNA a través del primer espacio o surco mayor, la segunda asa se une al DNA a través del segundo surco menor y la tercera asa se empaqueta contra la segunda para estabilizarla. Esta estructura, según Vogelstein y Kinzler, se correlaciona con los datos sobre mutaciones, observando la mayoría de éstas en las regiones cercanas a la interfase DNA-proteína. Las dos terceras partes de las mutaciones sin sentido se localizan en una de las 3 asas de DNA. El-Deiry et al., (1992) mediante clonación de DNA humanos identificaron el sitio de unión consenso que consiste en dos copias de un motivo de 10 pares de
bases separadas por 0 – 13 pares de bases. Demostraron que una sola copia del motivo era insuficiente para unirse al DNA y cuando existen alteraciones en una de las copias por pequeñas que sean y aún ante la presencia de múltiples copias, se pierde la afinidad de la p53 por el DNA. El modelo propuesto por Vogelstein y Kinzler (1992) señala que la proteína en forma de tetrámero se une a sitios de unión en el DNA activando, de esta manera, la función de genes que inhiben el crecimiento e invasión tumoral. La tetramerización se consigue mediante la unión de monómeros que interaccionan en el dominio C-terminal (aminoácidos 325-356) de la proteína. La estructura cristalina de la tetramerización ha sido confirmada por Jeffrey *et al.*, (1995). El receptor de estrógeno de manera independiente del ligando (estradiol) interacciona con el extremo amino-terminal de la p53 evitando, así, la desactivación de la proteína por el factor regulador hdm2 (human double minute-2). La interacción entre el RE y la p53 no interfiere con la unión de p53 y el hdm2, mas bien forman un complejo ternario, estableciendo un mecanismo de regulación de la actividad de p53. (Liu *et al.*, 2000).

Se han propuesto diferentes modelos de carcinogénesis basados en los mecanismos de inactivación de la proteína p53. La deleción o de uno o dos de los alelos reduce la expresión de los tetrámeros lo que conlleva a una disminución en la expresión de los genes inhibidores del crecimiento celular. Mutaciones puntuales producen una proteína truncada incapaz de sufrir oligomerización y, por tanto, una disminución en los tetrámeros p53. Las mutaciones sin sentido inducen efectos dominantes negativos con una mayor reducción de la función de los tetrámeros inactivos. Este tipo de mutaciones es frecuente en el cáncer de mama. Las mutaciones monoalélicas asociadas a deleciones monoalélicas ocasionan la presencia de la p53 mutada exclusivamente. Las células carentes de la p53 silvestre pueden desarrollar tumores por la falta de regulación del ciclo celular y en estos casos, la p53 mutada bien interfiere con las acciones de la p53 silvestre o directamente actúa como un oncogén de iniciación.

La proteína p53 puede ser secuestrada por unión a la proteína E6 (producto de expresión del gen del virus del papiloma humano) induciendo su inactivación y aumento en su degradación (Werness *et al.*, 1990). La proteína p53 también puede ser inactivada por una alteración en el producto de expresión del gen MDM2, que ha mostrado ser un regulador de p53 (Fakharzadeh *et al.*, 1991). En condiciones normales o de no-estrés, la proteína MDM2 unida al p53 ejerce un efecto inhibitorio sobre ésta. La unión de la proteína MDM2 inactiva la p53 por degradación a través de la vía de la ubiquitina. Shieh *et al.*, 1997 han demostrado que cuando se produce un daño del DNA la p53 es fosforilada en los residuos de serina 15 y 37. La fosforilación induce un cambio conformacional que le permite liberarse de la proteína MDM2. La amplificación del gen MDM2 con sobreexpresión de su proteína ha sido constatada por Oliner *et al.*, (1992) en varios
sarcomas humanos. La p53 posee además un sitio de unión para el JNK, la formación de complejos p53-JNK bloquean la degradación de p53 por la vía de la ubiquitina, así, su ausencia ocasiona un aumento de la vida media de p53 (Fuchs et al., 1998). Los complejos p53-JNK se han observado en las fases G0/G1, mientras que los p53-MDM2 en la fase S/G2M.

Li et al., (1999) han demostrado que el extremo amino-terminal de la proteína (hTEP1) asociada a la telomerasa humana (DNA polimerasa de los telómeros) interacciona con la región carboxi-terminal de la p53 ejerciendo de este modo, la p53, un efecto inhibitorio sobre la actividad de esta enzima. La incubación de p53 recombinante con extractos de telomerasa nucleares produjo una inhibición de la actividad de esta enzima y lo mismo ocurrió cuando se introdujo un péptido derivado de la región amino-terminal de la hTEP1. Tanto la DNA polimerasa como la p53 están implicadas en varios cánceres humanos, así, la pérdida de la regulación de la telomerasa por una p53 inactiva favorecería el desarrollo e inmortalidad de las células cancerosas.

Jerry et al., (2000) mediante un modelo de carcinogénesis mamaria comprobaron que la pérdida de la p53 puede ser suficiente para el desarrollo de tumores mamarios y, aún más, la tumorigenicidad ocasionada por su ausencia se ve incrementada al proveer un estímulo hormonal. El experimento consistió en eliminar el tejido mamario de ratones huéspedes BALB/c poseedores de p53 silvestre y transplantar en su lugar tejido mamario carente de p53. Establecieron dos grupos de tejido mamario, uno conteniendo el p53 silvestre y el otro carente de p53 (nulo). Ambos grupos fueron sometidos a 5 tratamientos distintos: ausencia de tratamiento, estímulo hormonal continuo mediante isoinjerto de pituitaria, embarazos múltiples, administración de DMBA y DMBA más isoinjerto de pituitaria. En todos los ratones p53 nulos se desarrollaron adenocarcinomas mamarios (62% - 100%), siendo la mayoría aneuploides. En el grupo con p53 silvestre la incidencia de tumores fue 0 con los primeros 3 tipos de tratamiento, sin embargo, aparecieron con la administración de DMBA (4%) y se incrementaron con la combinación de DMBA y estímulo hormonal (14%).

Entre un 20 y 60% de los cánceres de mama presentan alteraciones del gen p53. El 90% de las mutaciones se han descrito en los exones 5 – 8 (dominios 2 – 5 de la proteína) distribuidos en: 73% de mutaciones puntuales, 6% de mutaciones sin sentido, 13% de inserciones o delecciones que producen alteraciones en la lectura, y 8% de diversos cambios como separaciones, variantes complejas y delecciones e inserciones dentro de una franja. Mediante análisis REF (Restriction endonuclease fingerprinting), Feng et al., (1999), objetivaron en 48 muestras de cáncer de mama un 80% de mutaciones localizadas dentro de la región de 200 pares
de bases del gen. Esta técnica permitió determinar la existencia de 2 haplotipos comunes y 4 infrecuentes. Los dos haplotipos comunes fueron frecuentes en 3 razas distintas y sugerían un origen ancestral. El haplotipo II fue mucho más abundante en la raza china que en la caucásica y japonesa. De manera similar, Meng et al. (1999) examinaron las mutaciones en los exones 5–8 del gen p53 mediante clones de DNA amplificados por PCR entre 384 mujeres con cáncer de mama pertenecientes a una cohorte del sur de la Florida. Estos autores encontraron un importante número de tumores con mutaciones en el gen (61%). En 36 cánceres observaron más de una mutación, en 31 cánceres 2 mutaciones, en 3 cánceres 3, en un cáncer 5 y hasta 6 mutaciones en un solo tumor. La mayoría fueron mutaciones sin sentido (n=45) y mudas (n=35), produciéndose gran parte de ellas en un mismo exon. También el análisis del gen p53 en una cohorte de 178 mujeres españolas (Asturias) con cáncer de mama mostró en el 59% de los casos (n=105) una o más mutaciones en el gen (Meng et al., 1999). La mayoría se distribuyeron entre los codones 128 a 305 y las más frecuentes correspondieron a los codones 278, 273, 213 y 227 y fueron descubiertas nuevas mutaciones en 16 codones. Se observaron un 88% de transiciones, un 7% de transgresiones, un 3,5% de separaciones de unión, y un 1,5% de delecciones. En 83 casos (61,5%) existieron mutaciones puntuales, en 45 casos (33,5%) silenciosas o mudas, en 5 casos (3,5%) sin sentido y en 2 (1,5%) cambios de lectura. De las 120 transiciones, 80, fueron G:C a A:T. Este estudio objetivó que existen diferencias raciales, siendo las mutaciones de este grupo diferentes a las observadas en los Estados Unidos y en el norte de Europa.

Según Lukas et al., (2000), las mutaciones en el gen p53 se producen precozmente y durante la progresión del cáncer. Han llegado a estas conclusiones tras investigar mediante SSC-PF y análisis secuencial del DNA, las mutaciones que se producen en el gen p53 (exones 2 – 11) en las biopsias congeladas de 27 carcinomas de mama in situ puros (CIS) y de 31 carcinomas in situ con áreas de carcinoma infiltrante (CIS+CI). Encontraron un 22% de mutaciones y un 7% de alteraciones en el DNA en los CSI frente a un 19% de mutaciones y un 3% de alteraciones del DNA en los CSI+CI. La sobreexpresión de p53 se objetivó en el 22% de los CSI en comparación con el 35% de los CSI+CI. En los tumores CSI+CI, las mutaciones que se produjeron en el componente in situ fueron idénticas a las encontradas en el componente infiltrante, sugiriendo la existencia de una relación clonal de los dos componentes. Asimismo, se observó una significativa asociación entre las mutaciones y la sobreexpresión en los CSI y CSI+CI.

La p53 se detecta en una amplia variedad de células tumorales, pero también en células normales que proliferan activamente. En cambio, en células quiescentes existe en pequeñas o
nulas cantidades. En el cáncer de mama, la distribución celular de la proteína ha sido estudiada por Moll et al., (1992). En 10 de 27 casos (37%) la p53 se localizó en el citoplasma exclusivamente, en 8 casos (30%) en el núcleo y en 9 casos (33%) existió una ausencia total de la proteína. El análisis realizado de la secuencia de nucleótidos demostró que en los casos de tinción citoplásmica, la mayoría correspondieron a alelos que codificaban la proteína silvestre y, por el contrario, se objetivaron mutaciones puntuales y sin sentido en los casos de tinción nuclear. Los tumores con falta de inmunotinción presentaban alelos normales. Además, en una biopsia de tejido mamario lactante normal apreciaron un patrón de tinción citoplásmica intensa con ausencia de tinción nuclear. Estos autores hacen referencia al hecho de que algunos tumores de mama inactivan la p53 mediante su secuestro en el citoplasma; un fenómeno análogo al observado en la lactancia. En condiciones fisiológicas el secuestro de p53 en el citoplasma permitiría una transitoria proliferación celular. A este fenómeno se le denominó exclusión nuclear.

La tinción IHQ esta basada en la detección de la proteína. La mutación del gen origina una proteína mutada que se acumula en el núcleo y citoplasma debido a un cambio conformacional que alarga su vida media (mutada: 4 – 5 horas, normal: 15 – 20 minutos). Algunos anticuerpos monoclonales, sin embargo, tienen el inconveniente de ser poco discriminativos, siendo incapaces de diferenciar entre la proteína silvestre y la mutada. Aproximadamente en un 20% de los casos se producen mutaciones que originan una proteína truncada incapaz de ser detectada por tinciones inmunohistoquímicas. En el caso contrario, la tinción positiva de la proteína nuclear no siempre se corresponde con la forma mutada. MacGeoch et al., (1993) han analizado la expresión del gen p53 en diferentes tumores sólidos empleando anticuerpos monoclonales para seleccionar el DNA de los tumores p53+. Mediante amplificación PCR y secuenciación directa de los exones 5 - 9 del gen examinaron 9 melanomas, 8 carcinomas nasofaringeos, 16 cánceres de mama esporádicos, y 11 cánceres de mama familiares. Encontraron una alteración indicativa de mutación únicamente en el 19% de los cánceres de mama. En contraste, Younes et al., (1995) investigaron la expresión de p53 en el tejido mamario normal y en las lesiones benignas de la mama. Mediante tinción IHQ con el anticuerpo (BP53-12) advirtieron un 9% de positividad en el tejido normal y un 16% en las lesiones benignas; estas últimas distribuidas en un: 8% de mastopatías fibroquísticas, 11% de mastitis, 23% de fibrosis, y 30 % en los fibroadenomas. El seguimiento de estos casos demostró que el 12% de las lesiones p53+ y el 7% de las p53- desarrollaron un cáncer. Por otra parte, Elledge et al., (1994) investigaron en 169 cánceres de mama con ganglios negativos, la relación entre la p53 y la presencia de la Hsp70, una chaperona que se une al p53 mutado y se cree que de alguna manera regula la localización y cúmulo de p53. Empleando combinaciones de anticuerpos monoclonales contra p53 y 2
anticuerpos contra Hsp70, no pudieron demostrar una asociación entre la acumulación de la p53 y los niveles de Hsp70 citoplásmico o nuclear. Los tumores p53-/Hsp70+ tuvieron una mejor supervivencia. La tinción nuclear de p53 se observa en carcinomas medulares y ductales de alto grado, siendo rara en los lobulares; sin embargo, para Domagala et al., (1993) la positividad de p53 valorada en diferentes tipos histológicos de cáncer de mama no siempre se relaciona con un mal pronóstico. Este conjunto de hallazgos demuestra que la presencia de p53 no siempre es sinónimo de malignidad.

Algunos pacientes desarrollan inmunidad humoral contra la proteína p53 mutada, así, lo demuestran los trabajos de Green et al., (1994) que analizaron mediante ELISA la presencia de autoanticuerpos p53 detectándolos en 45 (25,6%) de 176 mujeres con cáncer de mama. La incidencia de estos autoanticuerpos fue superior (29,4%) en los cánceres de tipo esporádico que en los familiares (9,1%). También se descubrieron autoanticuerpos en un 11,1% de mujeres normales con historia familiar de cáncer de mama. De manera similar, Mudenda et al., (1994) analizaron por ELISA el suero de 182 cánceres de mama encontrando anticuerpos contra p53 en el 26% (n=48) de los casos frente al 1,3% (1 de 76) de mujeres normales. Los autoanticuerpos se detectaron en carcinomas in situ, cánceres infiltrantes y metastásicos y su presencia se asoció con la sobreexpresión de la proteína en el tumor primario, con altos grados histológicos y con la aparición de un segundo cáncer primario. La incidencia de los autoanticuerpos fue más baja en mujeres con familiares de primer grado de consanguinidad que desarrollaron un cáncer de mama; aparentemente la proteína sería menos inmunogénica en estos casos. La determinación de los anticuerpos p53, según estos autores, provee información adicional para identificar grupos de pacientes con tumores más agresivos y serviría además para caracterizar pacientes con cánceres de mama hereditarios. Por el contrario, para Dalifard et al., (1999), en su estudio de 196 cánceres de mama, la detección de autoanticuerpos (7,9%) p53 no se correlacionó con la concentración citosólica de la proteína ni con otros factores de pronóstico. Igualmente, Angelopoulo et al., (2000), citan que aunque los anticuerpos tienden a desarrollarse en pacientes con cúmulo de p53, esta no es suficiente ni necesaria para el desarrollo de inmunidad humoral. Por medio de ensayo inmunofluorométrico realizado en 195 cánceres de mama, pudieron demostrar autoanticuerpos séricos en 17 pacientes (9%) y sobreexpresión de la proteína en 77 (40%). De las 17 pacientes seropositivas, en 10 se objetivó la presencia de p53, mientras que las 7 restantes carecieron de expresión para p53; en este caso, la asociación estadística aunque significativa fue débil. Además analizaron las mutaciones del gen p53 en 16 pacientes seropositivas y 16 seronegativas. Cinco de las pacientes seropositivas y ocho de los seronegativas presentaban mutaciones en el gen p53. Destacaba únicamente la presencia de una mutación en un residuo de tirosina en 4 de las 5 pacientes seropositivas. En consecuencia, las
pacientes con autoanticuerpos p53 no presentaron un mayor número de mutaciones en comparación con las carentes de autoanticuerpos.

Diversos estudios han analizado el valor pronóstico de la p53 en el cáncer de mama, sin embargo, los resultados publicados muestran ciertas discrepancias. Algunos autores no han encontrado diferencias significativas entre la expresión de la p53 y la supervivencia, concediéndole a este marcador un escaso valor pronóstico. Entre ellos destacan Isola et al., (1992), que en un estudio de 298cánceres de mama seleccionados al azar examinaron la expresión de la proteína p53 y C-erbB-2 utilizando los anticuerpos monoclonales CM-1 y T 250 respectivamente. La presencia de p53 se relacionó con altos grados histológicos, ausencia de RE y sobreexpresión de C-erbB-2. Aunque, las pacientes con elevada expresión de p53 y C-erbB-2 tuvieron significativamente una menor supervivencia, únicamente el tamaño tumoral y la fracción S resultaron los parámetros con valor pronóstico independiente cuando todas las variables fueron introducidas en el análisis de riesgos proporcionales de Cox. Para Bianchi et al., (1997) la inmunotinción positiva de p53 careció de valor pronóstico en su análisis univariante y multivariante de 221 cánceres de mama con seguimiento durante 10 años. El tamaño tumoral y el grado nuclear en esta serie se mostraron como factores de pronóstico independiente. Igualmente, Lipponen et al., (1993) en un estudio basado en 193 tumores con determinación IHQ de p53 (58% de positividad), señalan el nulo valor pronóstico de la p53 con relación a otros parámetros. En el análisis univariante los tumores con tinción intensa tuvieron un peor pronóstico y, al contrario, tumores con ausencia de expresión de p53 presentaron intervalos libres de enfermedad cortos. Lo mismo sucedió en pacientes con ganglios negativos y p53-. En cambio, observaron un mayor intervalo libre de enfermedad en tumores con ganglios positivos y p53+. En el análisis multivariante la p53 careció de valor pronóstico. Por el contrario, Fresno et al., (1997) citan el valor pronóstico de la determinación IHQ de p53 (anticuerpo DO-7), en su análisis de 151cánceres infiltrantes de mama con ganglios negativos. La sobreexpresión de p53 definida como más de un 50% de células teñidas, se relacionó significativamente con un alto grado histológico, presencia de necrosis tumoral, elevados indices de proliferación celular y ausencia del RE. En el análisis multivariante la elevada expresión de p53 se relacionó significativamente con una corta supervivencia.

En el cáncer de mama varios grupos coinciden al señalar que las alteraciones en el gen y la sobreexpresión de p53 están relacionadas con tumores más agresivos y con un peor pronóstico. Estos tumores se caracterizan por un mayor tamaño tumoral, aumentada proliferación celular, aneuploidía, elevados grados histológicos y nucleares, ausencia de receptores hormonales y sobreexpresión de C-erbB-2. Thor et al., (1992) empleando el anticuerpo monoclonal P1801
objetivan una acumulación de la proteína nuclear en el 21% de los carcinomas in situ, en el 22% de los cánceres esporádicos, en el 34% de los cánceres familiares de mama y en el 52% de los tumores de pacientes con cánceres de mama y ovario. También observaron una asociación significativa entre la expresión de p53 y la negatividad de los RE y con un alto grado nuclear. El cúmulo nuclear de p53 mostró ser un factor pronóstico independiente de menor intervalo libre y supervivencia tanto en cánceres esporádicos como en familiares. Barnes et al., (1993) en un estudio basado en 195 cánceres de mama con ganglios positivos y negativos y con un seguimiento durante 10 años, constataron un 19% de positividad para la p53 por IHQ. El análisis multivariante demostró que después de la afectación ganglionar, la tinción positiva para p53 denota una disminución de la supervivencia. Para Silvestrini et al., (1993) la tinción IHQ con el anticuerpo P1801 y el índice de timidina fueron los parámetros que mejor se relacionaron con la recidiva y con la disminución de la supervivencia en un grupo de 256 cánceres de mama con ganglios negativos.

La comparación entre el cúmulo nuclear y citoplásmico de p53 mediante tinción IHQ con el anticuerpo P1801, fue realizada por Stenmark-Askmalm et al., (1994) en 164 cánceres de mama en estadio II. Estos autores encontraron un 9% de positividad nuclear y un 21% de positividad citoplasmática. La presencia de p53 se asoció a cánceres con diámetro superior a 2 cm, ausencia del RE, aneuploidia, elevada fracción S y positividad para C-erbB-2. Los tumores con tinción positiva citoplasmática y negativa nuclear tuvieron un menor intervalo libre de enfermedad. Fueron factores pronóstico independiente la acumulación de p53 junto con el estado de los ganglios axilares y el contenido de los RE.

Beck et al., (1995) valoraron 462 cánceres de mama mediante tinción con el anticuerpo monoclonal para la p53 DO-1, objetivando una disminución de la supervivencia en tumores con sobreexpresión de p53 y de Ki-67. La p53 en este estudio se relacionó significativamente con el grado histológico II, con la ausencia de RE y RPg y con un elevado índice de Ki-67. Gohring et al., (1995) registraron un 38% de positividad para p53 en 204 cánceres de mama utilizando el anticuerpo P1801. No hubo asociación significativa entre la expresión positiva de p53 y el estado hormonal, la edad, el tamaño tumoral, la afectación ganglionar, y el estado de los receptores hormonales. La tinción positiva de p53 se relacionó significativamente con la pérdida de diferenciación tumoral y fue de valor pronóstico sólo en tumores con ganglios positivos. Mediante ELISA, Levesque et al., (1994) examinaron 998 extractos citosólicos de células de cáncer ductal infiltrante para p53. Estos autores objetivan tanto en el análisis univariante como en el multivariante, que concentraciones de p53 superiores a la mediana predecían un mayor riesgo de recidiva y muerte, especialmente en pacientes con ganglios positivos. Tsuda et
al., (1998) también examinaron 150 cánceres con ganglios positivos para determinar alteraciones cromosómicas, mutaciones de p53 y amplificación de oncogenes. En el análisis univariante fueron factores de pronóstico para la recidiva y la muerte: el grado histológico, el número de ganglios afectados, la inmunotinción nuclear de p53, la amplificación de C-erbB-2 y los receptores hormonales. En cambio, en el análisis multivariante la afectación ganglionar, el grado histológico y la positividad para p53 constituieron parámetros de pronóstico para la supervivencia.

Algunos trabajos conceden un mayor valor pronóstico a las mutaciones que se producen en el gen p53 que a la expresión de la proteína en sí. Seshadri et al., (1996) investigaron en 919 cánceres de mama las alteraciones del gen p53 por PCR-SSCP (análisis de polimorfismos de la conformación unicanetaria del DNA y reacción en cadena de la polimerasa) y la sobreexpresión de p53 y Ki-67 y la amplificación de C-erbB-2. Las alteraciones en el gen p53 (expresión 29%, mutaciones 8%) se relacionaron con elevados índices de MIB-1(Ki-67), amplificación de C-erbB-2 y ausencia de receptores de estrógenos. Tuvieron significativamente un mayor riesgo de muerte los pacientes con ganglios negativos, mutaciones en el exon 5 y 6 y elevados índices de MIB-1. De una manera similar, Soong et al., (1997) en un estudio prospectivo de 375 cánceres de mama investigaron la relación entre las mutaciones del gen p53 y la supervivencia. Mediante análisis SSCP encontraron un 19% de mutaciones en los exones 4-10. Estas mutaciones mostraron una asociación significativa con altos grados histológicos, ausencia RE, aneuploidía y elevada fracción S. El análisis univariante y multivariante confirmó que las pacientes cuyos tumores presentaban mutaciones en el gen p53 tuvieron una significativa disminución de la supervivencia. Asimismo, Iacopetta et al., (1998) analizaron alteraciones en los exones 4 – 8 del gen p53 por PCR-SSCP, en 422 cánceres con ganglios axilares negativos. Encontraron un 18% de mutaciones que se asociaron significativamente a un mayor tamaño tumoral, altos grados histológicos, bajo contenido de RE, elevada expresión de Ki-67, amplificación de C-erbB-2 y cúmulo de p53. En el análisis multivariante la mutación de p53 resultó ser un factor de pronóstico independiente. De manera similar, mediante PCR-SSCP, Berns et al., (1998) observaron un 31% de mutaciones en el gen p53 entre 222 cánceres examinados. El 78% de las mutaciones se detectaron en un solo punto, la mayoría en el codon 248 y en 6 tumores se localizaron en el codon 213. El análisis multivariante de Cox desveló que los tumores con mutaciones en el codón 213, que contacta directamente con el DNA, tuvieron una media de supervivencia menor.

Los cánceres que expresan la p53 silvestre presentan una alta proporción de células apoptóticas, siendo además, sensibles al tratamiento con radiaciones ionizantes y agentes
citotóxicos. En cambio, los tumores deficientes en p53 silvestre poseen un númeroreducido de células apoptóticas y cuando son tratados con los mismos agentes, en general, mantienen un crecimiento continuado. Por tanto, la función normal de p53 es necesaria para una adecuada respuesta al tratamiento adyuvante, así, la inactivación de la proteína normal se relaciona con una resistencia a la muerte celular por pérdida de los mecanismos apoptóticos, y esto conlleva a una disminución de la sensibilidad a la radioterapia y a la quimioterapia (Lowe SW et al., 1994; McIlwrath AJ et al., 1994; Koechli OR et al., 1994). Aas T et al., (1996) investigaron la relación entre las mutaciones en el gen p53 con la resistencia a la doxorrubicina y la recidiva precoz. Las mutaciones en las regiones 2 - 5 se asociaron a metástasis ganglionares y a una evolución desfavorable. El tratamiento adyuvante con tamoxifén y la radioterapia fueron de escaso valor en pacientes que presentaban mutaciones en el gen p53 (Bergh et al., 1995). Las enfermas cuyos cánceres sobreexpresaban el p53 y bajos niveles de los RE y RPg tuvieron una peor respuesta al tamoxifén y una menor supervivencia, según un estudio publicado por Berns et al., (1998).

En la última década los ensayos experimentales y clínicos han sido dirigidos a restablecer la función normal de los genes supresores. En algunos casos la terapia incluye la integración permanente del gen en las células diana, mientras que en otros se logra la inducción de la transcripción del producto normal del gen. La transferencia de material genético sano se realiza con combinaciones del gen p53 y un promotor insertados en un vector viral, incapaz de replicarse, pero con capacidad para transfectar una célula. Baker et al., (1990) demostraron que células de cáncer de colon con alteraciones en el gen p53 podían revertir su fenotipo a no tumorigénicas al transfectarles un alelo p53 normal por medio de plásmidos portadores. Liu et al., (1994) transfectaron el gen p53 silvestre mediante un vector adenovírico con un promotor de citomegalovirus (Ad5CMV-p53) en una línea celular de cáncer de cabeza y cuello, objetivando por Northern blotting un aumento de 10 veces el RNAm-p53 normal y la expresión de la proteína. La inyección peritumoral de Ad5CMV-p53 en ratones desnudos indujo cambios apoptóticos y una significativa disminución, hasta 60 veces, en el número de células de cánceres de cabeza y cuello implantados subcutáneamente. También Fujiwara et al., (1994) lograron inducir cambios apoptóticos en células en cultivo de la línea celular de pulmón H358, al transfectar el gen p53 normal por medio de un vector adenovírico. Lograron demostrar que la inyección directa de Ad-p53 en tumores H358 implantados subcutáneamente en ratones inmunosuprimidos, aumentó la sensibilidad al cisplatino, produciéndose una apoptosis masiva tras la administración del citotóxico. Experimentos similares en líneas celulares humanas de cáncer de cabeza y cuello, ovario, próstata y mama llevados a cabo por Gurnani et al., (1999) demostraron la efectividad de la quimioterapia combinada con la terapia génica por medio de un
vector adenovírico-CMV-p53. En ensayos clínicos, Roth et al., (1996), observaron en cánceres de pulmón (variedad células no pequeñas) la regresión tumoral en 3 pacientes y la estabilización en otros 3, tras la administración del gen p53 por medio de un vector retroviral. Vinyals et al., (1999) han comprobado en la línea celular de cáncer de mama (MDA-MB468) homocigota para la p53, que la transfección del gen p53 silvestre induce una muerte por apoptosis con una disminución del número de colonias. Sin embargo, algunas células son capaces de sobrevivir y seguir creciendo a pesar de la transfección del p53 normal. Además, el análisis del clon celular superviviente reveló que se habían producido mutaciones en el gen p53 silvestre transfecado. Sobre la base de estos hallazgos, los autores concluyeron que la presencia de mutaciones en el p53 confiere inestabilidad genómica y la capacidad de producir mutaciones que le permiten a la célula tumoral escapar de los efectos del p53 silvestre transfecado.

La investigación sobre la estructura y función del gen ha posibilitado el desarrollo de nuevas terapias contra el cáncer. Conseiller et al., (1998) construyeron un quimérico supresor tumoral (CST1) mediante deleción del dominio involucrado en la inactivación del gen p53 normal. Demostraron que el CST1 era resistente a la inactivación por la MDM2, capaz de inducir un arresto del crecimiento celular tumoral y producir una acelerada apoptosis. Por otra parte, Foster et al., (1999), identificaron una serie de pequeñas moléculas con un peso que varía entre los 300–500 daltones que inducen en la p53 silvestre una estabilidad conformacional en toda su longitud y en los dominios de unión al DNA. Estos péptidos también permitieron mantener una conformación activa en la proteína mutada. La administración experimental de un compuesto prototipo a células tumorales de ratón con p53 mutada, produjo la acumulación de moléculas p53 con conformación activa ocasionando un retardo en el crecimiento tumor.

Estos hallazgos abren nuevas vías de investigación encauzadas a lograr tratamientos más racionales contra el cáncer, basados en un mejor conocimiento de la estructura y función de ciertos genes.

CATEPSINA D.

Los estudios sobre los efectos del estradiol en los mecanismos de proliferación celular y carcinogénesis mamaria dieron como resultado el aislamiento de una glicoproteína de 46 kDa (Westly y Rochefort, 1980) secretada al medio de cultivo en 3 líneas celulares de cáncer de mama RE positivas (MCF7, ZR75, T47D). El posterior análisis, mediante electroforesis e inmunoprecipitación con anticuerpos monoclonales de las proteínas sintetizadas y secretadas en células MCF7, reveló un peso molecular de 52 kDa para la citada glicoproteína (Veith et al., 1983). Vignon et al., (1984) también demostraron en la línea celular R27, una variante de la
MCF7 capaz de crecer en presencia de tamoxifén, que su secreción podía ser inducida por tratamiento con tamoxifén e hidroxitamoxifén, aunque en menor proporción que con el estradiol.

Vignon et al., (1986) por medio de cromatografía sobre concanavalina A y anticuerpos monoclonales anti-52 kDa lograron la purificación de la glicoproteína con un 99% de pureza. Administrando siete concentraciones nanomolares distintas de esta fracción objetivaron un aumento del crecimiento de las células MCF 7 deprivadas de estrógenos que representó un 40% del efecto mitogénico del estradiol. Tanto la 52 kDa como el estradiol indujeron la expresión de microvellosidades en la superficie celular, efecto precoz con la exposición a 52kDa. Concluyeron que los estrógenos inducían el crecimiento de las células de cáncer de mama a través de la estimulación de la secreción de algunas proteínas que actuarían por vía autocrina o paracrina y que la glicoproteína poseía propiedades mitogénicas.

La purificación de la glicoproteína y su secuenciación utilizando clones de DNA complementario obtenidos de las células MCF7 permitió demostrar a May y Westley (1986), que la glicoproteína secretada se trataba de la forma precursora de la catepsina D, homóloga a la presente en los tejidos normales. Rochefort (1987) y Briozzo (1988) aportaron evidencias convincentes de que la catepsina D es secretada al medio exterior como una aspartil proteasa lisosomal portadora de una señal peptídica manosa 6- fosfato. La enzima intracelularmente es dirigida a los lisosomas que poseen receptores de manosa – 6 – fosfato y es almacenada en formas maduras de 48 kDa, 34 kDa y 14 kDa (García et al., 1985). La proenzima secretada al medio exterior es autoactivada en un pH de 4,5 cambiando su peso molecular a 51 kDa por procesamiento proteolítico del NH2 terminal (Freiss et al., 1988). Una vez activada es capaz de degradar la membrana celular, la matriz extracelular y los proteoglicanos (Briozzo et al., 1988). La catepsina D también ha sido implicada en la diseminación metastásica al demostrar Rochefort et al., (1990) que la transfección del DNA complementario humano de catepsina D bajo el control de un promotor viral (SV40) aumentaba el potencial metastásico de células 3YA1-Ad12 inyectadas en ratones desnudos. Entre otras propiedades, la catepsina D facilita la biodisponibilidad de factores de crecimiento locales (Briozzo et al., 1991), causa la inactivación de un inhibidor del crecimiento (Liaudet et al., 1995) y evita la apoptosis (Saftig et al., 1995).

Las células de cáncer de mama, mediante sobreexpresión del gen y por procesamiento alterado de la proteína, secretan elevadas cantidades de procatepsina D llegando a ser la producción en las células cancerosas 8 veces superior a la sintetizada por las células normales.
(Rochefort et al 1990). El 50% de la producción en las células neoplásicas es inducida por los estrógenos (Capony et al., 1989). La salida y maduración de la proenzima está alterada posiblemente por saturación de los receptores manosa – 6 – fostato/IGF II, lo que conlleva a la acumulación de la proteasa activa en grandes endosomas y a un aumento en la secreción del precursor (Rochefort, 1990). Mediante microscopía de alta resolución y tinciones para compartimentos ácidos, Montcourrier et al., (1990) observaron un número superior de vesículas intracelulares (1,5 a 20 micras de diámetro) en las células de cáncer de mama en comparación con los tejidos normales. Estas vesículas compuestas principalmente por enzima madura eran móviles y capaces de degradar material extracelular fagocitado. En contraste, los experimentos de Johnson (1993), basados en la secreción e inmovilidad de la catepsina D en la cámara de Boyden, no han corroborado la relación entre la secreción de la proteasa y su potencial de invasión.

Los trabajos de Mathieu et al.,(1990) empleando radioligandos demostraron que la catepsina D y el IGF-II utilizan el receptor IGF-II/manosa – 6 – fosfato. La enzima por medio de estos receptores es capturada en las células MCF7. Sin embargo, un estudio reciente realizado por Laurent-Matha et al., (1998) mediante análisis con doble inmunofluorescencia y microscopía confocal objetivó que anticuerpos monoclonales dirigidos específicamente unos contra la procatepsina D y otros contra el receptor manosa – 6 – fostato/IGF II sufrían una endocitosis de manera independiente. Estos hallazgos sugirieron la existencia de un receptor alternativo, distinto del manosa – 6 – fosfato/IGF-II, para la procatepsina D en las células de cáncer de mama.

Con la utilización de clones de DNA complementario Cavailles et al., (1988) demostraron un aumento entre 4 y 10 veces los niveles de RNAm - cat. D (2,2 kb) en las células MCF7 tras su estimulación con estradiol. De manera similar, el EGF, la insulina y el FGF produjeron un aumento dosis dependiente del RNAm – catep. D, que en el caso del EGF fue rápido, pero inferior al propiciado por el estradiol. La insulina, el IGF y el FGF lograron aumentar hasta 3 veces el RNAm de la catepsina D. El tamoxifén en cambio, careció de efecto en esta línea celular. El empleo de inhibidores de transcripción y traducción del gen 52 kDa confirmaron que el estradiol aumenta la transcripción del gen en las células MCF7. La regulación estrogénica es mayoritariamente transcripcional, mientras que los factores de crecimiento estabilizan el RNA. Los trabajos experimentales de Touito et al., (1991), basados en la transfección del gen RE a células MDA-MB231 y Hela y su posterior estimulación con estradiol, corroboraron que los estrógenos podían inducir la producción de catepsina D.
Por hibridación in situ empleando genotecas de DNA complementario, Augereau et al., (1988), asignaron el locus 11p15 al gen de la catepsina D. Cavailles et al., (1991) clonaron la región promotora de la catepsina D de las células MCF7 demostrando EREs en la región 5’ del gen. Utilizando recombinantes químéricos portando diferentes fragmentos del extremo proximal 5’ del gen y cotransfección transitoria con vectores de expresión del RE en células MCF, Cavailles et al., (1993), descubrieron un fragmento en la región 5’ proximal del gen de 240 bp capaz de mediar la activación transcripcional de estrógenos. El promotor del gen de la catepsina D tiene una estructura compleja compuesta por genes domésticos (alto contenido de G+C y sitios para el factor de transcripción Sp1) y secuencias reguladoras TATA. La transcripción se inicia en 5 sitios (TSS I a V). La caja TATA es esencial para la transcripción en TSS I. El gen de la catepsina D dependiendo de las condiciones se comporta como un gen doméstico con múltiples lugares de unión o como un gen regulado por hormonas que puede ser controlado por la caja TATA; así, en las células de cáncer de mama, el gen es controlado por un promotor mixto y los estrógenos solamente estimulan la transcripción dependiente de TATA. Se han encontrado 2 sitios hiperensibles a DNAasa en el gen de la catepsina D en las secuencias del extremo 5’ el cual es regulado por los estrógenos. En células con expresión de catepsina D independientes de hormonas se evidenció la región CatD HS4 localizada en la posición –4,3 Kb que podría controlar la expresión constitutiva en células independientes de hormonas (Giamarchi et al., 1999).

Se han demostrado elevadas concentraciones de catepsina D en pacientes con mastopatías fibroquísticas y proliferativas (Rochefort et al., 1987). En carcinomas mamarios RE positivos Vasishta et al., (1989) objetivaron una mayor actividad enzimática proteolítica producida por catepsinas, tripsinas, elastasas y activador del plasminógeno. Altos niveles de catepsina D también se han observado en pacientes con mastitis (Gonzalez-Cancedo 1990).

Existen controversias en la literatura con relación al valor pronóstico de la catepsina D en el cáncer de mama, si bien en los estudios inmunoenzimáticos e inmunoradiométricos su valor como parámetro de pronóstico parece bien establecido, con los métodos inmunohistoquímicos es mas dudoso. Según publica Madeulonde et al., (1988), en un estudio basado en la determinación inmunoenzimática de catepsina D en 182 cánceres de mama, la concentración citosólica de catepsina D no se relacionó con la edad, el tamaño tumoral, el grado histológico y el estado del receptor de progesterona. Únicamente observaron una asociación estadísticamente significativa con el estado del receptor de estrógeno. Spyrotos et al., (1989) constataron, en 122 pacientes con cáncer de mama sin afectación ganglionar, que elevadas concentraciones citosólicas de catepsina D se relacionaban con una disminución del intervalo libre y la
supervivencia global. Thorpe *et al.*, (1989) determinaron la expresión de catepsina D por enzimoinmuoanálisis en 242 pre/perimenopáusicas y en 154 postmenopáusicas. Dividiendo las pacientes en grupos de tumores con baja, intermedia y alta concentración de catepsina D, no encontraron una relación significativa entre las concentraciones de catepsina D y la edad, la afectación ganglionar, el tamaño tumoral, y el grado de anaplasia, aunque, si observaron elevados niveles de catepsina D en tumores con una concentración de receptores de estrógeno mayor de 10 fmol/mg prt. Tuvieron un menor intervalo libre de enfermedad y supervivencia, las pacientes premenopáusicas con concentraciones de catepsina D superior a 78 pmol/mg prt y las postmenopáusicas con niveles mayores de 24 pmol/mg prt. El análisis multivariante confirmó el valor pronóstico de los niveles de catepsina en ambos grupos. Tandon *et al.*, (1990) también demostraron en 397 cánceres de mama, de ellos 198 con ganglios positivos, una disminución del intervalo libre y la supervivencia en las pacientes cuyos tumores presentaban una elevada concentración de catepsina D y ganglios negativos.

La alta expresión de catepsina D se asocia a metástasis ganglionares, así, Brouillet *et al.*, (1990) evidencian en 140 cánceres de mama y 64 ganglios axilares, una mayor concentración de catepsina D en las metástasis ganglionares. Elevadas concentraciones de catepsina D se relacionaron con la amplificación de c-myc. En cambio, no objetivaron asociación alguna entre los niveles de Catepsina D y la sobreexpresión de C-erbB-2 e interleuquina 2. En un estudio prospectivo basado en la determinación inmunoenzimática de catepsina D (punto de corte 20,8 pmol/mg prt) en 123 pacientes, Pujol *et al.*, (1993), demostraron en el análisis multivariante, el valor pronóstico de la catepsina D en pacientes con ganglios positivos y RPg-. Barbi *et al.*, (1994) también comprobaron en 158 pacientes con cáncer de mama, la buena correlación de las concentraciones citosólicas de catepsina D (40 > pmol/mg) con el grado histológico y las metástasis ganglionares y la ausencia de asociación con la edad, estado de los receptores de estrógeno y progesterona y el tipo histológico. Ferno *et al.*, (1994) señalan el valor pronóstico de altas concentraciones de catepsina D (dintel: 45 pmol/mg prt) medidas por ensayo inmunorradiométrico en pacientes con ganglios positivos. Estos autores describen ademáis, el efecto beneficioso del tamoxifén en pacientes con alta expresión de catepsina D, ganglios positivos y RPg+. En otro estudio basado en la determinación inmunorradiométrica de la catepsina D en 1752 pacientes, Gion *et al.*, (1995), citan una asociación significativa entre la elevada concentración citosólica de catepsina D y el tamaño tumoral, el grado histológico y la presencia de RE y PPg. También describen una significativa mayor concentración de catepsina D en tumores con ganglios positivos, aunque en este caso, la catepsina D no fue de valor para predecir el riesgo de desarrollar metástasis axilares.
Algunos trabajos señalan que altas concentraciones de catepsina D se relacionan con un pronóstico desfavorable que es independiente del estado de los ganglios axilares. Ardavanis et al., (1998) en un estudio basado en 173 cánceres de mama en estadios I, II y III citan el valor pronóstico de la catepsina D en pacientes con ganglios positivos y negativos. Las pacientes con una elevada concentración citosólica de catepsina D tuvieron más recidivas locorregionales y una menor supervivencia. Solomayer et al., (1998) hacen referencia al mal pronóstico de las pacientes con células metastásicas extraídas de la médula ossea y que presentaban aumentados niveles de catepsina D. Foeken et al., (1999) en un estudio de 2810 extractos citosólicos de catepsina D (punto de corte: 45,2 pmol/mg prt) objetivaron, en el análisis multivariante, que altos niveles de catepsina D se relacionaron con una disminución del intervalo libre y la supervivencia global, tanto en tumores con ganglios positivos como con ganglios negativos. No encontraron, sin embargo, una asociación significativa entre los niveles de catepsina D y los parámetros de pronóstico clásicos.

Gohring et al., (1996) compararon el valor pronóstico de la catepsina determinada por métodos inmunohistoquímicos (IHQ) e inmunoradiométricos (IRMA) en 270 cánceres infiltrantes de mama. Aunque existió una buena correlación entre la IHQ (punto de corte 52%) y el IRMA (40 fmol/mg), únicamente la determinación de la expresión de catepsina D por IHQ se relacionó significativamente con la evolución clínica. En el análisis multivariante la expresión de catepsina D en pacientes con ganglios negativos fue de valor pronóstico.

Joensuu et al., (1995) determinaron mediante tinción IHQ la expresión de catepsina D en las células ductales y estromales de 213 pacientes con cáncer de mama. Observaron una mejor supervivencia en aquellas enfermas cuyos tumores presentaban un bajo contenido de catepsina D en las células estromales, aunque en el análisis multivariante este dato careció de valor pronóstico. Altas concentraciones de catepsina D en el componente estromal se relacionaron con una elevada actividad proliferativa celular. Objetivaron además, una mayor expresión de la catepsina D en los cánceres ductales que en los lobulares. De manera similar, Losch et al., (1998) compararon la tinción IHQ de la catepsina D en el componente epitelial y estromal. La sobreexpresión de catepsina D en las células ductales se relacionó con un alto grado nuclear y con la estadificación y existió una ausencia de asociación con las metástasis ganglionares y con el contenido del receptor estrogénico. La tinción en las células estromales careció de valor pronóstico, en cambio, en el componente epitelial se objetivó una asociación significativa con la supervivencia. No obstante, este efecto desapareció en el análisis multivariante y, por tanto, la catepsina D no fue de valor pronóstico. En un estudio basado en 102 pacientes con cánceres de mama infiltrantes Gonzalez-Vela et al., (1999) demostraron que tumores con moderada a
intensa inmunotinción de catepsina D en las células estromales, ésta se relacionó significativamente con un aumento en la densidad de los vasos sanguíneos en el tumor, con una mayor agresividad tumoral, con un mayor índice mitótico, con peor grado histológico y con una disminución del RE. En una publicación reciente basada en 1348 pacientes con cáncer infiltrante de mama, Tetu et al., (1999) valoraron mediante tinción IHQ la expresión de la catepsina D en las células epiteliales y estromales de manera independiente. Estos autores encontraron que la expresión de catepsina D en las células estromales (43,6% de positividad) a diferencia de las células epiteliales (38,9% de positividad) se asociaba significativamente con varios factores de peor pronóstico y con una disminución del intervalo libre y de la supervivencia. Además, la alta expresión de catepsina D en las células estromales en el subgrupo que recibió tratamiento citotóxico adyuvante, se relacionó con un mal pronóstico. De este modo, afirmaron que el valor pronóstico de la expresión de catepsina D parece depender del componente estromal que es influenciado por las células cancerosas.

Los estudios inmunoenzimáticos e inmunoradiométricos, a diferencia de los inmunohistoquímicos, se basan en la determinación indiscriminada de la catepsina D en las células ductales y estromales. La distinta expresión de la catepsina D en un componente u otro podría explicar las divergencias observadas con relación al valor pronóstico de la catepsina D.

Glicoproteína P (PGY 1, MDR1, MDR2).

La glicoproteína P fue descubierta a raíz de los estudios experimentales de Juliano y Ling (1976) sobre la resistencia a la colchicina y a diversas drogas hidrófobas en células seleccionadas de ovario de hámster. La presencia de una glicoproteína de 185 kDa muy abundante en las membranas celulares fue demostrada empleando carbohidratos y proteínas marcadas y mediante proteólisis selectiva. Constataron en ésta, y otras líneas celulares, que el grado de resistencia a los fármacos estaba directamente relacionado con la cantidad de glicoproteína presente en la superficie celular. Le asignaron el nombre de glicoproteína P debido a la supuesta alteración que inducía en la permeabilidad al paso de drogas a través de la membrana celular.

Utilizando varios anticuerpos monoclonales dirigidos contra 3 epitopos distintos de los dominios conservados en la región carboxi-terminal de la glicoproteína P, Kartner et al., (1985), comprobaron en diferentes células de mamíferos resistentes a múltiples medicamentos, la relación existente entre la sobreexpresión de la proteína y el fenómeno de resistencia a múltiples drogas. Las células con baja expresión de glicoproteína P eran sensibles a los fármacos; lo contrario sucedió con la sobreexpresión. Además, una célula seleccionada para ser insensible a
un medicamento rápidamente adquiría una resistencia cruzada a una amplia variedad de drogas y, este hecho, estaba relacionado con la sobreexpresión de la glicoproteína P. La clonación del cDNA que codifica la glicoproteína P fue realizado Riordan et al., (1985). El análisis del DNA por Southern blot del hámster, ratón y humano, empleando como sonda el DNA complementario de la glicoproteína P, demostró un elevado grado de conservación de la proteína entre las diferentes especies y que en su codificación y amplificación interviene una familia de genes muy relacionados.

Shen et al., (1986) vincularon la resistencia a la colchicina, vinblastina y adriamicina de las células cancerígenas humanas KB con la amplificación de secuencias específicas de DNA denominadas “locus de resistencia a múltiples drogas” (mdrl). La expresión y amplificación de estas secuencias fueron confirmadas en sublíneas celulares de leucemia y en células de cáncer de ovario. En la misma línea celular KB, Roninson et al., (1986) objetivaron la amplificación de 2 secuencias distintas de DNA que guardaban homología con el gen mdr de los hámsteres; les designaron mdr1 y mdr2. Las secuencias mdr1 constituidas por RNAm poly A de 4,5 kb estaban presentes en aquellas sublíneas con alta resistencia a fármacos. En cambio, no evidenciaron RNAm mrd2, aunque las secuencias si aparecían co-amplificadas con el mdr1 en algunas sublíneas tumorales.

La evidencia definitiva de que la glicoproteína P era el producto del gen mdr1 la realizaron Ueda et al., (1986) al confirmar la similitud en los cDNA del gen mdr1 y PGY1, mediante hibridación cruzada con un clon de DNA complementario en las células de cáncer humano KB. Por medio de hibridación in situ del DNA, los genes mdr1 y mdr2 humanos fueron localizados en el cromosoma 7q21.1 (Fojo et al., 1985; Trent y Witkowski, 1987; Callen et al., 1987). El gen mdr3 fue descubierto por Van der Bliek et al., (1987) tras el aislamiento de un DNA complementario en bancos de células hepáticas. Este gen está situado dentro de las 500 kb del mdr1 en el locus 7q21.1, mide 74 kb de longitud y está separado del gen mdr1 por 34 kb, siendo su RNAm 400 nucleótidos más corto que el de mdr1. Los genes mdr humanos se transcriben en la misma dirección, en este caso, el mdr3 se encuentra por debajo del mdr1. El mdr3 corresponde al mdr2 de Roninson et al., (1986); por tanto, en el humano existen dos genes mdr, mientras que en el ratón se han aislado tres genes.

La secuencia completa de nucleótidos del DNA y la estructura primaria del producto del gen mdr fue descrita por Gros et al., (1986). La glicoproteína P se compone de 1276 aminoácidos con 6 pares de dominios transmembranales y un grupo de sitios de glicosilación ligados a N cercanos a la región amino-terminal. La proteína posee segmentos internos duplicados de 500
aminoácidos que incluyen sitios consenso para la unión del ATP. Este arreglo transmembranal permanece muy conservado en un gran número de sistemas de transporte de membranas de procariotas y eucariotas. Tanto Gross et al., (1986) como Chen et al., (1986) objetivaron que la glicoproteína P, involucrada en el fenómeno de resistencia a drogas en las células tumorales, guardaba una fuerte homología con una serie de proteínas bacterianas, las permeasas, involucradas en el mecanismo de transporte a través de la membrana celular. Gross et al., (1986) comprobaron que la transferencia de un clon de DNA complementario del gen mdr a una célula sensible a drogas, era capaz de inducir en ésta un fenotipo de resistencia por amplificación del gen. En este mecanismo estaban implicados minúsculos elementos extracromosomales en forma de diminutos cromosomas dobles circulares denominados episomas. De manera similar, Ruiz et al., (1989) demostraron la presencia del gen mdr1 en episomas que se replicaban autónomamente en una línea celular humana resistente a múltiples drogas.

Algunas líneas celulares humanas resistentes a múltiples drogas contienen elevadas cantidades de proteína cinasa C. La estimulación de la actividad de esta cinasa inducida por agonistas (éstere de forbol y Diacilglicerol) produce una elevación del RNAm mdr1 y una sobreexpresión de la glicoproteína P. De este modo, en la expresión del gen mdr1 podría intervenir la vía de la proteína cinasa (Chaudhary y Roninson 1992). Por otra parte, Slovak et al., (1987) relacionaron el fenómeno de resistencia con las frecuentes alteraciones observadas en la región 7q en líneas celulares con resistencia adquirida a la doxorubicina. Otro mecanismo implicado en el proceso de amplificación, descubierto recientemente en una línea celular seleccionada resistente a la adriamicina, es la translocación del cromosoma 4q al 7q (Mickley et al., 1997). La delección de los primeros 68 residuos del gen mdr1 durante la trasnlocación dio origen a un RNAm, producto de un nuevo gen híbrido, cuya expresión era controlada por el gen del cromosoma 4. Estos RNAm híbridos han sido detectados en otras líneas celulares y en pacientes con leucemias refractarias a la quimioterapia.

La purificación de la glicoproteína P la realizaron Hamada y Tsuruo (1988) por medio de cromatografía, utilizando un anticuerpo monoclonal en la línea celular k562 de leucemia mieloide resistente a la adriamicina. Demostraron que la glicoproteína P posee una actividad ATPasa intrínseca y por tanto, la hidrólisis de ATP acoplado a la proteína estaría involucrada en el mecanismo de bombeo de drogas al exterior de la célula. Los modelos animales han confirmado la importancia de la glicoproteína P en la eliminación de diversas sustancias al exterior de la célula, evitando así, una acumulación tóxica intracelular. Shinckel et al., (1994) observaron que los ratones homocigotos para el gen mdr1 eran extremadamente sensibles a un
pesticida neurotóxico y a la droga carcinógena vinblastina. Cuando se compararon los ratones homocigotos con los normales, se demostró que los animales con deficiencia de glicoproteína P presentaban una acumulación tóxica de ambas drogas en el sistema nervioso central. De este modo, concluyeron que la glicoproteína P-mdr1 es la principal glicoproteína de la barrera hematoencefálica. Varios trabajos experimentales también han ratificado que la glicoproteína P de la placenta es fundamental en limitar el transporte de drogas potencialmente dañinas al feto (Schinkel et al., 1994; Umbenhauer et al., 1997; Lankas et al., 1998).

La glicoproteína P pertenece a una familia de proteínas de membrana especializadas en el transporte o bombeo de sustancias de una manera dependiente de energía (ATP) al exterior de la célula. Se encuentra en altas concentraciones en la glándula suprarrenal y el riñón, en concentraciones intermedias en el pulmón, hígado, intestino delgado, colon, recto y a bajos niveles en otros tejidos (Fojo et al., 1986). La proteína está presente en la superficie apical de los epitelios. En el hígado la glicoproteína P se localiza fundamentalmente en la membrana canalicular de los hepatocitos y en la superficie apical de los pequeños conductillos biliares. En el páncreas se limita a los pequeños conductos pancreáticos, mientras que en el colon y el yeyuno se sitúa en la superficie apical del epitelio cilíndrico columnar (Thiebaut et al., 1987). En el riñón se concentra en la superficie apical de las células de los túbulos proximales y es la proteína de membrana responsable de la secreción de digoxina y drogas relacionadas (quinidina, verapamilo, amiodarona, espironolactona y ciclosporina), evitando así, una acumulación tóxica en la nefrona (De Lannoy y Silverman, 1992). Es además, una de las principales proteínas de la barrera hematoencefálica controlando la penetración y cúmulo de drogas en el sistema nervioso central. Un buen ejemplo de ello, es la restricción de la entrada en el sistema nervioso central de las proteasas inhibidoras utilizadas en la terapia contra el HIV, reduciendo de este modo, la eficacia de estos medicamentos (Kim et al., 1998). Las glicoproteínas mdr1 y mdr3 son necesarias para la secreción de fosfatidilcolina en la bilis, siendo la mdr3 fundamental en el proceso de translocación de lípidos de cadena corta a través de la membrana celular. Las alteraciones de estos genes producen una variedad de trastornos colostáticos. La mdr1 también está involucrada en los mecanismos de presentación del antígeno en la inmunidad mediada por células T (Randolph et al., 1998).

Los productos del gen mdr han sido detectados en tumores de glándula suprarrenal y colon (Fojo et al., 1987), leucemias, tumores del sistema nervioso central, cáncer renal y cáncer de mama. En el cáncer de mama, Efferth et al., (1992), observaron que la expresión conjunta de glicoproteína P y glutatión transferasa se corresponde con una disminución de la topoisomerasa II. En el neuroblastoma, Chan et al., (1991), hacen referencia a la utilidad de la determinación
IHQ de la glicoproteína P antes de la terapia para predecir su éxito o fracaso. Baldini et al., (1995) citan el mal pronóstico de osteosarcomas con elevada expresión de la glicoproteína P.

En el cáncer de mama la elevada expresión de glicoproteína se ha asociado a tumores con altos índices de proliferación celular y una menor respuesta al tratamiento adyuvante. En un estudio basado en la determinación IHQ de la glicoproteína P con los anticuerpos monoclonales C219 y MRK16 en 41 cánceres de mama, De la Torre et al., (1994), observaron una mayor expresión de esta proteína en los tumores diploides, con altos grados histológicos, y sin afectación ganglionar. Si embargo, esta asociación careció de significación estadística. Objetivaron además, una ausencia de asociación con la edad, el tamaño tumoral y el estado de los RE. En una serie de 25 cánceres de mama localmente avanzados tratados con quimioterapia neoadyuvante, Botti et al., (1993) relacionaron la elevada expresión de glicoproteína P con una pobre respuesta a la quimioterapia y con una disminución de la supervivencia. Estos autores encontraron una asociación positiva entre las altas tasas de proliferación celular y la presencia de glicoproteína P; también observaron una elevada expresión de PCNA y glicoproteína P en las pacientes que desarrollaron metástasis locorregionales y a distancia. Charpin et al., (1994), en un estudio basado en 213 cánceres de mama, describen una asociación directa muy significativa entre la expresión de glicoproteína P y la p53, Ki-67, catepsina D y RE. La inmunotinción de la glicoproteína P fue independiente de la edad, tamaño tumoral, gradación histológica y nuclear, afectación ganglionar y el estado del RPg. El contenido de glicoproteína P intracelular determinado mediante IHQ se correlacionó con la cantidad de RNAm-P-gp. Por el contrario, Moriki et al., (1995), que valoraron la actividad proliferativa en 35 cánceres de mama, no observaron asociación entre la expresión de glicoproteína P y la proliferación celular ni con los parámetros de pronóstico clásicos. Sin embargo, estos autores señalan que en el cáncer de mama la sobreexpresión conjunta de C-erbB-2 y glicoproteína P podrían estar implicadas en el proceso de transformación maligna.

Algunos carcinomas mamarios expresan de manera significativa la glicoproteína P y el receptor de ácido hialurónico o proteína CD44; una glicoproteína de adhesión celular implicada en la diseminación metastásica. De la Torre et al., (1995) hacen referencia a los elevados niveles de expresión de ambas proteínas en un análisis de 52 pacientes con cáncer de mama. Sin embargo, la elevada concentración de CD44 no se relacionó significativamente con los parámetros de pronóstico clásicos (edad, tamaño tumoral, grado histológico, ploidía, y RE).

Se han ensayado varios medicamentos capaces de revertir la resistencia a drogas inducida por la sobreexpresión de la glicoproteína P y entre ellos destacan los bloqueadores de los
canales del calcio (verapamilo), esteroides y sus antagonistas (tamoxifén), antagonistas de la calmodulina (trifluoperacina), antiarrítmicos (amiodarona y quinidina) y el anticuerpo monoclonal MRk16. El verapamilo, la trifluoperacina y los ésteres de forbol son capaces de revertir el fenotipo de resistencia produciendo una acumulación tóxica de drogas en las células resistentes (Cornwell et al., 1987). Hamada et al., (1987) demostraron, en la línea celular resistente a drogas K562/ADM, que la glicoproteína en su estado basal se encuentra fosforilada y sustancias como el verapamilo, la trifluoperacina, 4 beta-forbol 12 beta-miristato 13 alfa acetato y el 1-oleico 2-acetilglicerol incrementaron la fosforilación de la glicoproteína (p170 a p180) en distintos residuos de serina. La utilización conjunta de verapamilo con quimioterapia logró revertir parcialmente la resistencia a la doxorrubicina y vincristina en 3 de 8 pacientes con mieloma múltiple y linfomas no Hodgkin. (Dalton et al., 1989). Sin embargo, la utilidad de estos medicamentos se ha visto limitada por sus efectos secundarios, toxicidad y las dificultades para obtener concentraciones tisulares adecuadas.

Lindman et al., (1994) señalan al suramín como un agente potencialmente terapéutico en aquellas pacientes con cánceres de mama con resistencia a múltiples drogas y que expresan la glicoproteína P. La exposición a este agente inhibidor del crecimiento en 3 líneas celulares de cáncer de mama (Zr-75-1, BT 549, HS-578T) y en dos sublíneas resistentes a la doxorrubicina (Zr-75-1-dox, HS-578T-dox), ocasionó una significativa reducción de la supervivencia en las sublíneas celulares resistentes a la doxorrubicina que expresaban la glicoproteína P.

Existen contradicciones respecto al valor pronóstico de la glicoproteína P, siendo los trabajos publicados discordantes en cuanto a sus resultados; no obstante, la determinación de la expresión de glicoproteína P serviría como un indicador de predicción de respuesta al tratamiento con diversos fármacos.
JUSTIFICACION DEL TRABAJO.

El cáncer de mama constituye un importante problema de salud de la población femenina española y, por ende, todos nuestros objetivos y esfuerzos van dirigidos a lograr una reducción en la mortalidad causada por esta neoplasia. Sabemos que la supervivencia de este tumor depende principalmente de su extensión en el momento del diagnóstico y de los tratamientos quirúrgicos y complementarios. Sin embargo, existen ciertos aspectos de la biología tumoral que desconocemos y que, de alguna manera, inciden directamente en el pronóstico de la enfermedad.

De los datos recabados de la literatura y reseñados en la introducción entendemos que los marcadores tumorales son moléculas que actúan en las vías de señalización, algunos como factores de transcripción, con el objetivo de activar y regular la maquinaria genética responsable de la división, organización y muerte celular. Los cambios objetivados en las células neoplásicas en muchos casos son análogos a los observados en la embriogénesis y desarrollo de órganos, cicatrización de heridas, blastogénesis de células hemato-linfoides y en las respuestas al trauma y sepsis. Las alteraciones moleculares que podemos medir en las células cancerosas con nuevas técnicas inmunohistológicas reflejan anomalías del ciclo de división celular. Por consiguiente, interesa saber si existe una relación entre el comportamiento biológico de un tumor debido a la presencia o ausencia de determinados marcadores tumorales moleculares en las células neoplásicas, o si la expresión de estos marcadores biológicos no es más que la consecuencia de un proceso de multiplicación celular.

Los parámetros clásicos no siempre predicen adecuadamente la evolución clínica de la enfermedad y, del mismo modo, se necesitan estudios clínicos para valorar si los marcadores tumorales moleculares son equiparables o complementarios a las variables de pronóstico clásicas; si son idóneas para predecir qué pacientes poseen un exceso de riesgo de desarrollar metástasis; si poseen la capacidad para discriminar entre individuos o grupos de riesgo tributarios de tratamientos agresivos o seguimientos más estrictos; y por último, si los beneficios logrados justifican los costes de determinación en el laboratorio.

Este trabajo intenta aportar información adicional en este campo, contribuyendo a la ampliación de los conocimientos en este apartado de la biología tumoral.
HIPOTESIS DE TRABAJO

En este trabajo partimos de la hipótesis conceptual basada en que los marcadores tumorales moleculares estudiados, que intervienen en eventos de señalización, organización, división, diferenciación y muerte celular, se relacionan entre sí. Por tanto, su medición y valoración permitiría considerarlos como factores a tener en cuenta para el establecimiento del pronóstico.

Se establece como hipótesis nula que:

No existe asociación entre los marcadores tumorales moleculares y los parámetros de pronóstico clásicos (tamaño tumoral, estado de los ganglios axilares, grado nuclear e histológico). Los marcadores tumorales moleculares no poseen capacidad para pronosticar las recidivas precoces, es decir, aquellas que se producen durante los 36 meses de seguimiento.

Nuestra hipótesis alternativa propone que los marcadores tumorales moleculares sobre la base de su expresión o ausencia, sirven como parámetros de pronóstico a un grupo de tumores que desarrollan enfermedad metastásica en un breve período de tiempo (36 meses). Además estos marcadores moleculares son comparables en capacidad pronóstica a las variables clásicas actuales.
OBJETIVO

De acuerdo con las hipótesis establecidas, los objetivos de este estudio comprenden:

1. El análisis de la posible asociación entre los diferentes marcadores tumorales moleculares (receptor de estrógeno, receptor de progesterona, pS2, Hsp27, EGFR, p185C-erbB-2, ki67, PCNA, p53, catepsina D y glicoproteína P).

2. La comparación de la capacidad para pronosticar recidivas precoces (durante los 36 meses de seguimiento) de los marcadores tumorales moleculares con relación a los parámetros clínico-patológicos (la estadificación TNM, el grado nuclear, el grado histológico).

3. La valoración de los marcadores moleculares como factores pronóstico de recidiva en el plazo que incluye los primeros 36 meses postcirugía.

4. La selección del mejor marcador y asociación de marcadores que permitan establecer un valor pronóstico.
MATERIAL Y MÉTODO.

DISEÑO

Estudio de cohorte ambispectivo. Pacientes intervenidas por cáncer de mama en el Servicio de Cirugía II del Hospital General Universitario Gregorio Marañón, en el periodo comprendido entre junio de 1992 y diciembre de 1996.

POBLACIÓN

Nuestra población objeto de estudio incluye 108 pacientes de raza blanca con carcinoma ductal infiltrante de mama, pertenecientes al área de salud 1 de la comunidad de Madrid, seleccionadas de un total de 145 basándose en criterios de inclusión y exclusión prefijados que se detallan a continuación:

Criterios de Inclusión:
1. Cáncer de mama tipo ductal infiltrante. Estadios I, II y III.
2. Seguimiento mínimo de 36 meses para cada una de las integrantes del estudio.
3. Pacientes tratadas con mastectomía parcial o total con disección axilar.
4. Determinación IHQ de receptores de estrógeno (RE), receptores de progesterona (RPg), el receptor del factor de crecimiento epidérmico (EGFR), productos de expresión de oncogenes (p185C-erbB-2, p53), proteínas citósólicas (pS2, Hsp27), proteínas de membrana (glicoproteína P), antígenos nucleares de proliferación celular (Ki-67, PCNA) y proteasas (catepsina D).

Criterios de Exclusión:
2. Carcinoma lobulillar.
3. Cáncer ductal infiltrante en estadio IV.
4. Pacientes con cáncer ductal infiltrante que han recibido tratamiento hormonal o quimioterapia neoadyuvante.
5. Muestras con determinaciones IHQ de marcadores moleculares incompletas.
6. Aquellas pacientes perdidas de seguimiento que no han completado al menos los 36 meses objeto del estudio.
RECOGIDA DE DATOS

Revisión en consultas externas y en archivo de historias clínicas, siguiendo un protocolo en el que hemos registrado 177 variables en la ficha de cada paciente, reduciendo a 29 variables, objeto último de nuestro estudio.

De las 145 pacientes iniciales, aplicando los criterios de exclusión, fueron rechazadas por carcinoma in situ 5, por carcinoma lobulillar in situ 4, por carcinoma ductal infiltrante en estadio IV 11, por haber recibido quimioterapia neoadyuvante 5, por determinaciones de marcadores IHQ incompletas 7, por pérdida de seguimiento por traslado a otros centros 3. En total fueron estudiadas 108 enfermas intervenidas por carcinoma ductal infiltrante. El diagnóstico se confirmó previa biopsia intraoperatoria y la técnica quirúrgica empleada se basó en el tamaño tumoral. Todas las piezas de resección y los ganglios axilares fueron examinadas y las tinciones inmunohistoquímicas realizadas por el mismo patólogo el Dr. Luis Carretero Albiñana del Servicio de Anatomía Patológica del Hospital General Universitario Gregorio Marañón. Los grados histológicos se obtuvieron mediante sistema de puntuación, de acuerdo con los criterios de clasificación de Scarff-Bloom-Richardson. La estadificación se basó en el sistema TNM modificado por la AJCC (American Joint Committee on Cancer).

El seguimiento de las enfermas se realizó cada 6 meses en las consultas externas de cirugía y oncología. Los datos del seguimiento se obtuvieron en las propias consultas externas. Cuando no era posible, la revisión del historial clínico se realizó en el archivo de historias clínicas del hospital. Cada una de las enfermas ha completado el seguimiento de 36 meses preestablecido en el diseño.

VARIABLES DEL ESTUDIO

1) **CUANTITATIVAS:** incluye la edad, el intervalo libre de enfermedad y la supervivencia global.

 a) **Edad:** indica la edad en años de las pacientes en el momento del diagnóstico de la enfermedad.

 b) **Intervalo libre de enfermedad:** define el periodo transcurrido en meses desde el momento que es intervenida quirúrgicamente hasta que se diagnostica la recidiva.

 c) **Supervivencia global:** tiempo de vida en meses desde el momento en que es intervenida hasta que fallece. En los casos donde no se produce la recidiva equivaldría al periodo libre de enfermedad durante el seguimiento.
2) **CUALITATIVAS**: incluye las recidivas, los exitus, los parámetros clínico-patológicos y los marcadores tumorales moleculares.

a) **Recidivas**: enfermedad metastásica aparecida tras la cirugía. En nuestro estudio debido a la ausencia de recidivas locales empleamos el término recidiva como sinónimo de metastásis o enfermedad diseminada. En este estudio se definen las recidivas precoces como aquellas que se diagnostican durante los 3 años de seguimiento. Es una variable dicotómica. En la base de datos, recibe un valor de 1 la presencia de metástasis y 0 la ausencia.

b) **Exitus**: fallecimientos que se producen durante los 36 meses de seguimiento objeto del estudio. En la base de datos se atribuye un valor de 1 a la defunción y 0 al continuar viva.

c) **Parámetros clínico patológicos**.

d) **Marcadores tumorales moleculares**.

PARAMETROS CLINICO-PATOLOGICOS:

1) **Estado Hormonal**: comprende 2 categorías:

a) La premenopausia: pacientes que no han alcanzado la menopausia y presentan periodos menstruales en el momento del diagnóstico del cáncer. En la base de datos recibe el valor de 1.

b) La postmenopausia: enfermas con cese espontáneo o provocado de la menstruación. En la base de datos recibe el valor 2.

2) **El tipo de tumor**: determina dos categorías:

a) Tumores únicos: existe un único foco de cáncer ductal infiltrante. En la base de datos se le atribuye un valor de 1.

b) Tumores multicéntricos: hay 2 o más focos de cáncer ductal infiltrante en la misma mama. En la base de datos recibe un valor de 2.

3) **Tamaño tumoral**: se definen 3 categorías:

a) Tamaño menor de 2 cm: tumores con un diámetro en su eje mayor menor de 2 cm. En la base de datos se le atribuye a este dato un valor de 1.

b) Tamaño entre 2 y 5 cm: tumores con un diámetro en su eje mayor superior a los 2 cm, pero inferior a 5 cm. El valor en la base de datos a esta categoría corresponde a 2.

c) Tamaño mayor de 5 cm: corresponde a tumores con un diámetro en su eje mayor superior a los 5 cm. En la base de datos a esta categoría se le asigna un valor de 3.
4) **Afectación ganglionar:** establece 3 categorías según la afectación ganglionar de la clasificación TNM:
 a) **N0:** ausencia de afectación ganglionar axilar. En la base de datos a esta categoría se le atribuye un valor de 0.
 b) **N1:** ganglios axilares positivos móviles. En la base de datos se le asigna un valor de 1.
 c) **N2:** ganglios axilares positivos fijos ipsilaterales. En la base de datos esta categoría recibe un valor de 2.

5) **Número de ganglios axilares afectados:** comprende 3 categorías:
 a) **Nº de ganglios =0:** ausencia de afectación ganglionar. En la base de datos se le asigna un valor 0.
 b) **Nº de ganglios =1 –3:** afectación de mas de 1 ganglio, pero menos de 4. En la base de datos se le atribuye a esta categoría un valor de 1.
 c) **Nº de ganglios =4:** afectación de 4 o más ganglios axilares. En la base de datos recibe esta categoría un valor de 2.

6) **Tamaño ganglionar:** incluye la mediana del diámetro de los ganglios axilares positivos medidos en cm en su eje mayor. El valor de la mediana corresponde a 1,8 cm. Existen dos categorías:
 a) Tamaño ganglionar inferior a 1,8 cm: en la base de datos corresponde a un valor de 1.
 b) Tamaño ganglionar superior a 1,8 cm: en la base de datos corresponde a un valor de 2.

7) **Desbordamiento de la cápsula ganglionar:** define los ganglios axilares positivos con compromiso de la cápsula del ganglio y la posibilidad de infiltración del tejido graso circundante. Distingue dos categorías:
 a) Cápsula rota: cuando existe el desbordamiento de la cápsula. Se le asigna un valor de 1 en la base de datos.
 b) Cápsula intacta: cuando la metástasis queda confinada al interior del ganglio. En la base de datos se le atribuye un valor de 0 a esta categoría.

8) **Grado nuclear:** definido por la puntuación obtenida según el sistema de clasificación de la escala de Bloom-Richardson, basado en las variaciones en el tamaño y forma de los núcleos. Comprende 3 categorías:
 a) **Grado nuclear I:** núcleos con mínimas variaciones en tamaño y forma. Se corresponde con tumores bien diferenciados. En la base de datos a esta categoría se le asigna un valor de 1.
b) Grado nuclear II: núcleos con moderadas variaciones en tamaño y forma. Comprende tumores moderadamente indiferenciados. Se le atribuye un valor de 2 a esta categoría.

9) **Grado Histológico**: distingue 3 categorías basándose en el sistema de puntuación de la escala de clasificación de Bloom-Richardson.

a) Grado histológico I: de 3- 5 puntos. Corresponde a tumores bien diferenciados. En la base de datos esta categoría recibe un valor de 1.

b) Grado histológico II: de 6-7 puntos. Comprende tumores moderadamente diferenciados. Se le atribuye un valor de 2 a esta categoría.

c) Grado histológico III: de 8 –9 puntos. Incluye a tumores indiferenciados. Se le asigna un valor de 3 en esta categoría.

10) **Estadificación**: incluye 3 categorías del sistema de clasificación TNM.

a) Estadio I: tumores T1N0M0. En la base de datos a esta categoría se le asigna un valor de 1.

b) Estadio II: tumores T1N1M0, T2N0M0, T2N1M0, T3N0M0. En la base de datos se le atribuye un valor de 2.

c) Estadio III: tumores T1N2M0, T2N2M0, T3N1M0, T3N2M0, T4 cualquier N M0. En la base de datos a esta categoría se le asigna un valor de 3.

11) **Radioterapia**: define haber recibido o no tratamiento radioterápico. Existen dos categorías:

a) Radioterapia sí (+): pacientes que han sido radiadas en el postoperatorio. Incluye la radiación del lecho tumoral, la axila, fosa supraclavicular y cadena mamaria. Se le asigna un valor de 1.

b) Sin radioterapia (-): enfermas que no recibieron radiaciones ionizantes postcirugía. En la base de datos a esta categoría se le otorga un valor de 0.

12) **Quimioterapia**: determina las pacientes que han sido tratadas o no con citotóxicos. Hay dos categorías:

a) Quimioterapia sí (+): enfermas tratadas en el postoperatorio con citotóxicos. Se le atribuye un valor de 1.

b) Quimioterapia no (-): pacientes sin tratar. Se le asigna un valor de 0.
13) **Hormonoterapia:** abarca a todas las pacientes tratadas o no con tamoxifén. Se especifican 2 categorías:

a) Hormonoterapia sí (+): enfermas que recibieron tamoxifén postcirugía o posterior a la quimioterapia. En la base de datos esta categoría corresponde a un valor de 1.

b) Hormonoterapia no (-): pacientes que no recibieron en ningún momento tamoxifén. A este dato le corresponde un valor de 0.

MARCADORES TUMORALES MOLECULARES.

Determinación Inmunohistoquímica.

Para lograr una correcta técnica y unos buenos resultados se han tenido en cuenta:

1. La obtención de un tejido representativo en buenas condiciones.
2. La adecuada fijación y procesamiento de la muestra.
3. Las diluciones, tiempos, temperatura y programas de procesamiento.
4. La realización de controles positivos y negativos con los anticuerpos monoclonales antes de realizar las determinaciones inmunohistoquímicas en el tejido canceroso.

Los dos procedimientos utilizados en la determinación IHQ de los marcadores tumorales moleculares han sido el método de la peroxidasa-antiperoxidasa y el método de la avidina-biotina-peroxidasa. A continuación se exponen las soluciones y los pasos seguidos en el proceso de inmunotinción.

Método de la peroxidasa-antiperoxidasa (PAP).

Las soluciones utilizadas incluyen:

a) Solución de metanol-peróxido de hidrógeno al 3%. El preparado está compuesto por 3 ml de una solución de pérsiido de hidrógeno al 30% y 97 ml de metanol absoluto.

b) Solución salina de fosfato estabilizadora (PBS) compuesta por 1,48 g de fosfato de sodio, dibásico, anhidro; 0,43 g de fosfato de sodio monobásico, anhidro; 7,20 g de cloruro de sodio; y 1.000 ml de agua destilada.

c) Solución sustrato de diaminobencidina constituído por 42,0 g de 3’3’ Diaminobencidina y 100 ml de solución salina de fosfato estabilizadora a un pH de 7.0 - 7.6.

d) Solución de tripsina compuesta por 0,1 g de tripsina y solución salina de fosfato estabilizadora a un pH de 7.0 - 7.6.

e) Solución de hematoxilina de Mayer.

f) Suero normal de la misma especie que el anticuerpo primario.

g) Suero normal de la misma especie que el anticuerpo puente.

h) Solución de anticuerpo primario.
Material y método.

i) Solución de anticuerpo puente.

j) Solución del complejo peroxidasa-antiperoxidasa (PAP)

La fijación se realiza con formalina neutra al 10% estabilizada. Las muestras incluidas en parafina se cortan en secciones de 5 micrones, sobre láminas cubiertas de pegamento.

Pasos del Procedimiento:
1. Hay que desparafinizar las láminas e hidratarlas con agua destilada.
2. Es necesario bloquear la actividad de la peroxidasa endógena con solución de peróxido de hidrógeno-metanol durante 30 minutos.
3. Se enjuaga 2 veces con agua destilada durante un minuto cada vez.
4. A continuación se colocan las láminas durante 2 minutos en una solución salina de fosfato estabilizadora (PBS).
5. Digerir las secciones con una solución de tripsina a 37ºC de 3 a 10 minutos.
6. Volver a enjuagar con solución PBS.
7. Colocar las láminas durante 30 minutos en solución de anticuerpo puente (suero normal de la misma especie animal), una vez transcurrido este tiempo se escurren las láminas sin enjuagarlas.
8. Durante otros 30 minutos o más, según las diluciones o especificaciones del fabricante, se colocan las láminas con el anticuerpo primario.
9. Enjuagar nuevamente con la solución PBS.
10. Colocar con el anticuerpo secundario, durante 30 minutos.
11. Volver a enjuagar con la solución PBS.
12. Colocar en la solución del complejo peroxidasa antiperoxidasa, durante 30 minutos.
13. Enjuagar con la solución PBS.
14. Colocar en la solución sustrato de diaminobencidina, durante 10 minutos.
15. Enjuagar primero con solución PBS y a continuación con agua destilada.
16. Contrastar con la solución de hematoxilina de Mayer durante 5 minutos.
17. Lavar durante 10 minutos con agua tibia templada.
18. Deshidratar y aclarar con alcohol etílico al 95%, alcohol etílico absoluto y xileno, 2 cambios cada uno, durante 2 minutos cada uno.
19. Montar con un medio resinoso.

Método del complejo de avidina-biotina (ABC).

Las soluciones se emplean a las mismas concentraciones que en el método PAP:

a) Solución de peróxido de hidrógeno-metanol al 3%.
b) Solución PBS.
c) Solución sustrato de diaminobencidina.
d) Solución de tripsina.
e) Solución de hematoxilina de Mayer.
f) Suero normal de la misma especie que el anticuerpo puente.
g) Suero normal de la misma especie que el anticuerpo primario.
h) Solución primaria de anticuerpos.
i) Solución de anticuerpos puente.
j) Solución de anticuerpos puente “biotinilados”.

Para este procedimiento se siguen los primeros 9 pasos del método PAP:
10. Durante 30 minutos colocar en la solución “biotinilada” de anticuerpo secundario.
11. Volver a enjuagar con la solución PBS.
12. Durante 30 minutos colocar en la solución del complejo avidina-biotina.
13. Enjuagar con la solución PBS.
14. Completar el procedimiento siguiendo los pasos del 14 – 19 según el método PAP

1. Determinación inmunohistoquímica del receptor de Estrógeno (RE):

Para la determinación IHQ del RE se utilizó el anticuerpo monoclonal ER1D5 (Immunotech, Marseille, France). Este anticuerpo tipo IgG1 se obtiene por estimulación antigénica del ratón con la proteína recombinante del receptor de estrógeno de 67 kDa. El ER1D5 reacciona específicamente con el dominio N-terminal del receptor de estrógeno humano tiñendo células miometriales, estromales, células hiperplásicas del epitelio ductal y lobular de las glándulas mamarias, células del cancer de útero y mama. Los controles positivos se realizaron con células de endometrio y de tejido mamario.

La determinación IHQ de los RE se efectuó en muestras incluidas en parafina, fijadas previamente en formalina. A las muestras desparafinizadas se les practicó un tratamiento con calor en el horno de microondas. Las láminas se colocaron en discos termorresistentes llenos con solución estabilizadora de citrato a un pH 7,6 (constituida por 9 ml de una solución 0,1 M de ácido cítrico, 41 ml de una solución 0,1 M de citrato de sodio y 450 ml de agua destilada) y se realizan de 3 – 5 ciclos cada uno a 750 watt. Se retiran los discos del horno de microondas y se les permitió enfriar a temperatura ambiente durante 20 minutos. Las láminas se enjuagaron con una solución salina estabilizadora de Tris (TBS). Se continuó el procedimiento de inmunotinción con la técnica de avidina-biotina según los pasos descritos previamente,
incubando el anticuerpo monoclonal ER1D5 con los tejidos durante 60 minutos a temperatura ambiente.

Se contabilizaron 200 células y se cuantificó el porcentaje de células con núcleos teñidos. Un porcentaje inferior al 20% fue considerado bajo, entre un 20 – 60% moderado, y alto superior al 60%.

Para la variable RE se consideraron dos categorías. En la base de datos se le asignó un valor de 1 (+) a un porcentaje del 10% o más de células con tinción nuclear positiva y un valor de 0 (-) a un porcentaje de 0 o inferior al 10%.

2. Determinación inmunohistoquímica del receptor de progesterona (RPg):

Para la determinación IHQ del receptor de progesterona se utilizó el anticuerpo monoclonal del ratón RPG 88 (IgG1, kappa, Super sensitive Ready-to-Use Antibody de los laboratorios BioGenex) cuyo inmunógeno es la proteína del RPG humano purificada. El anticuerpo se obtiene del fluido ascítico y es diluido en una solución salina estabilizadora de fosfato a un pH de 7.6 que contiene albúmina sérica bovina al 1% y azida sódica al 0.09%. El anticuerpo tine las células de la capa basal de la epidermis, células estromales del endometrio, células del músculo liso del miometrio, células del tejido mamario y células de carcinoma de mama humano. En células de cáncer de mama la tinción es predominantemente nuclear. Los controles positivos se realizaron con células de cáncer ductal infiltrante de mama.

Las muestras fueron fijadas en formalina y posteriormente embebidas en parafina. Para la recuperación de la mayor cantidad de antígenos, las muestras desparafinizadas fueron tratadas en una solución estabilizadora de citrato (HK1086/87-5K) en el horno de microondas. La inmunotinción se realizó siguiendo los pasos descritos para el método PAP.

Se contabilizó el porcentaje de células con tinción nuclear positiva examinando 200 células. Consideramos bajo un 20% de células con tinción positiva, moderado entre un 20 - 60%, y alto mas de un 60% de las células teñidas.

En la base de datos se consideraron dos categorías para la variable RPg; al porcentaje del 10% o más de células con tinción nuclear positiva se le asignó el valor de 1 (+) y de 0 (-) a la ausencia o porcentaje inferior al 10%.
3. Determinación inmunohistoquímica de la proteína pS2:

Para la determinación IHQ de la proteína pS2 se utilizó el anticuerpo monoclonal del ratón pS2.1 (Laboratorios BioGenex). Este anticuerpo tipo IgG1 se obtiene por estimulación antigénica del ratón a un péptido sintético de 31 aminoácidos de la porción carboxi-terminal de la proteína humana pS2. El anticuerpo se obtiene del sobrenadante diluido en una solución estabilizadora de fosfato de pH 7,6 con albúmina sérica bovina al 1% y azida sódica al 0,1%.

El anticuerpo monoclonal reacciona con una proteína de 6,5 kDa y tiñe células RE- de la mucosa del antro gástrico y células de cáncer de mama, siendo el patrón de tinción predominantemente citoplásmico. Los controles positivos se realizaron con células de cáncer de mama siguiendo las recomendaciones del fabricante.

Las muestras fijadas en formalina, embebidas en parafina y posteriormente desparafinizadas, y rehidratadas fueron incubadas a 4°C durante 18 horas con una solución del anticuerpo prediluido 1:700, la tinción se completó siguiendo los pasos descritos para el procedimiento de del complejo avidina-biotina-peroxidasa.

Se examinaron 200 células y se cuantificó el porcentaje con tinción citoplásmica positiva, de este modo, se consideró como inmunotinción positiva cuando existieron más de un 10% de células teñidas.

Para la variable pS2 se consideraron dos categorías; en la base de datos a la inmunotinción de un 10% o más de células con tinción citoplásmica positiva se le asignó un valor de 1 (+) y a la ausencia o un porcentaje de tinción inferior al 10% un valor de 0 (-).

4. Determinación inmunohistoquímica de la proteína p29 (Hsp27):

El anticuerpo monoclonal del ratón D5 (Super Sensitive Ready-to-Use Antibody, Laboratorios BioGenex) fue utilizado para la determinación IHQ de esta proteína. El anticuerpo tipo IgG1 reconoce una proteína de 29 kDa unida al receptor de estrógeno localizado en el citoplasma. El inmunógeno es una proteína de afinidad del receptor de estradiol citosólico de células de miometrio humano. El anticuerpo se obtiene del fluido ascítico del ratón diluido en una solución salina estabilizadora de fosfato de pH de 7,6 con albúmina bovina sérica al 1% y azida sódica al 0,09%.

El anticuerpo tiñe positivamente células del sistema reproductor femenino, células del epitelio ductal y alveolar de la mama, músculo liso de vasos sanguíneos, células de
fibroadenoma y cáncer de mama. Los controles positivos se realizaron con células de cáncer ductal infiltrante de mama.

Los procedimientos de tinción IHQ se realizaron sobre muestras fijadas en alcohol y embebidas en parafina, siguiendo los pasos descritos del procedimiento del complejo avidina-biotina-peroxidasa y utilizando un anticuerpo prediluido.

Los patrones de tinción se obtuvieron examinando 200 células tumorales y cuantificando el porcentaje con tinción positiva de este total. Entre un 10 – 30% se consideró un porcentaje de tinción débil, entre un 30 y 70% moderado y más de un 70% alto.

En la base de datos a esta variable le correspondieron dos categorías. Para fines estadísticos consideramos como tinción positiva la presencia de un 10% o más de las células tumorales con tinción citoplásmica positiva, asignándole un valor de 1 (+) y como negativo la ausencia de tinción o un porcentaje de células teñidas inferior al 10%. A este último dato se le atribuyó un valor de 0 (-).

5. Determinación inmunohistoquímica del receptor del factor de crecimiento epidérmico (EGFR):

En la determinación IHQ del EGFR fue utilizado el anticuerpo monoclonal E30 (Super Sensitive Ready-to-Use Antibody, Laboratorios BioGenex, San Ramon, CA) que reconoce la porción proteica del dominio extracelular del receptor. Este anticuerpo de la clase IgG1 del ratón se obtiene del sobrenadante del cultivo celular de ratones inmunizados con un receptor de EGF purificado y desnaturalizado. El anticuerpo está diluido en una solución salina estabilizadora de fosfato de pH 7,6 que contiene albúmina bovina al 1% y azida sódica al 0,09%.

El anticuerpo ha teñido inmunohistoquímamente células de carcinoma escamosos del pulmón, carcinomas escamosos de vulva, cervix, y ovario. Los controles positivos se efectuaron con células de carcinomas escamosos.

Las tinciones inmunohistoquímicas se han realizado en muestras fijadas en formalina y embebidas en parafina siguiendo los pasos descritos para los procedimientos del complejo avidina-biotina-peroxidasa.
El patrón de tinción es citoplásmatico a nivel de la membrana celular. Se cuantificó el porcentaje de células con tinción citoplásmica de un total de 200 examinadas, así, se consideró un porcentaje bajo cuando se contabilizaron entre un 10 – 30% de células teñidas, moderado cuando se cuantificaron entre un 30 – 70% de las células y alto con mas de un 70% de células tumorales con tinción positiva.

A la variable EGFR se le asignaron dos categorías. En el manejo estadístico se consideró como tinción positiva la presencia de un 10% o más de células cancerosas, atribuyéndole a esta categoría un valor de 1 (+) y de 0 (-) la ausencia de tinción o un porcentaje inferior al 10%.

6. Determinación inmunohistoquímica de la proteína p185C-erbB-2:

Para la determinación IHQ de esta oncoproteína se empleó el anticuerpo monoclonal CB11 (Laboratorios Novocastra, Newcastle, U.K.). El anticuerpo tipo IgG1 se obtiene de un híbrido de ratón (p3-NS1-Ag4-1) mediante estimulación inmunogénica con un péptido sintético del dominio interno de la oncoproteína C-erbB-2. La recuperación del anticuerpo se obtiene del sobrenadante de cultivo liofilizado que contiene 15 mM de azida sódica reconstituido con 1 ml de agua destilada estéril.

El patrón de tinción es positivo en la mayoría de los casos de enfermedad de Paget de la mama, en el 70% de los casos de carcinoma de mama ductal in situ, entre un 15 y un 30% de los casos de cáncer ductal infiltrante de mama, y en un 20% de los cánceres de células transicionales, ovario y tracto gastrointestinal. El patrón de tinción es citoplásmico a nivel de la membrana plasmática. Los controles positivos los hemos realizado con células de cáncer ductal infiltrante.

La tinción IHQ se efectúa sobre muestras fijadas en formalina y embebidas en parafina siguiendo los pasos descritos del procedimiento del complejo avidina-biotina, incubando las láminas con el anticuerpo a una dilución de 1:40 durante 60 minutos a una temperatura de 25ºC.

Se valoró el porcentaje de células teñidas realizando un contaje de 200 células cancerosas. Un porcentaje entre un 10 y un 30% de células neoplásicas teñidas se consideró bajo, entre un 30 –70% moderado y superior al 70% como alto.

Para esta variable se consideraron dos categorías. En la base de datos la presencia de inmunorreactividad en un 10% o más de células tumorales se consideró positiva y recibió un valor de 1 (+). La ausencia de células teñidas o un porcentaje de tinción inferior al 10% se consideró negativo y se le dio un valor de 0 (-).
Material y método.

7. Determinación inmunohistoquímica del antígeno nuclear de proliferación celular Ki-67:

En la determinación IHQ de este antígeno se utilizó el anticuerpo monoclonal MIB-1 (Laboratorios Inmunotech, Marseille, France) que reconoce un antígeno nuclear relacionado con la proliferación celular (fases G1, S, G2, M). Este anticuerpo tipo IgG1 se obtiene de un híbrido de ratón (Mieloma X63. Ag.8653 x Balb/c spleen cells) mediante estimulación con un péptido recombinante humano correspondiente a un fragmento de DNA complementario de 1002 pares de bases. El anticuerpo se recupera mediante cromatografía por afinidad sobre Sefarosa proteína A del fluido ascítico, es diluido en una solución estabilizadora de fosfato que contiene albúmina sérica bovina y azida sódica al 0,1%.

La determinación IHQ se efectuó en muestras fijadas en formalina y embebidas en parafina, siguiendo los pasos descritos para el procedimiento del complejo avidina-biotina peroxidasa, con anticuerpo purificado diluido en 1:100 incubado con las láminas durante 60 minutos.

Se examinaron 200 células y se determinó de este total el porcentaje de células con tinción nuclear positiva. Obteniendo el valor de la mediana del porcentaje de células tumurales con tinción positiva como punto de corte, se consideró para fines estadísticos el valor por encima de la mediana como elevado índice de proliferación y por debajo de la mediana como bajo índice. En la base de datos la categoría elevado índice de proliferación se le asignó un valor de 2 (+) y la categoría bajo índice un valor de 1 (-).

8. Determinación inmunohistoquímica del antígeno nuclear de proliferación (PCNA).

El anticuerpo monoclonal PC10 (NCL-PCNA, Novocastra Laboratories Ltd, Newcastle, UK), reconoce el antígeno nuclear de proliferación celular de todas las especies de vertebrados. Es un anticuerpo de la clase IgG2a, cuyo inmunógeno es el PCNA de la rata obtenido por expresión de la proteína A, mediante el vector pR1T2T, producida en la célula de mieloma del ratón (sp2/0-Ag14). El anticuerpo se extrae del fluido del sobrenadante y es diluido en una solución de 15 mM de azida sódica.

El anticuerpo tiñe los núcleos de células en proliferación. Los controles positivos se realizaron con ganglios linfáticos reactivos.
La determinación IHQ se realizó en muestras fijadas en formalina e incluidas en parafina, siguiendo los pasos descritos para la técnica ABC, trabajando con una dilución de 1:100 del anticuerpo incubándolo con las láminas durante 30 minutos.

Los patrones de tinción se obtuvieron examinando 200 células y contabilizando el porcentaje con tinción nuclear positiva. Cuantificando el valor de la mediana se estableció como bajo índice de proliferación un valor inferior al 16% y como elevado índice un valor superior al 16%.

De este modo la variable PCNA consta de dos categorías según el valor de la mediana. Así se consideró para el manejo estadístico el valor de 1 (-) para tumores con bajo índice y un valor de 2 para tumores con elevado índice (2).

El anticuerpo monoclonal DO-7 (NCL – p53 – DO7, Novocastra Laboratories Ltd, Newcastle, UK) reconoce la proteína humana silvestre y mutante p53. Este anticuerpo de la clase IgG2b se obtiene de una célula hibridoma del ratón (X63-Ag.653) por estimulación con una proteína recombinante p53 silvestre humana. El anticuerpo se recupera del sobrenadante del cultivo y es diluido en 15 mM de azida sódica.

El patrón de tinción es nuclear, tiñendo una alta proporción de cánceres de colon, pulmón, vejiga y mama. Los controles positivos se realizaron con cánceres de colon.

La determinación IHQ se realizó en muestras de cánceres ductales infiltrantes fijadas en formalina e incluidas en parafina. La tinción se efectuó según la técnica ABC, empleando una dilución de 1:100 del anticuerpo, incubándolo con las muestras durante 60 minutos a una temperatura de 25° C.

Los patrones de tinción variaron según el porcentaje de células con tinción nuclear positiva de un contaje sobre 200 células. Se consideró bajo un porcentaje inferior al 10% de células cancerosas con tinción nuclear positiva, moderado entre un 10 – 50%, y alto un porcentaje superior al 50%.

En el análisis estadístico se utilizaron 2 categorías. Se le asignó un valor de 1 (+) la presencia de un más de un 10% de células tumorales con tinción nuclear positiva y un valor de 0 (-) la ausencia o un porcentaje de tinción inferior al 10%.
10. Determinación inmunohistoquímica de la cathepsina D.

La determinación IHQ de la cathepsina D se realizó utilizando el anticuerpo monoclonal C5 (NCL-CDm, Novocastra Laboratories Ltd, Newcastle, UK). Este anticuerpo de la clase IgG2b que reconoce la cathepsina D, se obtiene del sobrenadante de cultivo celular de un híbrido de ratón (p3-NS1-Ag4-1) estimulado con cathepsina D purificada del bazo humano.

Se aprecia una tinción finamente granular en el citoplasma de los macrófagos debido a la localización lisosomal de la enzima. Los controles positivos se realizaron con macrófagos, células hepáticas y células de cáncer de mama.

La determinación IHQ se realizó en muestras fijadas en formalina e incluidas en parafina. Una vez desparafinadas e hidratadas las muestras se tiñeron siguiendo los pasos descritos de la técnica ABC, utilizando una dilución 1:200 del anticuerpo e incubándolo durante 60 minutos.

Sobre la base de un conteo de 200 células se obtuvo el porcentaje de células con tinción citoplásmica positiva. Un porcentaje entre 10 – 30% de células positiva en el tumor se consideró bajo, entre un 30 – 70% moderado y superior al 70% como alto.

A la variable cathepsina D, se le atribuyó 2 categorías. A la presencia de más de un 10% de células tumorales positivas se le atribuyó un valor de 1 (+) y a un porcentaje inferior al 10% o la ausencia un valor de 0 (-).

11. Determinación inmunohistoquímica de la glicoproteína P.

El anticuerpo monoclonal JSB-1 (NCL-JSB1, Novocastra Laboratories Ltd, Newcastle, UK) reconoce una proteína de membrana celular de 170 – 180 kDa relacionado con el fenómeno de resistencia a drogas. Este anticuerpo es de la clase IgG. La glicoproteína P se encuentra en tejidos con epitelios relacionados con el transporte a través de la membrana celular que incluyen el hígado, colon, riñones, glándulas suprarrenales y cerebro. Los controles positivos se realizaron con hepatocitos.

La determinación IHQ se efectuó en muestras fijadas en formalina e incluidas en parafina. Se practicó un tratamiento con calor en solución estabilizadora de citrato para permitir la recuperación de los antígenos. La tinción fue realizada siguiendo los pasos descritos para la técnica ABC utilizando una dilución del anticuerpo 1:20.
Material y método.

Los patrones de tinción se obtuvieron contabilizando el porcentaje de células tumorales con tinción citoplásmica positiva de un total de 200 células examinadas. Se consideró un porcentaje bajo entre un 10 – 30% de células tumorales con tinción positiva, moderado entre un 30 – 70% y alto un porcentaje superior al 70%.

Para la variable glicoproteína P se establecieron 2 categorías. Para fines estadísticos se atribuyó un valor de 1 (+) un porcentaje de células tumorales con tinción positiva superior al 10% y un valor de 0 a la ausencia o porcentaje inferior al 10%.

ANÁLISIS ESTADÍSTICO DE DATOS.

El análisis estadístico fue realizado con el programa SPSS/Win versión 6.1.2. 1995.

Se utilizó un contraste de hipótesis unilateral (una cola) cuando el sentido del análisis sólo era posible de forma unidireccional, es decir, cuando el resultado de la comparación mostró una desigualdad que sólo era posible en un sentido o tenía una alternativa. La Ho fue aceptada o rechazada, según se encontraran o no diferencias significativas en las comparaciones realizadas con la prueba descrita, con una probabilidad de error inferior al 5%.

Para el cálculo del estadístico de contraste entre las variables cualitativas, empleamos la prueba de chi cuadrado y la prueba exacta de Fisher.

El método de Kaplan-Meir fue utilizado para el análisis del intervalo libre de enfermedad a 36 meses. Se empleó el test del logaritmo del rango o prueba de Mantel Haenszel (logrank test) para las diferencias entre las curvas.

Efectuamos un análisis multivariante mediante análisis de la supervivencia de riesgos de proporciones de Cox, considerando como variable dependiente la recidiva y como tiempo el intervalo libre de enfermedad a 36 meses.

Se realizó con intervalos de 3 meses una búsqueda sistemática de la bibliografía relacionada con el tema de la que obtuvimos los trabajos más relevantes. La búsqueda se realizó a través de las bases de datos Medline, Indice Médico Español y la base de datos TSEO con los “descriptors: estrogen receptor, progesterone receptor, pS2 ó TFF1, p29 ó Hsp27, EGFR, C-erbB-2, Ki-67, PCNA, cathepsin D, glycoprotein P, breast cancer and prognosis”.
RESULTADOS

I-A. DESCRIPCIÓN GENERAL DE LA SERIE.

La edad media de las 108 pacientes con carcinoma ductal infiltrante fue de 62,074 años (I.C. al 95%: 59,8–64,3). Con relación al estado hormonal, el 19,4% de las pacientes fueron premenopáusicas (21 casos), con una media de edad de 44,7 años (I.C. al 95%: 41,7 – 47,2) y el 80,5% postmenopáusicas (87 casos) con una media de edad de 66,3 años (I.C. al 95%: 64,5 – 68,1). A todas las enfermas se les realizó biopsia intraoperatoria. Se practicaron: tumorectomía en 16 pacientes (14,8%), cuadrantectomía en 30 enfermas (27,8%) y mastectomía radical modificada en 62 casos (57,4%), distribuidas entre Madden (38 casos) y Patey (24 casos). Los 108 procedimientos quirúrgicos fueron acompañados de disección axilar, divididos según el nivel de vaciamiento ganglionar realizado en: a) nivel I, en 15 casos (13,8%), b) nivel II, en 67 casos (62,0%) y c) nivel III, en 24 casos (22,2%).

Noventa y siete de los cánceres (89,8%) correspondieron a tumores únicos, siendo multicéntricos once de ellos (10,2%). De los 11 casos de tumores multicéntricos, 8 se diagnosticaron en piezas de mastectomía, 2 en especímenes de cuadrantectomías y 1 en el examen de una tumorectomía. Según la estadificación, 3 cánceres multicéntricos fueron clasificados en un estadio I, 6 en un estadio II y 2 en un estadio III.

Según el tamaño, el 44,4% de los cánceres (n=48) medían menos de 2 cm, el 46,3% entre 2 y 5 cm (n=50) y el 9,3% más de 5 cm (n=10). Los cánceres han sido clasificados según el grado histológico y nuclear basado en el índice de Scarff-Bloom, de este modo: 15 fueron catalogados como grado histológico I (13,9%), 70 como grado histológico II (64,8%) y 23 como grado histológico III (21,3%). Han sido clasificados como grado nuclear I 10 tumores (9,3%), como grado nuclear II 71 tumores (65,7%) y como grado nuclear III 27 tumores (25%).

En 52 pacientes (48,1%) se objetivaron ganglios axilares positivos y ausencia de afectación en 56 casos (51,9%). En 33 cánceres (30,6%) se contabilizaron entre 1 y 3 ganglios axilares afectados y en 19 tumores (17,6%) más de 4 ganglios colonizados. (Tabla 1). Los ganglios axilares afectados medían una media de 1,49 cm (I.C. al 95%: 1,4 - 1,6). Se evidenció desbordamiento de la cápsula ganglionar en 20 de los 52 casos con ganglios axilares positivos.
Tabla 1. Ganglios infiltrados clasificados por número

<table>
<thead>
<tr>
<th>Número de Ganglios</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>56</td>
<td>51,9</td>
</tr>
<tr>
<td>1-3</td>
<td>33</td>
<td>30,6</td>
</tr>
<tr>
<td>Más de 4</td>
<td>19</td>
<td>17,6</td>
</tr>
<tr>
<td>Total</td>
<td>108</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Siguiendo las directrices de la AJCC (American Joint Commitee on Cancer), las 108 pacientes, se clasificaron en: estadio I, 42 casos (38,9%); estadio II, 46 casos (42,6%) y estadio III, 20 casos (18,5%). Los tamaños tumorales T1 y T2 comprendieron el 89,8% de los tumores (n=97). Las tablas 2 y 3 muestran la distribución de los cánceres clasificados según el sistema de clasificación TNM.

Tabla 2. ESTADIO T (TNM)

<table>
<thead>
<tr>
<th></th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>53</td>
<td>49,1</td>
</tr>
<tr>
<td>T2</td>
<td>44</td>
<td>40,7</td>
</tr>
<tr>
<td>T3</td>
<td>11</td>
<td>10,2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>108</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Tabla 3. ESTADIO N (TNM)

<table>
<thead>
<tr>
<th></th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>56</td>
<td>51,9</td>
</tr>
<tr>
<td>N1</td>
<td>37</td>
<td>34,2</td>
</tr>
<tr>
<td>N2</td>
<td>15</td>
<td>13,9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>108</td>
<td>100,0</td>
</tr>
</tbody>
</table>

En 71 tumores (65%) la tinción IHQ de los núcleos mostró positividad para los RE, en 64 para los RPg (59,3%) y en 23 para la proteína p53 (21,3%). Las proteínas dependientes de estrógeno pS2 y Hsp27 se detectaron en 31 (28,7%) y en 78 (72,2%) de los cánceres respectivamente. En 46 cánceres (42,6%) se detectó la expresión del oncogén c-erbB-2 (p185C-erbB-2). En 18 tumores (16,7%) la inmunotinción fue positiva para el EGFR. La expresión de la enzima citósolica catepsina D se objetivó en 49 casos (45,4%). La determinación de la glicoproteína P fue realizada en 58 pacientes, demostrándose su positividad en 18 tumores (16,7%). Para el Ki-67, con un valor de corte considerado positivo por encima del 15% de los núcleos teñidos, se demostró inmunorreactividad positiva en 46 neoplasias (42,6%), y de igual manera, el PCNA, con un valor de corte superior al 16% de los núcleos teñidos, se consideró positivo en 49 cánceres (45,4%). (Tabla 4).
Tabla 4. Distribución de frecuencia de las tinciones inmunohistoquímicas de los marcadores moleculares de significación pronóstica. Total de casos: 108

<table>
<thead>
<tr>
<th>Marcador molecular</th>
<th>Positivo n= %</th>
<th>Negativo n= %</th>
<th>Ausencias n= %</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Estrógeno</td>
<td>71 65.7</td>
<td>32 29.6</td>
<td>5 4.6</td>
</tr>
<tr>
<td>R. Progesterona</td>
<td>64 59.3</td>
<td>42 38.9</td>
<td>2 1.9</td>
</tr>
<tr>
<td>C-erBb2</td>
<td>46 42.6</td>
<td>52 48.1</td>
<td>10 9.3</td>
</tr>
<tr>
<td>Catepsina D</td>
<td>49 45.4</td>
<td>51 47.2</td>
<td>8 7.4</td>
</tr>
<tr>
<td>F. C. E</td>
<td>18 16.7</td>
<td>76 70.4</td>
<td>14 13.0</td>
</tr>
<tr>
<td>PS2</td>
<td>31 28.7</td>
<td>69 63.9</td>
<td>8 7.4</td>
</tr>
<tr>
<td>P29</td>
<td>78 72.2</td>
<td>14 13.0</td>
<td>16 14.8</td>
</tr>
<tr>
<td>P53</td>
<td>23 21.3</td>
<td>78 72.2</td>
<td>7 6.5</td>
</tr>
<tr>
<td>Glicoproteína p</td>
<td>18 16.7</td>
<td>40 37.0</td>
<td>50 46.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marcador molecular</th>
<th>Valor de Corte %</th>
<th>Inferior a 15% n= %</th>
<th>Superior a 15% n= %</th>
<th>Ausencias n= %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki67</td>
<td>15</td>
<td>46 42.6</td>
<td>46 42.6</td>
<td>16 14.8</td>
</tr>
<tr>
<td>PCNA</td>
<td>16</td>
<td>49 45.4</td>
<td>46 42.6</td>
<td>13 12.0</td>
</tr>
</tbody>
</table>

Inicialmente recibieron tratamiento adyuvante administrado secuencialmente 95 pacientes (radioterapia 57 casos, quimioterapia 41 casos y tamoxifén 64 casos). Trece enfermas fueron sometidas a vigilancia exclusivamente. En las 41 pacientes tratadas con quimioterapia se emplearon los siguientes esquemas: a) 6 ciclos de CMF en 31, b) 4 ciclos de CMF en 2 (no completaron los 6 ciclos por intolerancia), c) 4 ciclos de AC en 1, d) 6 ciclos de FAC en 5, y e) quimioterapia a altas dosis con transplante autólogo de médula ósea en 2.

De las 16 pacientes sometidas a tumorectomía 13 (81,3%) recibieron radioterapia postoperatoria, 6 (37,5%) quimioterapia adyuvante y 7 (43,8%) tamoxifén. Fueron radiadas 24 (80%) de las 30 pacientes tratadas con cuadrantectomía, a 10 (33,3%) se les administró citotóxicos y a 16 (53,3%) tamoxifén. Han sido radiadas 22 (35,5%) de las 62 enfermas mastectomizadas, tratadas con quimioterapia adyuvante 22 (35,5%) y con tamoxifén 42 (67,7%). Con ganglios axilares positivos el 57,7% (n=30) de las pacientes recibió citotóxicos y el 67,3% (n=35) hormonoterapia; el tamoxifén se administró posteriormente a la quimioterapia. En las pacientes con ganglios axilares negativos solo el 14,3% (n=8) fueron tratadas con citotóxicos y el 53,6% (n=30) con tamoxifén.
Resultados

Según el estado hormonal, recibieron quimioterapia adyuvante 13 (61,9%) de las 21 pacientes premenopáusicas y 25 (28,7%) de las 87 postmenopáusicas. Se les administró tamoxifén a 5 (23,8%) de las premenopáusicas y a 60 (69%) de las postmenopáusicas. La distribución del tratamiento adyuvante por estadios objetiva: en el estadio I (n=42) fueron radiadas 23 pacientes (54,8%), recibieron citotóxicos 6 (14,3%) y hormonoterapia 21 (50%); en el estadio II (n=46), la radioterapia se administró a 20 (43,5%), quimioterapia a 18 (39,1%) y tratamiento con tamoxifén a 28 (60,9%); y el estadio III (n=20) recibieron radiaciones 16 pacientes (80%), citotóxicos 14 (70%) y hormonoterapia 16 (80%).

La media de seguimiento ha sido de 49,5 meses (I.C. al 95%: 46,7 - 52,2) completando cada una de las enfermas un seguimiento mínimo de 36 meses. Desde mayo de 1992 a diciembre de 1999 se han contabilizado 19 casos de metástasis (17,6%) y 12 muertes (11,1%). (Tabla 5). De las 19 metástasis, 2 han sido axilares (10,5%) y 17 sistémicas (89,4%). Las metástasis a distancias se ilustran en la Tabla 6.

| Tabla 5. Distribución de las 19 recidivas por mes de aparición |
|---------------|---------------|----------------|
| Mes | Pacientes | Porcentajes |
| 5 | 1 | 5,3 |
| 6 | 1 | 5,3 |
| 10 | 2 | 10,5 |
| 12 | 1 | 5,3 |
| 13 | 1 | 5,3 |
| 18 | 1 | 5,3 |
| 24 | 2 | 10,5 |
| 26 | 1 | 5,3 |
| 30 | 1 | 5,3 |
| 33 | 1 | 5,3 |
| 34 | 1 | 5,3 |
| 36 | 3 | 15,8 |
| 40 | 1 | 5,3 |
| 62 | 1 | 5,3 |
| 84 | 1 | 5,3 |
| Total | 19 | 100,0 |
Tabla 6. Distribución de la frecuencia de los 19 casos de metástasis

<table>
<thead>
<tr>
<th>Localización anatómica</th>
<th>Nº</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axila</td>
<td>2</td>
<td>10,5</td>
</tr>
<tr>
<td>Óseas</td>
<td>6</td>
<td>52,6</td>
</tr>
<tr>
<td>Hepáticas</td>
<td>10</td>
<td>31,1</td>
</tr>
<tr>
<td>Pulmonares</td>
<td>6</td>
<td>26,3</td>
</tr>
<tr>
<td>cerebrales</td>
<td>5</td>
<td>10,5</td>
</tr>
<tr>
<td>Pleurales</td>
<td>2</td>
<td>5,3</td>
</tr>
</tbody>
</table>

En los 36 meses de seguimiento para cada una de las pacientes, han aparecido metástasis en 16 enfermas, que corresponde al 84,2% de las 19 recidivas y al 14,8% de las recidivas de la serie. La densidad de recidivas equivale a 5,5/100 enfermas/año. Han fallecido durante estos 36 meses 8 pacientes (7,4%).

El 43,75% de las recidivas (n=7) se produjeron en tumores clasificados en el estadio III, el 37,5% en el estadio II (n=6) y el 18,75% en el estadio I (n=3). En el caso del estadio III, 3 pacientes desarrollaron metástasis óseas exclusivamente (42,9%), 3 enfermas presentaron metástasis óseas y hepáticas (42,9%) y 1 paciente metástasis hepáticas (14,3%). Para el estadio II, se objetivaron metástasis óseas en 2 casos (33,3%), pulmonares en 1 caso (16,7%), hepáticas en un caso (16,7%), cerebrales y pulmonares simultáneamente en 1 caso (16,7%) y axilar en otro caso (16,7%). En el estadio I, 1 enferma presentó 1 recidiva local (33,3%), 1 desarrolló metástasis óseas (33,3%) y otra presentó metástasis óseas y pulmonares (33,3%).

El 50% de las muertes correspondió a tumores clasificados en el estadio III (n=4), el 37,5% en pacientes clasificadas en el estadio II (n=3) y el 12,5% en el estadio I (n=1). Las tablas 7 y 8 muestran las recidivas y muertes clasificados por estadios (TNM) respectivamente.

| Tabla 7. DISTRIBUTIÓN DE LAS RECIDIVAS A 36 MESES SEGÚN ESTADIO TNM. |
|--------------------------|---------|------|
| Estadio | Recidivas | Porcentajes |
| I | 3 | 18,75 |
| II | 6 | 37,5 |
| III | 7 | 43,75 |
| **Total** | **16** | **100** |

| Tabla 8. DISTRIBUTIÓN DE LAS MUERTES A 36 MESES SEGÚN ESTADIO TNM. |
|--------------------------|---------|------|
| Estadio | Exitus | Porcentajes |
| I | 1 | 12,5 |
| II | 3 | 37,5 |
| III | 4 | 50,0 |
| **Total** | **16** | **100** |
I-B. ANÁLISIS DE LA ASOCIACIÓN ENTRE LOS MARCADORES TUMORALES MOLECULARES Y LOS PARÁMETROS CLÍNICO-PATOLÓGICOS.

1-a) Análisis de la asociación entre el receptor de estrógeno y los parámetros clínico-patológicos.

Setenta y un tumores (65,7%) fueron inmunorreactivos positivos para el RE, 32 fueron negativos (29,6%) y en 5 no se realizó la tinción (4,6%).

Según se aprecia en la tabla 9, el análisis de la asociación del RE con los parámetros clínico-patológicos y con los marcadores tumorales moleculares en esta serie evidenció:

1) Una asociación estadísticamente significativa entre la inmunotinción positiva para el RE y:
 a) El tamaño de los ganglios axilares negativos. El 61,2% de los cánceres RE+ (n=41) presentaron ganglios con un tamaño inferior a los 2 cm (p=0,02).
 b) La diferenciación del tumor según el grado nuclear. Mayor porcentaje de positividad para el RE entre los cánceres GN I y GN II (p=0,0004).
 c) La diferenciación tumoral según el grado histológico. Mayor proporción de cánceres RE+ bien diferenciados (p=0,0001).
 d) El tratamiento hormonal. Han recibido tamoxifén el 67,6% de los tumores RE+ (p=0,02).

2) No se ha encontrado asociación estadísticamente significativa entre el RE y: estado hormonal, el tipo de tumor, el tamaño tumoral, la afectación ganglionar, el número de ganglios positivos, el desbordamiento de la cápsula ganglionar, la estadificación, la radioterapia, la quimioterapia adyuvante.

1-b) Análisis de la asociación entre el receptor de estrógeno y los marcadores tumorales moleculares.

1) En esta serie hemos observado una relación directa muy significativa entre la inmunotinción positiva para el RE y:
 a) La inmunoreactividad positiva para el receptor de progesterona. El 74,3% de los cánceres RE+ (n=52) fueron RPg+ (p=0,00001)
b) La inmunotinción de la proteína pS2. En 27 casos (40,9%) la tinción fue positiva para ambos marcadores ($p=0.004$).

2) También hemos objetivado una relación inversa significativa entre el RE y:
 a) El EFGDR. Únicamente el 6,7% de los cánceres RE+ ($n=4$) fueron EFGDR+. Se evidenció una mayor proporción de cánceres RE+EGFR- ($p=0.00002$).
 b) El antígeno nuclear de proliferación celular ki67; así, la presencia del receptor estrogénico se correspondió con células con bajos porcentajes de núcleos teñidos para el ki67. De este modo, el 58,3% de los cánceres RE+ ($n=35$) fueron ki67- ($p=0.008$).
 c) El antígeno nuclear de proliferación, observando un 59,7% de cánceres ($n=37$) RE+ PCNA- ($p=0.009$).
 d) La proteína p53. El 83,3% de los cánceres RE+ ($n=55$) tenían tinción negativa para la p53 ($p=0.03$).

3) El 58,7% de los cánceres ($n=37$) fueron RE+ C-erbB-2 -. La asociación entre el RE y el C-erbB-2 se situó en el límite de la significación estadística ($p=0.05$).

4) No se encontró asociación estadísticamente significativa entre la tinción positiva para el RE y: la Hsp27, la catepsina D, y la glicoproteína P.
<table>
<thead>
<tr>
<th>Parámetros</th>
<th>RE +</th>
<th>RE -</th>
<th>Total</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td>% columna</td>
<td>n=</td>
<td>% columna</td>
<td>% Fila</td>
</tr>
<tr>
<td>Promenopausia</td>
<td>13</td>
<td>13,4</td>
<td>7</td>
<td>21,9</td>
<td>19,4</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>58</td>
<td>81,7</td>
<td>25</td>
<td>78,1</td>
<td>80,6</td>
</tr>
<tr>
<td>Tumor Único</td>
<td>62</td>
<td>87,3</td>
<td>30</td>
<td>93,8</td>
<td>89,3</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>9</td>
<td>12,7</td>
<td>2</td>
<td>6,3</td>
<td>10,7</td>
</tr>
<tr>
<td>Tamaño Tumor < 2 (cm)</td>
<td>32</td>
<td>45,1</td>
<td>13</td>
<td>40,6</td>
<td>43,7</td>
</tr>
<tr>
<td>2-5</td>
<td>33</td>
<td>46,5</td>
<td>16</td>
<td>50,0</td>
<td>47,6</td>
</tr>
<tr>
<td>5 ></td>
<td>6</td>
<td>8,5</td>
<td>3</td>
<td>9,4</td>
<td>8,7</td>
</tr>
<tr>
<td>Ganglios +</td>
<td>41</td>
<td>57,7</td>
<td>13</td>
<td>40,6</td>
<td>52,4</td>
</tr>
<tr>
<td>Ganglios -</td>
<td>23</td>
<td>32,4</td>
<td>12</td>
<td>37,5</td>
<td>34,0</td>
</tr>
<tr>
<td>N° Ganglios +</td>
<td>40</td>
<td>56,3</td>
<td>14</td>
<td>43,8</td>
<td>56,3</td>
</tr>
<tr>
<td>N° Ganglios -</td>
<td>21</td>
<td>29,6</td>
<td>10</td>
<td>31,3</td>
<td>29,6</td>
</tr>
<tr>
<td>N° Ganglios más de 4</td>
<td>10</td>
<td>14,1</td>
<td>8</td>
<td>25,0</td>
<td>14,1</td>
</tr>
<tr>
<td>Tamaño Gangli. 1,8 < 2 (cm)</td>
<td>41</td>
<td>61,2</td>
<td>11</td>
<td>36,7</td>
<td>53,6</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>26</td>
<td>38,8</td>
<td>19</td>
<td>63,3</td>
<td>46,4</td>
</tr>
<tr>
<td>Cápsula rota +</td>
<td>12</td>
<td>16,9</td>
<td>7</td>
<td>21,9</td>
<td>18,4</td>
</tr>
<tr>
<td>Cápsula rota -</td>
<td>59</td>
<td>83,1</td>
<td>25</td>
<td>78,1</td>
<td>81,6</td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>8</td>
<td>11,3</td>
<td>1</td>
<td>3,1</td>
<td>8,7</td>
</tr>
<tr>
<td>Grado nuclear II</td>
<td>53</td>
<td>74,6</td>
<td>15</td>
<td>46,9</td>
<td>66,0</td>
</tr>
<tr>
<td>Grado nuclear III</td>
<td>10</td>
<td>14,1</td>
<td>16</td>
<td>50,0</td>
<td>25,2</td>
</tr>
<tr>
<td>Estadificación I</td>
<td>30</td>
<td>42,3</td>
<td>10</td>
<td>31,3</td>
<td>38,8</td>
</tr>
<tr>
<td>Estadificación II</td>
<td>29</td>
<td>40,8</td>
<td>16</td>
<td>50,0</td>
<td>43,7</td>
</tr>
<tr>
<td>Estadificación III</td>
<td>12</td>
<td>16,9</td>
<td>6</td>
<td>18,8</td>
<td>17,5</td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>40</td>
<td>53,3</td>
<td>16</td>
<td>50,0</td>
<td>54,4</td>
</tr>
<tr>
<td>Radioterapia -</td>
<td>31</td>
<td>47,7</td>
<td>16</td>
<td>50,0</td>
<td>45,6</td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>20</td>
<td>28,2</td>
<td>14</td>
<td>43,8</td>
<td>33,0</td>
</tr>
<tr>
<td>Quimioterapia -</td>
<td>51</td>
<td>71,8</td>
<td>18</td>
<td>56,2</td>
<td>67,0</td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>48</td>
<td>67,6</td>
<td>14</td>
<td>43,8</td>
<td>60,2</td>
</tr>
<tr>
<td>Hormonoterapia -</td>
<td>23</td>
<td>32,4</td>
<td>18</td>
<td>56,3</td>
<td>39,8</td>
</tr>
<tr>
<td>RPg +</td>
<td>52</td>
<td>74,3</td>
<td>18</td>
<td>28,1</td>
<td>59,8</td>
</tr>
<tr>
<td>RPg -</td>
<td>18</td>
<td>25,7</td>
<td>23</td>
<td>71,9</td>
<td>40,2</td>
</tr>
<tr>
<td>PS2 +</td>
<td>27</td>
<td>40,9</td>
<td>4</td>
<td>12,9</td>
<td>32,0</td>
</tr>
<tr>
<td>PS2 -</td>
<td>39</td>
<td>59,1</td>
<td>27</td>
<td>40,9</td>
<td>68,0</td>
</tr>
<tr>
<td>Hsp27 +</td>
<td>51</td>
<td>87,9</td>
<td>25</td>
<td>83,3</td>
<td>86,4</td>
</tr>
<tr>
<td>Hsp27 -</td>
<td>7</td>
<td>12,1</td>
<td>5</td>
<td>16,7</td>
<td>13,6</td>
</tr>
<tr>
<td>EGFR +</td>
<td>4</td>
<td>6,7</td>
<td>14</td>
<td>46,7</td>
<td>20,0</td>
</tr>
<tr>
<td>EGFR -</td>
<td>56</td>
<td>93,3</td>
<td>16</td>
<td>53,3</td>
<td>80,0</td>
</tr>
<tr>
<td>C-erbB-2 +</td>
<td>26</td>
<td>41,3</td>
<td>19</td>
<td>61,3</td>
<td>47,9</td>
</tr>
<tr>
<td>C-erbB-2 -</td>
<td>37</td>
<td>58,7</td>
<td>12</td>
<td>38,7</td>
<td>52,1</td>
</tr>
<tr>
<td>Ki67 +</td>
<td>25</td>
<td>41,7</td>
<td>20</td>
<td>71,4</td>
<td>51,1</td>
</tr>
<tr>
<td>Ki67 -</td>
<td>35</td>
<td>58,3</td>
<td>8</td>
<td>28,6</td>
<td>48,9</td>
</tr>
<tr>
<td>PCNA +</td>
<td>25</td>
<td>40,3</td>
<td>20</td>
<td>69,0</td>
<td>49,5</td>
</tr>
<tr>
<td>PCNA -</td>
<td>37</td>
<td>59,7</td>
<td>9</td>
<td>31,0</td>
<td>50,5</td>
</tr>
<tr>
<td>P53 +</td>
<td>11</td>
<td>16,7</td>
<td>11</td>
<td>36,7</td>
<td>22,9</td>
</tr>
<tr>
<td>P53 -</td>
<td>55</td>
<td>83,3</td>
<td>19</td>
<td>63,3</td>
<td>77,1</td>
</tr>
<tr>
<td>Catépsina D +</td>
<td>32</td>
<td>48,5</td>
<td>17</td>
<td>54,8</td>
<td>50,5</td>
</tr>
<tr>
<td>Catépsina D -</td>
<td>34</td>
<td>51,5</td>
<td>14</td>
<td>45,2</td>
<td>49,5</td>
</tr>
<tr>
<td>Glicoproteína P +</td>
<td>14</td>
<td>36,8</td>
<td>4</td>
<td>22,2</td>
<td>32,1</td>
</tr>
<tr>
<td>Glicoproteína P -</td>
<td>24</td>
<td>63,2</td>
<td>14</td>
<td>77,8</td>
<td>67,9</td>
</tr>
</tbody>
</table>
2-a) Análisis de la asociación entre el receptor de progesterona y los parámetros clínico-patológicos.

Sesenta y cuatro cánceres (59,3%) mostraron positividad para los receptores de progesterona (RPg), cuarenta y dos fueron negativos (38,9%) y en 2 no se realizó la tinción (1,9%).

En la tabla 10 se resumen los datos del análisis de la asociación de los RPg con los parámetros clínico-patológicos. Hemos observado que:

1) La inmunotinción positiva para el RPg varió inversamente con el grado de diferenciación del tumor, según el grado nuclear e histológico. Esta asociación es significativa con el grado nuclear y muy significativa con el grado histológico.
 a) EL 4,8% de los cánceres RPg + (n=8) correspondieron a un GN I. Sin embargo, la mayoría de estos tumores fueron RPg+ ($p=0,02$).
 b) Lo mismo sucede con el grado histológico. El 18,8% de los cánceres RPg + (n=12) fueron clasificados como un GH I, sin embargo también se apreció una mayor proporción de positividad para el RPg en cánceres bien diferenciados ($p=0,005$).

2) No se ha observado una asociación estadísticamente significativa entre el RPg y: el estado hormonal, el tipo de tumor, el tamaño tumoral, la afectación ganglionar axilar, el número de ganglios axilares positivos, el tamaño de los ganglios afectados, la rotura de la cápsula ganglionar, la estadificación y el tratamiento adyuvante.

2-b) Análisis de la asociación entre el receptor de progesterona y los marcadores tumorales moleculares.

1) En nuestra serie la inmunotinción positiva del RPg se relacionó significativamente con la tinción IHQ para la proteína pS2. Aunque el 60% de los cánceres RPg + (n=36) fueron pS2 -, se observó una mayor proporción de tumores pS2+ Rpg+ ($p=0,02$).

2) Se evidenció una relación inversa significativa entre la tinción positiva para el RPg y:
 a) El antígeno nuclear de proliferación celular ki67. De tal modo que el 61,1% de los cánceres RPg + fueron ki67 negativo ($p=0,008$).
 b) El antígeno nuclear de proliferación PCNA. El 64,3% de las neoplasias con tinción positiva para el RPg (n=30) tuvieron tinción negativa para el PCNA ($p=0,002$).
 c) El EGFR, con un 88,9% de neoplasias RPg + (n=48) con inmunorreactividad negativa para el EGFR ($p=0,02$).
d) La proteína p185C-erbB-2. El 60,3% de los tumores RPg + (n=35) fueron p185C-erbB-2 - (p=0,048).

3) La presencia del receptor de progesterona en esta serie se relacionó con la ausencia de tinción para la proteína p53, así el 83,1% de los cánceres PR+ (n=49) carecían de inmunorreactividad para la proteína p53. Sin embargo la asociación no alcanzó la significación estadística (p=0,06).

4) No se ha demostrado en esta serie una asociación estadísticamente significativa entre el RPg y la catepsina D, y la glicoproteína P.
Tabla 10. Asociación entre la inmunorreactividad del RPg y los parámetros clínico-patológicos y marcadores tumorales moleculares. Chi cuadrado. Prueba exacta de Fisher.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>RPg +</th>
<th>RPg -</th>
<th>Total</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausia</td>
<td>14</td>
<td>50</td>
<td>64</td>
<td>2</td>
<td>0,24</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>21,9</td>
<td>78,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Único</td>
<td>56</td>
<td>8</td>
<td>64</td>
<td>2</td>
<td>0,29</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>87,5</td>
<td>12,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Tumor 2 < (cm)</td>
<td>31</td>
<td>7</td>
<td>38</td>
<td>2</td>
<td>0,25</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>48,4</td>
<td>10,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>40,6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Tumor 2-5</td>
<td>15</td>
<td></td>
<td>24</td>
<td>2</td>
<td>0,29</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>35,7</td>
<td>7,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>57,1</td>
<td>3,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Tumor 5 ></td>
<td>3</td>
<td></td>
<td>7</td>
<td>2</td>
<td>0,25</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>7,1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>16,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios + No</td>
<td>35</td>
<td></td>
<td>42</td>
<td>2</td>
<td>0,02</td>
</tr>
<tr>
<td>N1</td>
<td>54,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>56,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° Ganglios + 0-1</td>
<td>36</td>
<td></td>
<td>42</td>
<td>2</td>
<td>0,23</td>
</tr>
<tr>
<td>Ganglios + N1</td>
<td>56,3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios + N2</td>
<td>25,0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° Ganglios + m<4</td>
<td>33</td>
<td></td>
<td>46</td>
<td>2</td>
<td>0,46</td>
</tr>
<tr>
<td>Ganglios + N1</td>
<td>53,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios + N2</td>
<td>46,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Gangl. 1,8 < (cm)</td>
<td>9</td>
<td></td>
<td>21</td>
<td>2</td>
<td>0,38</td>
</tr>
<tr>
<td>Ganglios + N1</td>
<td>17,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios + N2</td>
<td>82,8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cápsula rota +</td>
<td>11</td>
<td></td>
<td>24</td>
<td>2</td>
<td>0,02</td>
</tr>
<tr>
<td>Cápsula rota -</td>
<td>17,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>8</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0,005</td>
</tr>
<tr>
<td>Grado nuclear II</td>
<td>45</td>
<td></td>
<td>24</td>
<td>2</td>
<td>0,24</td>
</tr>
<tr>
<td>Grado nuclear III</td>
<td>17,2</td>
<td></td>
<td>38</td>
<td>2</td>
<td>0,24</td>
</tr>
<tr>
<td>Grado histol. I</td>
<td>12</td>
<td></td>
<td>2</td>
<td>2</td>
<td>0,02</td>
</tr>
<tr>
<td>Grado histol. II</td>
<td>48</td>
<td></td>
<td>24</td>
<td>2</td>
<td>0,02</td>
</tr>
<tr>
<td>Grado histol. III</td>
<td>17,2</td>
<td></td>
<td>38</td>
<td>2</td>
<td>0,02</td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>34</td>
<td></td>
<td>23</td>
<td>2</td>
<td>0,51</td>
</tr>
<tr>
<td>Radioterapia -</td>
<td>53,1</td>
<td></td>
<td>54,8</td>
<td>2</td>
<td>0,51</td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>42</td>
<td></td>
<td>15</td>
<td>2</td>
<td>0,52</td>
</tr>
<tr>
<td>Quimioterapia -</td>
<td>34,4</td>
<td></td>
<td>45,2</td>
<td>2</td>
<td>0,52</td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>42</td>
<td></td>
<td>22</td>
<td>2</td>
<td>0,12</td>
</tr>
<tr>
<td>Hormonoterapia -</td>
<td>5,6</td>
<td></td>
<td>52,4</td>
<td>2</td>
<td>0,12</td>
</tr>
<tr>
<td>PS2 +</td>
<td>24</td>
<td></td>
<td>22</td>
<td>2</td>
<td>0,02</td>
</tr>
<tr>
<td>PS2 -</td>
<td>40,0</td>
<td></td>
<td>52,4</td>
<td>2</td>
<td>0,02</td>
</tr>
<tr>
<td>HSp27 +</td>
<td>43</td>
<td></td>
<td>34</td>
<td>17</td>
<td>0,38</td>
</tr>
<tr>
<td>HSp27 -</td>
<td>82,7</td>
<td></td>
<td>87,2</td>
<td>17</td>
<td>0,38</td>
</tr>
<tr>
<td>EGFR +</td>
<td>6</td>
<td></td>
<td>12</td>
<td>15</td>
<td>0,02</td>
</tr>
<tr>
<td>EGFR -</td>
<td>11,1</td>
<td></td>
<td>30,8</td>
<td>15</td>
<td>0,02</td>
</tr>
<tr>
<td>C-erbB-2 +</td>
<td>23</td>
<td></td>
<td>23</td>
<td>11</td>
<td>0,048</td>
</tr>
<tr>
<td>C-erbB-2 -</td>
<td>39,7</td>
<td></td>
<td>59,0</td>
<td>11</td>
<td>0,048</td>
</tr>
<tr>
<td>Ki67 +</td>
<td>21</td>
<td></td>
<td>24</td>
<td>18</td>
<td>0,008</td>
</tr>
<tr>
<td>Ki67 -</td>
<td>38,9</td>
<td></td>
<td>66,7</td>
<td>18</td>
<td>0,008</td>
</tr>
<tr>
<td>PCNA +</td>
<td>20</td>
<td></td>
<td>25</td>
<td>15</td>
<td>0,002</td>
</tr>
<tr>
<td>PCNA -</td>
<td>35,7</td>
<td></td>
<td>67,6</td>
<td>15</td>
<td>0,002</td>
</tr>
<tr>
<td>PS3 +</td>
<td>10</td>
<td></td>
<td>13</td>
<td>9</td>
<td>0,06</td>
</tr>
<tr>
<td>PS3 -</td>
<td>16,9</td>
<td></td>
<td>32,5</td>
<td>9</td>
<td>0,06</td>
</tr>
<tr>
<td>Catepsina D +</td>
<td>32</td>
<td></td>
<td>17</td>
<td>9</td>
<td>0,17</td>
</tr>
<tr>
<td>Catepsina D -</td>
<td>54,2</td>
<td></td>
<td>42,5</td>
<td>9</td>
<td>0,17</td>
</tr>
<tr>
<td>Glicoproteína P +</td>
<td>15</td>
<td></td>
<td>3</td>
<td>50</td>
<td>0,09</td>
</tr>
<tr>
<td>Glicoproteína P -</td>
<td>37,5</td>
<td></td>
<td>16,7</td>
<td>50</td>
<td>0,09</td>
</tr>
</tbody>
</table>
3-a) **Análisis de la asociación entre la expresión de la proteína pS2 y los parámetros clínico-patológicos.**

Se demostró la expresión positiva de la proteína pS2 en 31 cánceres (28,7%) y la ausencia de expresión en 78 neoplasias (72,2%). En 8 tumores (7,4%) no se realizó la tinción.

La [tabla 11](#) resume los resultados del análisis de la asociación de la pS2 con los parámetros clínico-patológicos que mostró:

1) Una asociación significativa entre la proteína pS2 y el grado de diferenciación tumoral según:
 a) El grado histológico. La ausencia de tinción IHQ para la pS2 se relacionó con cánceres indiferenciados. El 85,5% de los cánceres moderadamente diferenciados e indiferenciados (n=59) presentaron tinción negativa para la pS2 ($p=0,04$).
 b) El grado nuclear. El 31,9% de los cánceres con tinción negativa para la pS2 (n=22) fueron clasificados como un grado nuclear III, en comparación con el 9,7% de tumores con tinción positiva para pS2 (n=3) que fueron clasificados como un grado nuclear I. Se objetivó una mayor proporción de positividad para pS2 en tumores con grado nuclear I ($p=0,04$).

2) Una relación significativa entre los cánceres pS2 + y el tratamiento radioterápico adyuvante. El 60,9% de los tumores con tinción negativa para pS2 (n=42) recibieron radioterapia ($p=0,03$).

3) Una ausencia de asociación estadísticamente significativa entre la inmunotinción positiva para pS2 y: el estado hormonal, el tipo tumor, el tamaño tumoral, el estado ganglionar, el número de ganglios axilares positivos, el tamaño ganglionar, el desbordamiento de la cápsula ganglionar, la estadificación, la quimioterapia adyuvante y la hormonoterapia.

3-b) **Análisis de la asociación entre la expresión de la proteína pS2 y los marcadores tumorales moleculares.**

Los datos del análisis de la proteína pS2 y los marcadores tumorales moleculares se presentan en la [tabla 11](#) y en las [tablas 9 y 10](#).

1) Objetivamos una asociación positiva significativa entre la expresión de la pS2 y la tinción positiva para catepsina D, de tal modo, que el 69% de los cánceres pS2 + (n=20) fueron catepsina D + ($p=0,02$).
2) No se ha encontrado una asociación estadísticamente significativa entre la expresión de pS2 y la proteína Hsp27, el EGFR, la expresión del oncogén C-erbB-2, el antígeno ki67, el antígeno nuclear de proliferación PCNA, la p53 y la glicoproteína P.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>PS2 +</th>
<th>% columna</th>
<th>PS2 -</th>
<th>% columna</th>
<th>Total % Fila</th>
<th>Ausencias</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td></td>
<td>N=</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premenopausia</td>
<td>5</td>
<td>16,1</td>
<td>12</td>
<td>17,4</td>
<td>17,0</td>
<td>8</td>
<td>0,56</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>26</td>
<td>83,9</td>
<td>57</td>
<td>82,6</td>
<td>83,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Único</td>
<td>28</td>
<td>90,3</td>
<td>61</td>
<td>88,4</td>
<td>89,0</td>
<td>8</td>
<td>0,54</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>3</td>
<td>9,7</td>
<td>8</td>
<td>11,6</td>
<td>11,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Tumor 2 < (cm)</td>
<td>13</td>
<td>41,9</td>
<td>30</td>
<td>43,5</td>
<td>43,0</td>
<td>8</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>38,7</td>
<td>35</td>
<td>50,7</td>
<td>47,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>19,4</td>
<td>4</td>
<td>5,8</td>
<td>10,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios +</td>
<td>19</td>
<td>61,3</td>
<td>32</td>
<td>46,4</td>
<td>51,0</td>
<td>8</td>
<td>0,35</td>
</tr>
<tr>
<td>N1</td>
<td>9</td>
<td>29,0</td>
<td>25</td>
<td>36,2</td>
<td>34,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>3</td>
<td>9,7</td>
<td>12</td>
<td>17,4</td>
<td>15,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° ganglios + 0</td>
<td>19</td>
<td>61,3</td>
<td>32</td>
<td>46,4</td>
<td>51,0</td>
<td>8</td>
<td>0,35</td>
</tr>
<tr>
<td>1-3</td>
<td>8</td>
<td>29,0</td>
<td>22</td>
<td>31,9</td>
<td>30,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>más de 4</td>
<td>4</td>
<td>9,7</td>
<td>15</td>
<td>21,7</td>
<td>19,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño gangl.1,8 < (cm)</td>
<td>20</td>
<td>66,7</td>
<td>29</td>
<td>45,3</td>
<td>47,9</td>
<td>14</td>
<td>0,20</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>33,3</td>
<td>35</td>
<td>54,7</td>
<td>52,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cápsula rota</td>
<td>3</td>
<td>9,7</td>
<td>16</td>
<td>23,2</td>
<td>19,0</td>
<td>8</td>
<td>0,18</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>90,3</td>
<td>53</td>
<td>76,8</td>
<td>81,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>4</td>
<td>12,9</td>
<td>6</td>
<td>9,7</td>
<td>16,0</td>
<td>8</td>
<td>0,04</td>
</tr>
<tr>
<td>Grado nuclear II</td>
<td>24</td>
<td>77,4</td>
<td>41</td>
<td>59,4</td>
<td>65,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear III</td>
<td>3</td>
<td>9,7</td>
<td>22</td>
<td>31,9</td>
<td>25,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado histol. I</td>
<td>5</td>
<td>16,1</td>
<td>10</td>
<td>14,5</td>
<td>15,0</td>
<td>8</td>
<td>0,04</td>
</tr>
<tr>
<td>Grado histol. II</td>
<td>24</td>
<td>77,4</td>
<td>39</td>
<td>56,5</td>
<td>63,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado histol. III</td>
<td>2</td>
<td>6,5</td>
<td>20</td>
<td>29,0</td>
<td>22,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadificación I</td>
<td>14</td>
<td>45,2</td>
<td>24</td>
<td>34,8</td>
<td>38,0</td>
<td>8</td>
<td>0,58</td>
</tr>
<tr>
<td>Estadificación II</td>
<td>11</td>
<td>35,5</td>
<td>31</td>
<td>44,9</td>
<td>42,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadificación III</td>
<td>6</td>
<td>6,5</td>
<td>14</td>
<td>20,3</td>
<td>20,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>12</td>
<td>38,7</td>
<td>42</td>
<td>60,9</td>
<td>54,0</td>
<td>8</td>
<td>0,03</td>
</tr>
<tr>
<td>-</td>
<td>19</td>
<td>61,3</td>
<td>27</td>
<td>39,1</td>
<td>46,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>9</td>
<td>25,7</td>
<td>26</td>
<td>37,7</td>
<td>35,0</td>
<td>8</td>
<td>0,27</td>
</tr>
<tr>
<td>-</td>
<td>26</td>
<td>74,3</td>
<td>43</td>
<td>62,3</td>
<td>65,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>16</td>
<td>54,8</td>
<td>45</td>
<td>65,2</td>
<td>62,0</td>
<td>8</td>
<td>0,22</td>
</tr>
<tr>
<td>-</td>
<td>14</td>
<td>45,2</td>
<td>24</td>
<td>34,8</td>
<td>38,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSP27 +</td>
<td>24</td>
<td>92,3</td>
<td>50</td>
<td>80,6</td>
<td>84,1</td>
<td>20</td>
<td>0,15</td>
</tr>
<tr>
<td>-</td>
<td>2</td>
<td>7,7</td>
<td>12</td>
<td>19,4</td>
<td>15,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR +</td>
<td>3</td>
<td>11,1</td>
<td>15</td>
<td>23,8</td>
<td>20,0</td>
<td>18</td>
<td>0,14</td>
</tr>
<tr>
<td>-</td>
<td>24</td>
<td>88,9</td>
<td>48</td>
<td>76,2</td>
<td>80,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-erbB-2 +</td>
<td>15</td>
<td>53,6</td>
<td>30</td>
<td>46,9</td>
<td>48,9</td>
<td>16</td>
<td>0,36</td>
</tr>
<tr>
<td>-</td>
<td>13</td>
<td>46,4</td>
<td>34</td>
<td>53,1</td>
<td>51,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki67 +</td>
<td>13</td>
<td>44,8</td>
<td>29</td>
<td>51,8</td>
<td>49,4</td>
<td>23</td>
<td>0,35</td>
</tr>
<tr>
<td>-</td>
<td>16</td>
<td>55,2</td>
<td>27</td>
<td>48,2</td>
<td>50,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA +</td>
<td>14</td>
<td>48,3</td>
<td>29</td>
<td>47,5</td>
<td>47,8</td>
<td>18</td>
<td>0,56</td>
</tr>
<tr>
<td>-</td>
<td>15</td>
<td>51,7</td>
<td>32</td>
<td>52,5</td>
<td>52,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P53 +</td>
<td>5</td>
<td>17,2</td>
<td>17</td>
<td>26,2</td>
<td>23,4</td>
<td>14</td>
<td>0,25</td>
</tr>
<tr>
<td>-</td>
<td>24</td>
<td>82,8</td>
<td>48</td>
<td>73,8</td>
<td>76,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catépsina D +</td>
<td>20</td>
<td>69,0</td>
<td>28</td>
<td>43,1</td>
<td>51,1</td>
<td>14</td>
<td>0,02</td>
</tr>
<tr>
<td>-</td>
<td>9</td>
<td>31,0</td>
<td>37</td>
<td>56,9</td>
<td>48,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicoprot. P +</td>
<td>7</td>
<td>36,8</td>
<td>10</td>
<td>27,0</td>
<td>30,4</td>
<td>52</td>
<td>0,32</td>
</tr>
<tr>
<td>-</td>
<td>12</td>
<td>63,2</td>
<td>27</td>
<td>73,0</td>
<td>69,6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4-a) Análisis de la asociación entre la expresión de la proteína Hsp27 y los parámetros clínico-patológicos.

En 68 cánceres (72,2%) la tinción IHQ fue positiva para la proteína Hsp27, en 14 fue negativa (12,9%) y en 16 tumores (14,8%) no se realizó la tinción.

En la Tabla 12 se presentan los datos del análisis de la asociación de la proteína Hsp27 con los parámetros clínico-patológicos. En esta serie se objetiva que:

Hemos observado una asociación directa significativa entre la tinción positiva para la Hsp27 y el grado de diferenciación tumoral, así, el 92,3% de los cánceres Hsp27+ (n=72) correspondieron a grados histológicos medios y altos, en comparación con el 7,7% de Hsp27+ con GH I ($p=0,01$).

1) En nuestra serie no encontramos una asociación estadísticamente significativa entre la inmunotinción positiva para la Hsp27 y el estado hormonal, el tipo de tumor, el tamaño tumoral, la afectación ganglionar axilar, el número de ganglios axilares positivos, el tamaño ganglionar, el desbordamiento de la cápsula ganglionar, el grado nuclear, la estadificación, el tratamiento radioterápico, la quimioterapia adyuvante y la hormonoterapia.

4-b) Análisis de la asociación entre la expresión de la proteína Hsp27 y los marcadores tumorales moleculares.

Las tablas 9, 10, 11 y 12 expresan los resultados del análisis de la relación de la Hsp27 con los marcadores tumoriales moleculares.

1) La tinción IHQ positiva para la Hsp27 se relacionó directamente y muy significativamente con la tinción positiva para el antígeno nuclear de proliferación PCNA. El 55,8% de los tumores Hsp27+ (n=43) fueron PCNA+. Se objetivó una mayor proporción de tumores Hsp27+PCNA+ ($Hsp27+ \text{ y } PCNA+=43/44, ~97,7%;Hsp27+ \text{ y } PCNA=34/43, ~79%; \text{ } p=0,006$).

2) Con el antígeno nuclear de proliferación ki67 la relación también fue positiva, observando mayor proporción de tumores Hsp27+ ki67+, aunque en este caso la asociación no alcanzó la significación estadística ($p=0,08$).
3) No se ha demostrado una relación significativa entre la Hsp27 y: el EGFR, la p185C-erbB-2, la expresión del oncogén supresor p53, la catepsina D, y la glicoproteína P.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Hsp27 +</th>
<th>Hsp27 –</th>
<th>Total</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td>% columna</td>
<td>n=</td>
<td>% columna</td>
<td>% Fila</td>
</tr>
<tr>
<td>Premenopausia</td>
<td>15</td>
<td>19,2</td>
<td>1</td>
<td>7,1</td>
<td>17,4</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>63</td>
<td>80,8</td>
<td>13</td>
<td>92,9</td>
<td>82,6</td>
</tr>
<tr>
<td>Tumor Único</td>
<td>1</td>
<td>100,0</td>
<td>2</td>
<td>14,3</td>
<td>88,0</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>69</td>
<td>88,5</td>
<td>12</td>
<td>85,7</td>
<td>12,0</td>
</tr>
<tr>
<td>Tamaño Tumor 2< (cm)</td>
<td>33</td>
<td>42,3</td>
<td>5</td>
<td>35,7</td>
<td>41,3</td>
</tr>
<tr>
<td>2-5</td>
<td>39</td>
<td>50,0</td>
<td>6</td>
<td>42,9</td>
<td>48,9</td>
</tr>
<tr>
<td>5<</td>
<td>6</td>
<td>7,7</td>
<td>3</td>
<td>21,4</td>
<td>9,8</td>
</tr>
<tr>
<td>Ganglios + No</td>
<td>38</td>
<td>48,7</td>
<td>6</td>
<td>42,9</td>
<td>47,8</td>
</tr>
<tr>
<td>N1</td>
<td>26</td>
<td>33,3</td>
<td>7</td>
<td>50,0</td>
<td>35,9</td>
</tr>
<tr>
<td>N2</td>
<td>14</td>
<td>17,9</td>
<td>1</td>
<td>7,1</td>
<td>16,3</td>
</tr>
<tr>
<td>N° Ganglios 0-1</td>
<td>38</td>
<td>48,7</td>
<td>6</td>
<td>42,9</td>
<td>47,8</td>
</tr>
<tr>
<td>1-3</td>
<td>23</td>
<td>29,5</td>
<td>6</td>
<td>42,9</td>
<td>31,5</td>
</tr>
<tr>
<td>más de 4</td>
<td>17</td>
<td>21,8</td>
<td>2</td>
<td>14,3</td>
<td>20,7</td>
</tr>
<tr>
<td>Tamaño Gangl 1,8 < (cm)</td>
<td>40</td>
<td>4,1</td>
<td>5</td>
<td>41,7</td>
<td>52,3</td>
</tr>
<tr>
<td>1,8<</td>
<td>34</td>
<td>45,9</td>
<td>7</td>
<td>58,3</td>
<td>47,7</td>
</tr>
<tr>
<td>Cápsula rota + -</td>
<td>16</td>
<td>0,5</td>
<td>2</td>
<td>14,3</td>
<td>19,6</td>
</tr>
<tr>
<td>Grado nuclear I II III</td>
<td>5</td>
<td>6,4</td>
<td>3</td>
<td>21,4</td>
<td>8,7</td>
</tr>
<tr>
<td>II</td>
<td>51</td>
<td>65,4</td>
<td>6</td>
<td>50,0</td>
<td>63,0</td>
</tr>
<tr>
<td>III</td>
<td>22</td>
<td>28,2</td>
<td>4</td>
<td>28,6</td>
<td>28,3</td>
</tr>
<tr>
<td>Grado histol. I II III</td>
<td>6</td>
<td>7,7</td>
<td>5</td>
<td>35,7</td>
<td>12,0</td>
</tr>
<tr>
<td>II</td>
<td>52</td>
<td>66,7</td>
<td>6</td>
<td>42,9</td>
<td>63,0</td>
</tr>
<tr>
<td>III</td>
<td>20</td>
<td>25,6</td>
<td>3</td>
<td>21,4</td>
<td>25,0</td>
</tr>
<tr>
<td>Estadificación I II III</td>
<td>29</td>
<td>37,2</td>
<td>3</td>
<td>21,4</td>
<td>34,8</td>
</tr>
<tr>
<td>II</td>
<td>33</td>
<td>42,3</td>
<td>8</td>
<td>57,1</td>
<td>44,6</td>
</tr>
<tr>
<td>III</td>
<td>16</td>
<td>20,5</td>
<td>3</td>
<td>21,4</td>
<td>20,7</td>
</tr>
<tr>
<td>Radioterapia + -</td>
<td>42</td>
<td>53,8</td>
<td>9</td>
<td>64,3</td>
<td>55,4</td>
</tr>
<tr>
<td>Quimioterapia + -</td>
<td>30</td>
<td>8,5</td>
<td>5</td>
<td>35,7</td>
<td>37,0</td>
</tr>
<tr>
<td>Hormonoterapia + -</td>
<td>47</td>
<td>0,3</td>
<td>10</td>
<td>71,4</td>
<td>62,0</td>
</tr>
<tr>
<td>EGFR + -</td>
<td>15</td>
<td>19,7</td>
<td>2</td>
<td>20,0</td>
<td>19,8</td>
</tr>
<tr>
<td>C-erbB-2 + -</td>
<td>39</td>
<td>51,3</td>
<td>4</td>
<td>30,8</td>
<td>48,3</td>
</tr>
<tr>
<td>KI67 + -</td>
<td>38</td>
<td>52,8</td>
<td>2</td>
<td>22,2</td>
<td>49,4</td>
</tr>
<tr>
<td>PCNA + -</td>
<td>43</td>
<td>55,8</td>
<td>1</td>
<td>10,0</td>
<td>50,6</td>
</tr>
<tr>
<td>P53 + -</td>
<td>21</td>
<td>27,6</td>
<td>2</td>
<td>14,3</td>
<td>25,6</td>
</tr>
<tr>
<td>Catepsina D + -</td>
<td>38</td>
<td>52,1</td>
<td>6</td>
<td>46,2</td>
<td>51,2</td>
</tr>
<tr>
<td>Glicoproteína P + -</td>
<td>15</td>
<td>35,7</td>
<td>1</td>
<td>12,5</td>
<td>32,0</td>
</tr>
</tbody>
</table>
5-a) Análisis de la asociación entre el receptor del factor de crecimiento epidérmico y los parámetros clínico-patológicos.

En 18 cánceres (16,7%) la tinción IHQ fue positiva para el EGFR, en 76 fue negativa (70,4%) y no se realizó en 14 (13,0%).

En la tabla 13 se resumen los resultados del análisis del grado de asociación entre el EGFR y los parámetros clínico-patológicos. Este análisis objetivó:

1) Una asociación muy significativa entre la detección IHQ positiva del EGFR y el grado de diferenciación tumoral, observando:
 a) Una importante proporción de cánceres indiferenciados (GN III) EGFR+. El 66,7% de los tumores EGFR+ (n=12) fueron catalogados como un grado nuclear III ($p=0.0001$).
 b) El 61,1% de los cánceres EGFR+ (n=11) habían sido clasificados con un grado histológico III ($p=0.0003$).

2) Una ausencia de asociación estadísticamente significativa entre el EGFR y: el estado hormonal, el tipo de tumor, el tamaño tumoral, la afectación ganglionar, el número de ganglios axilares positivos, el tamaño ganglionar, la rotura de la cápsula ganglionar, la estadificación, la radioterapia, la quimioterapia y la hormonoterapia.

5-b) Análisis de la asociación entre el receptor del factor de crecimiento epidérmico y los marcadores tumorales moleculares.

Los resultados se presentan en la tabla 13 y las tablas 9 – 12.

1) El 66,7% de los cánceres (n=12) tiñeron positivamente para el EGFR y la p185C-erbB-2. Sin embargo, la asociación no alcanzó la significación estadística ($p=0.07$).

2) En esta serie no objetivamos una relación estadísticamente significativa entre el EGFR y: el antígeno nuclear de proliferación celular ki67, el antígeno nuclear de proliferación PCNA y la catepsina D.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>EGFR + n=</th>
<th>% columna</th>
<th>EGFR - n=</th>
<th>% columna</th>
<th>Total % Fila</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausia</td>
<td>3</td>
<td>16,7</td>
<td>13</td>
<td>17,1</td>
<td>17,0</td>
<td>14</td>
<td>0,63</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>15</td>
<td>83,3</td>
<td>59</td>
<td>82,9</td>
<td>83,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Único</td>
<td>17</td>
<td>94,4</td>
<td>68</td>
<td>89,5</td>
<td>90,4</td>
<td>14</td>
<td>0,45</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>1</td>
<td>5,6</td>
<td>8</td>
<td>10,5</td>
<td>10,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Tumor 2 < (cm)</td>
<td>8</td>
<td>44,4</td>
<td>31</td>
<td>40,8</td>
<td>41,5</td>
<td>14</td>
<td>0,26</td>
</tr>
<tr>
<td>2 - 5</td>
<td>10</td>
<td>55,6</td>
<td>35</td>
<td>46,1</td>
<td>47,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ></td>
<td>10</td>
<td>13,2</td>
<td>10</td>
<td>13,2</td>
<td>10,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios +</td>
<td>7</td>
<td>38,9</td>
<td>39</td>
<td>51,3</td>
<td>48,9</td>
<td>14</td>
<td>0,58</td>
</tr>
<tr>
<td>Ganglios -</td>
<td>7</td>
<td>38,9</td>
<td>26</td>
<td>34,2</td>
<td>35,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° Ganglios + 1-3 más de 4</td>
<td>7</td>
<td>38,9</td>
<td>39</td>
<td>51,3</td>
<td>48,9</td>
<td>14</td>
<td>0,51</td>
</tr>
<tr>
<td>Tamaño Gangl. 1,8 < (cm)</td>
<td>9</td>
<td>43,8</td>
<td>39</td>
<td>53,4</td>
<td>51,7</td>
<td>19</td>
<td>0,34</td>
</tr>
<tr>
<td>1,8 ></td>
<td>7</td>
<td>56,3</td>
<td>34</td>
<td>46,6</td>
<td>48,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cápsula rota +</td>
<td>3</td>
<td>16,7</td>
<td>7</td>
<td>9,2</td>
<td>7,4</td>
<td>14</td>
<td>0,58</td>
</tr>
<tr>
<td>Cápsula rota -</td>
<td>15</td>
<td>83,3</td>
<td>55</td>
<td>72,4</td>
<td>64,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>6</td>
<td>33,3</td>
<td>55</td>
<td>72,4</td>
<td>64,9</td>
<td>14</td>
<td>0,0001</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>66,7</td>
<td>14</td>
<td>18,4</td>
<td>27,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>0,0003</td>
</tr>
<tr>
<td>Grado histol. I</td>
<td>1</td>
<td>5,6</td>
<td>9</td>
<td>11,8</td>
<td>10,6</td>
<td>14</td>
<td>0,82</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>33,3</td>
<td>55</td>
<td>72,4</td>
<td>64,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>61,1</td>
<td>12</td>
<td>15,8</td>
<td>24,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadificación I</td>
<td>6</td>
<td>33,3</td>
<td>28</td>
<td>36,8</td>
<td>36,2</td>
<td>14</td>
<td>0,82</td>
</tr>
<tr>
<td>II</td>
<td>9</td>
<td>50,0</td>
<td>32</td>
<td>42,1</td>
<td>43,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>61,1</td>
<td>16</td>
<td>21,1</td>
<td>20,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>6</td>
<td>33,3</td>
<td>43</td>
<td>56,6</td>
<td>52,1</td>
<td>14</td>
<td>0,06</td>
</tr>
<tr>
<td>-</td>
<td>12</td>
<td>66,7</td>
<td>33</td>
<td>43,4</td>
<td>47,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>6</td>
<td>33,3</td>
<td>28</td>
<td>36,8</td>
<td>36,2</td>
<td>14</td>
<td>0,50</td>
</tr>
<tr>
<td>-</td>
<td>12</td>
<td>66,7</td>
<td>48</td>
<td>63,2</td>
<td>63,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>12</td>
<td>66,7</td>
<td>32</td>
<td>44,4</td>
<td>48,9</td>
<td>18</td>
<td>0,07</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>33,3</td>
<td>40</td>
<td>55,6</td>
<td>51,1</td>
<td>15</td>
<td>0,38</td>
</tr>
<tr>
<td>C-erbB-2 +</td>
<td>12</td>
<td>66,7</td>
<td>32</td>
<td>48,5</td>
<td>48,8</td>
<td>26</td>
<td>0,23</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>33,3</td>
<td>34</td>
<td>51,5</td>
<td>48,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki67 +</td>
<td>10</td>
<td>62,5</td>
<td>32</td>
<td>48,5</td>
<td>48,8</td>
<td>26</td>
<td>0,23</td>
</tr>
<tr>
<td>-</td>
<td>6</td>
<td>37,5</td>
<td>34</td>
<td>51,5</td>
<td>48,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA +</td>
<td>11</td>
<td>61,1</td>
<td>33</td>
<td>46,5</td>
<td>49,4</td>
<td>19</td>
<td>0,19</td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td>38,9</td>
<td>38</td>
<td>53,5</td>
<td>50,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p53 +</td>
<td>7</td>
<td>38,9</td>
<td>16</td>
<td>22,5</td>
<td>25,8</td>
<td>19</td>
<td>0,13</td>
</tr>
<tr>
<td>-</td>
<td>11</td>
<td>61,1</td>
<td>55</td>
<td>77,5</td>
<td>74,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathepsina D +</td>
<td>10</td>
<td>55,6</td>
<td>33</td>
<td>47,1</td>
<td>48,9</td>
<td>20</td>
<td>0,35</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>44,4</td>
<td>37</td>
<td>52,9</td>
<td>51,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicoprot. P +</td>
<td>2</td>
<td>22,2</td>
<td>14</td>
<td>30,4</td>
<td>29,1</td>
<td>53</td>
<td>0,48</td>
</tr>
<tr>
<td>-</td>
<td>7</td>
<td>77,8</td>
<td>32</td>
<td>69,6</td>
<td>70,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6-a) Análisis de la asociación entre la expresión del oncogen C-erbB-2 (p185C-erbB-2) y los parámetros clínico-patológicos.

La determinación IHQ de la proteína p185C-erbB-2, producto del oncogén C-erbB-2, fue positiva en 46 tumores (42,6%), en 52 la tinción fue negativa (48,1%) y en 10 no se realizó (9,3%).

Los datos se presentan en la tabla 14. El análisis de la asociación entre la p185C-erbB-2 y los parámetros clínico-patológicos evidenció que:

1) Un 58,7% de pacientes con p185C-erbB-2+ (n=27) no fueron radiadas. Esta asociación es significativa (p=0,04).

2) No se observó una asociación estadísticamente significativa entre el C-erbB-2 y: el estado hormonal, el tamaño tumoral, el estado nodal, el número de ganglios afectados, el desbordamiento de la cápsula ganglionar, el grado histológico, el tipo de tumor, el grado nuclear, el recibir quimioterapia y la administración de tamoxifén.

6-b) Análisis de la asociación entre la expresión del oncogen C-erbB-2 (p185C-erbB-2) y los marcadores tumoriales moleculares.

Los datos se resumen en la tabla 14 y las tablas 9 – 13.

1) Hemos observado una relación directa entre la expresión de p185C-erbB-2 y la tinción positiva del antígeno nuclear Ki67, así, el 60% de los cánceres p185C-erbB-2+ (n=24) fueron ki67+. Sin embargo, la asociación se situó en el límite de la significación estadística (p=0,05).

2) También se objetivó una relación positiva, sin alcanzar la significación estadística prefijada en el diseño, entre la inmunotinción positiva para la p185C-erbB-2 y los tumores PCNA+, de tal modo, que el 58,1% de los cánceres (n=25) mostraron inmunorreactividad positiva para ambos marcadores (p=0,08).

3) Careció de significación estadística la relación entre C-erbB-2 y: la p53, la catepsina D y la glicoproteína P.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>C-erbB-2 +</th>
<th>C-erbB-2 -</th>
<th>% Total</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td>% columna</td>
<td>n=</td>
<td>% columna</td>
<td></td>
</tr>
<tr>
<td>Premenopausia</td>
<td>7</td>
<td>15,2</td>
<td>10</td>
<td>19,2</td>
<td>17,3</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>39</td>
<td>84,8</td>
<td>42</td>
<td>80,8</td>
<td>82,7</td>
</tr>
<tr>
<td>Tumor Único</td>
<td>41</td>
<td>89,1</td>
<td>47</td>
<td>90,4</td>
<td>89,8</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>5</td>
<td>10,9</td>
<td>5</td>
<td>9,6</td>
<td>9,2</td>
</tr>
<tr>
<td>Tamaño Tumor (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 <</td>
<td>15</td>
<td>32,6</td>
<td>27</td>
<td>51,9</td>
<td>42,9</td>
</tr>
<tr>
<td>2-5</td>
<td>24</td>
<td>52,2</td>
<td>22</td>
<td>42,3</td>
<td>46,9</td>
</tr>
<tr>
<td>5 ></td>
<td>7</td>
<td>15,2</td>
<td>3</td>
<td>5,8</td>
<td>10,2</td>
</tr>
<tr>
<td>Ganglios +</td>
<td>25</td>
<td>54,3</td>
<td>24</td>
<td>46,2</td>
<td>50,0</td>
</tr>
<tr>
<td>No</td>
<td>13</td>
<td>28,3</td>
<td>22</td>
<td>42,3</td>
<td>35,7</td>
</tr>
<tr>
<td>N1</td>
<td>8</td>
<td>17,4</td>
<td>6</td>
<td>11,5</td>
<td>14,3</td>
</tr>
<tr>
<td>Nº Ganglios + 0-1-3 más de 4</td>
<td>25</td>
<td>54,3</td>
<td>24</td>
<td>46,2</td>
<td>50,0</td>
</tr>
<tr>
<td>Cápsula rota +</td>
<td>11</td>
<td>3,9</td>
<td>7</td>
<td>15,4</td>
<td>19,4</td>
</tr>
<tr>
<td>-</td>
<td>35</td>
<td>76,1</td>
<td>44</td>
<td>84,6</td>
<td>80,6</td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>5</td>
<td>10,9</td>
<td>4</td>
<td>7,7</td>
<td>9,2</td>
</tr>
<tr>
<td>II</td>
<td>26</td>
<td>56,5</td>
<td>36</td>
<td>69,2</td>
<td>63,3</td>
</tr>
<tr>
<td>III</td>
<td>15</td>
<td>32,6</td>
<td>12</td>
<td>23,1</td>
<td>27,6</td>
</tr>
<tr>
<td>Grado Histol. I</td>
<td>6</td>
<td>13,0</td>
<td>7</td>
<td>13,5</td>
<td>13,3</td>
</tr>
<tr>
<td>II</td>
<td>26</td>
<td>56,5</td>
<td>37</td>
<td>71,2</td>
<td>64,3</td>
</tr>
<tr>
<td>III</td>
<td>14</td>
<td>30,4</td>
<td>8</td>
<td>15,4</td>
<td>22,4</td>
</tr>
<tr>
<td>Estadificación I</td>
<td>18</td>
<td>39,1</td>
<td>19</td>
<td>36,5</td>
<td>37,8</td>
</tr>
<tr>
<td>II</td>
<td>20</td>
<td>43,5</td>
<td>23</td>
<td>44,2</td>
<td>43,9</td>
</tr>
<tr>
<td>III</td>
<td>8</td>
<td>17,4</td>
<td>10</td>
<td>19,2</td>
<td>18,4</td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>19</td>
<td>41,3</td>
<td>32</td>
<td>61,5</td>
<td>52,0</td>
</tr>
<tr>
<td>-</td>
<td>27</td>
<td>58,7</td>
<td>20</td>
<td>38,5</td>
<td>48,0</td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>19</td>
<td>1,3</td>
<td>16</td>
<td>30,8</td>
<td>35,7</td>
</tr>
<tr>
<td>-</td>
<td>27</td>
<td>58,7</td>
<td>36</td>
<td>69,2</td>
<td>64,3</td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>26</td>
<td>56,5</td>
<td>32</td>
<td>63,5</td>
<td>60,2</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>43,5</td>
<td>19</td>
<td>36,5</td>
<td>39,8</td>
</tr>
<tr>
<td>Ki67 +</td>
<td>24</td>
<td>60,0</td>
<td>18</td>
<td>40,0</td>
<td>49,4</td>
</tr>
<tr>
<td>-</td>
<td>16</td>
<td>40,0</td>
<td>27</td>
<td>60,0</td>
<td>50,6</td>
</tr>
<tr>
<td>PCNA +</td>
<td>25</td>
<td>58,1</td>
<td>19</td>
<td>41,3</td>
<td>49,4</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>41,9</td>
<td>27</td>
<td>58,7</td>
<td>50,6</td>
</tr>
<tr>
<td>P53 +</td>
<td>11</td>
<td>25,0</td>
<td>12</td>
<td>24,0</td>
<td>24,5</td>
</tr>
<tr>
<td>-</td>
<td>33</td>
<td>75,0</td>
<td>38</td>
<td>76,0</td>
<td>75,5</td>
</tr>
<tr>
<td>Catepsina D +</td>
<td>23</td>
<td>53,5</td>
<td>22</td>
<td>44,9</td>
<td>48,9</td>
</tr>
<tr>
<td>-</td>
<td>20</td>
<td>46,5</td>
<td>27</td>
<td>55,1</td>
<td>51,1</td>
</tr>
<tr>
<td>Glicoprot. P +</td>
<td>8</td>
<td>32,0</td>
<td>8</td>
<td>25,7</td>
<td>29,1</td>
</tr>
<tr>
<td>-</td>
<td>17</td>
<td>68,0</td>
<td>22</td>
<td>75,3</td>
<td>70,9</td>
</tr>
</tbody>
</table>

7-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular Ki67 y los parámetros clínico-patológicos.

Para el antígeno nuclear de proliferación celular Ki67 se utilizó un valor de corte correspondiente a una tinción positiva de más del 15% de los núcleos teñidos, así 46 tumores...
(42,6%) fueron positivos, 46 negativos (42,6%) y en 16 tumores no se realizó la tinción (14,8%).

En la tabla 15 se resumen todos los datos del análisis de la asociación del ki67 con los parámetros clínico-patológicos. Este demuestra:

1) Una asociación muy significativa entre la inmunorreactividad positiva para el ki67 y la diferenciación tumoral según:
 a) El grado nuclear. El 97,8% de los tumores ki67+ (n=45) correspondieron a tumores con grado nuclear II y III. Se observa una mayor proporción de tumores ki67+ indiferenciados (p=0,0007).
 b) El grado histológico. El 93,4% de los cánceres ki67+ (n=43) se distribuían en grados histológicos medios y altos, de estos el 39,1% (n=18) correspondían a un grado histológico III (p=0,0004).

2) Una ausencia de significación estadística entre el ki67 y: el estado hormonal, el tipo de tumor, el tamaño tumoral, el estado nodal, el número de ganglios, el tamaño ganglionar, el desbordamiento de la cápsula ganglionar, la estadificación, la radioterapia, la administración de citostáticos y tamoxifén.

7-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular ki67 y los marcadores tumorales moleculares.

Los resultados se presentan en la tabla 15 y en las tablas 9 – 14.

1) En esta serie hemos observado una asociación fuertemente significativa entre los antígenos nucleares de proliferación celular ki67 y PCNA. El 81% de los cánceres con tinción positiva para el ki67 (n=34) fueron inmunorreactivos positivos para el PCNA (p=0,0000).

2) Se objetivó una relación positiva significativa entre los tumores ki67+ y la proteína p53. El 63,6% de los cánceres con inmunotinción positiva para ki67 (n=28) mostraron ausencia de tinción para la proteína p53, sin embargo, se objetivó una mayor proporción de cánceres ki67+p53+ (p=0,01).

3) En esta serie no hemos evidenciado una asociación estadísticamente significativa entre los tumores ki67+ y la catepsina D, y la glicoproteína P.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Ki67 +</th>
<th></th>
<th>Ki67 -</th>
<th></th>
<th>Total</th>
<th>Fila</th>
<th>Ausencias</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td>% columna</td>
<td>n=</td>
<td>% columna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premenopausia</td>
<td>10</td>
<td>21,7</td>
<td>9</td>
<td>39,1</td>
<td>20,7</td>
<td>16</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>36</td>
<td>78,3</td>
<td>37</td>
<td>80,4</td>
<td>79,3</td>
<td>16</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>Tumor Único</td>
<td>41</td>
<td>89,1</td>
<td>41</td>
<td>89,1</td>
<td>89,1</td>
<td>16</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>5</td>
<td>10,9</td>
<td>5</td>
<td>10,9</td>
<td>10,9</td>
<td>16</td>
<td>0,63</td>
<td></td>
</tr>
<tr>
<td>Tamaño tumor 2 < (cm)</td>
<td>15</td>
<td>32,6</td>
<td>25</td>
<td>54,3</td>
<td>43,5</td>
<td>16</td>
<td>0,09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>58,7</td>
<td>17</td>
<td>37,0</td>
<td>47,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8,7</td>
<td>4</td>
<td>8,7</td>
<td>8,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>茂 Glóbulos + No</td>
<td>22</td>
<td>47,8</td>
<td>26</td>
<td>56,5</td>
<td>52,2</td>
<td>16</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>16</td>
<td>34,8</td>
<td>14</td>
<td>30,4</td>
<td>32,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>8</td>
<td>17,4</td>
<td>6</td>
<td>13,0</td>
<td>15,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° Ganglios + 0</td>
<td>22</td>
<td>47,8</td>
<td>25</td>
<td>54,3</td>
<td>51,1</td>
<td>16</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>1-3</td>
<td>14</td>
<td>30,4</td>
<td>14</td>
<td>30,4</td>
<td>30,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>más de 4</td>
<td>10</td>
<td>21,7</td>
<td>7</td>
<td>15,2</td>
<td>18,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Gangl.1,8 < (cm)</td>
<td>19</td>
<td>43,2</td>
<td>28</td>
<td>55,8</td>
<td>49,4</td>
<td>21</td>
<td>0,17</td>
<td></td>
</tr>
<tr>
<td>1,8 ></td>
<td>25</td>
<td>56,8</td>
<td>19</td>
<td>44,2</td>
<td>50,6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cápula rota +</td>
<td>10</td>
<td>21,7</td>
<td>7</td>
<td>15,2</td>
<td>18,5</td>
<td>16</td>
<td>0,29</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>36</td>
<td>78,3</td>
<td>39</td>
<td>84,8</td>
<td>81,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>1</td>
<td>2,2</td>
<td>7</td>
<td>15,2</td>
<td>8,7</td>
<td>16</td>
<td>0,0007</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>27</td>
<td>58,7</td>
<td>35</td>
<td>76,1</td>
<td>67,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>18</td>
<td>39,1</td>
<td>4</td>
<td>8,7</td>
<td>23,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado Histol. I</td>
<td>III</td>
<td>10</td>
<td>21,7</td>
<td>33</td>
<td>71,7</td>
<td>41,4</td>
<td>16</td>
<td>0,0004</td>
</tr>
<tr>
<td>II</td>
<td>25</td>
<td>54,3</td>
<td>10</td>
<td>21,7</td>
<td>14,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>18</td>
<td>39,1</td>
<td>3</td>
<td>6,5</td>
<td>22,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadificación I</td>
<td>II</td>
<td>14</td>
<td>30,4</td>
<td>22</td>
<td>47,8</td>
<td>39,1</td>
<td>16</td>
<td>0,23</td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>21,7</td>
<td>17</td>
<td>37,0</td>
<td>42,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Captopotropia +</td>
<td>20</td>
<td>5,7</td>
<td>28</td>
<td>60,9</td>
<td>53,3</td>
<td>16</td>
<td>0,10</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>25</td>
<td>54,3</td>
<td>18</td>
<td>39,1</td>
<td>46,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>21</td>
<td>5,7</td>
<td>13</td>
<td>28,3</td>
<td>37,0</td>
<td>16</td>
<td>0,06</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>25</td>
<td>54,3</td>
<td>33</td>
<td>71,7</td>
<td>63,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>24</td>
<td>2,2</td>
<td>28</td>
<td>60,9</td>
<td>56,5</td>
<td>16</td>
<td>0,26</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>47,8</td>
<td>18</td>
<td>39,1</td>
<td>43,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA</td>
<td>34</td>
<td>81,0</td>
<td>11</td>
<td>74,4</td>
<td>52,9</td>
<td>23</td>
<td>0,0000</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>8</td>
<td>19,0</td>
<td>32</td>
<td>25,6</td>
<td>47,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>16</td>
<td>36,4</td>
<td>6</td>
<td>14,0</td>
<td>25,3</td>
<td>21</td>
<td>0,01</td>
<td></td>
</tr>
<tr>
<td>PS3</td>
<td>28</td>
<td>63,6</td>
<td>37</td>
<td>86,0</td>
<td>74,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catapmsina D +</td>
<td>22</td>
<td>51,2</td>
<td>21</td>
<td>48,8</td>
<td>50,0</td>
<td>22</td>
<td>0,50</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>48,8</td>
<td>22</td>
<td>51,2</td>
<td>50,0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicoprot. P +</td>
<td>6</td>
<td>26,1</td>
<td>12</td>
<td>44,4</td>
<td>36,0</td>
<td>58</td>
<td>0,15</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>17</td>
<td>73,9</td>
<td>15</td>
<td>55,6</td>
<td>64,0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación PCNA y los parámetros clínico-patológicos.

Se utilizó como dintel de positividad para el PCNA la tinción positiva superior al 16% de los núcleos teñidos, de este modo, 49 tumores (45,4%) fueron considerados PCNA positivos y 46 PCNA negativos (42,6%). En 13 casos (12%) no se realizó la tinción IHQ.
Resultados

Según se expresa en la tabla 16 donde se resumen los datos, el análisis de la asociación entre el PCNA y los parámetros clínico-patológicos reveló:

1) Una relación inversa significativa entre la tinción IHQ positiva del antígeno nuclear (PCNA) y la diferenciación tumoral medida según:
 a) El grado nuclear. El 97,9% de los cánceres PCNA+ (n=45) correspondieron a grados nucleares medios y altos. De estos, el 37% (n=17) correspondieron a cánceres indiferenciados ($p=0.009$).
 b) El grado histológico, correspondiéndose también con cánceres moderadamente y mal diferenciados. El 32,6% de los cánceres PCNA+ (n=15) fueron clasificados con un grado histológico III ($p=0.002$),

2) Una ausencia de asociación estadísticamente significativa entre el PCNA y: el estado hormonal, el tipo de tumor, el tamaño tumoral, el estado ganglionar, el número de ganglios afectados, el tamaño ganglionar, la rotura de la cápsula ganglionar, la estadificación, recibir radioterapia, la administración de citotóxicos y tamoxifén.

8-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación PCNA y los marcadores tumorales moleculares.

Los datos están representados en la tabla 16 y las tablas 9 – 15.

1) Se observó una asociación muy significativa entre los tumores con inmunorreactividad positiva para el antígeno nuclear PCNA y tinción positiva para la proteína p53. Aunque el 61,4% de los cánceres PCNA+ (n=27) fueron p53-, se evidencia una mayor proporción de tumores PCNA+p53+ ($p=0.002$).

2) No objetivamos una asociación estadísticamente significativa entre los tumores PCNA+ y la catepsina D y la glicoproteína P.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>PCNA + n=</th>
<th>PCNA - n=</th>
<th>Total % Fila</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausia</td>
<td>10</td>
<td>36</td>
<td>17,9</td>
<td>13</td>
<td>0,25</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>21,7</td>
<td>85,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Unico</td>
<td>41</td>
<td>43</td>
<td>88,4</td>
<td>13</td>
<td>0,54</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>8,9</td>
<td>12,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño tumor 2 < (cm)</td>
<td>18</td>
<td>23</td>
<td>43,2</td>
<td>13</td>
<td>0,35</td>
</tr>
<tr>
<td>2-5</td>
<td>25</td>
<td>20</td>
<td>47,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ></td>
<td>3</td>
<td>6</td>
<td>9,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios +</td>
<td>22</td>
<td>26</td>
<td>50,5</td>
<td>13</td>
<td>0,62</td>
</tr>
<tr>
<td>No</td>
<td>15</td>
<td>17</td>
<td>33,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>9</td>
<td>6</td>
<td>15,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° Ganglios +</td>
<td>22</td>
<td>25</td>
<td>49,5</td>
<td>13</td>
<td>0,64</td>
</tr>
<tr>
<td>N1-3</td>
<td>13</td>
<td>16</td>
<td>30,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>más de 4</td>
<td>11</td>
<td>8</td>
<td>20,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Gangl. 1,8 < (cm)</td>
<td>21</td>
<td>26</td>
<td>52,2</td>
<td>18</td>
<td>0,34</td>
</tr>
<tr>
<td>1,8 ></td>
<td>22</td>
<td>21</td>
<td>47,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cápula rota +</td>
<td>10</td>
<td>7</td>
<td>14,3</td>
<td>13</td>
<td>0,25</td>
</tr>
<tr>
<td>Cápula rota -</td>
<td>36</td>
<td>42</td>
<td>82,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>1</td>
<td>7</td>
<td>14,3</td>
<td>13</td>
<td>0,009</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>11</td>
<td>12,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>30</td>
<td>32</td>
<td>65,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado Histol. I</td>
<td>1</td>
<td>1</td>
<td>14,3</td>
<td>13</td>
<td>0,002</td>
</tr>
<tr>
<td>II</td>
<td>12</td>
<td>11</td>
<td>12,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>30</td>
<td>32</td>
<td>65,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadificación I</td>
<td>15</td>
<td>20</td>
<td>36,8</td>
<td>13</td>
<td>0,67</td>
</tr>
<tr>
<td>II</td>
<td>21</td>
<td>21</td>
<td>44,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>10</td>
<td>8</td>
<td>18,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>21</td>
<td>30</td>
<td>53,7</td>
<td>13</td>
<td>0,09</td>
</tr>
<tr>
<td>-</td>
<td>25</td>
<td>19</td>
<td>46,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>19</td>
<td>14</td>
<td>34,7</td>
<td>13</td>
<td>0,14</td>
</tr>
<tr>
<td>-</td>
<td>27</td>
<td>35</td>
<td>65,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>24</td>
<td>34</td>
<td>61,1</td>
<td>13</td>
<td>0,06</td>
</tr>
<tr>
<td>-</td>
<td>22</td>
<td>15</td>
<td>38,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p53</td>
<td>17</td>
<td>5</td>
<td>24,7</td>
<td>19</td>
<td>0,002</td>
</tr>
<tr>
<td>+</td>
<td>27</td>
<td>40</td>
<td>75,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>23</td>
<td>49,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catepsina D +</td>
<td>23</td>
<td>22</td>
<td>50,6</td>
<td>19</td>
<td>0,46</td>
</tr>
<tr>
<td>-</td>
<td>21</td>
<td>23</td>
<td>49,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicoprot. P +</td>
<td>10</td>
<td>8</td>
<td>33,3</td>
<td>54</td>
<td>0,25</td>
</tr>
<tr>
<td>-</td>
<td>15</td>
<td>21</td>
<td>66,7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9-a) Análisis de la asociación entre la expresión del oncogén supresor (p53) y los parámetros clínico-patológicos.

En 23 tumores (21,3%) se detectó la proteína producto del oncogén supresor p53, en 78 tumores (72,2%) la tinción fue negativa y en 7 no se efectuó (6,5%) la determinación.

Los datos relacionados con el análisis del grado de asociación entre la p53 y los parámetros clínico-patológicos están representados en la tabla 17. Esta comparación mostró:
1) Una asociación muy significativa entre la expresión positiva del oncogén supresor p53 y el grado de diferenciación tumoral, así se observó una mayor proporción de cánceres p53+ con:
 a) El grado nuclear III. El 56,5% de cánceres p53+ (n=13) correspondieron a un GN III ($p=0.0006$).
 b) Un alto grado histológico. También un 56,5% de los cánceres p53+ (n=13) fueron clasificados en un grado histológico III ($p=0.00006$).

2) Una ausencia de asociación estadísticamente significativa entre la p53 y ninguno de los otros parámetros clínico-patológicos.

9-b) Análisis de la asociación entre la expresión del oncogén supresor (p53) y los marcadores tumorales moleculares.

Los datos del análisis del grado de asociación de la proteína p53 con los marcadores tumorales moleculares se resumen en las tablas 17 y las tablas 9 – 16.

No hemos observado una asociación estadísticamente significativa entre la p53 y: la catepsina D y glicoproteína P.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>p53 + n=</th>
<th>% columna</th>
<th>p53 - n=</th>
<th>% columna</th>
<th>Total % Fila</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausia</td>
<td>5</td>
<td>21,7</td>
<td>15</td>
<td>19,2</td>
<td>19,8</td>
<td>7</td>
<td>0,49</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>18</td>
<td>78,3</td>
<td>63</td>
<td>80,8</td>
<td>80,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Único</td>
<td>22</td>
<td>95,7</td>
<td>68</td>
<td>87,2</td>
<td>89,1</td>
<td>7</td>
<td>0,23</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>1</td>
<td>4,3</td>
<td>10</td>
<td>12,8</td>
<td>10,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Tumor</td>
<td>2 <</td>
<td>8</td>
<td>38</td>
<td>50,0</td>
<td>50,5</td>
<td>7</td>
<td>0,44</td>
</tr>
<tr>
<td>(cm)</td>
<td>5-2</td>
<td>12</td>
<td>34</td>
<td>38,5</td>
<td>34,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 ></td>
<td>3</td>
<td>6</td>
<td>11,5</td>
<td>14,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios +</td>
<td>12</td>
<td>52,2</td>
<td>39</td>
<td>50,0</td>
<td>50,5</td>
<td>7</td>
<td>0,14</td>
</tr>
<tr>
<td>No N1</td>
<td>5</td>
<td>21,7</td>
<td>30</td>
<td>38,5</td>
<td>34,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2 Nº Ganglios + 0</td>
<td>6</td>
<td>26,1</td>
<td>9</td>
<td>11,5</td>
<td>14,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3 más de 4</td>
<td>12</td>
<td>2,2</td>
<td>39</td>
<td>50,0</td>
<td>50,5</td>
<td>7</td>
<td>0,44</td>
</tr>
<tr>
<td>Tamaño Gangl.1.8 <</td>
<td>12</td>
<td>42,9</td>
<td>41</td>
<td>55,4</td>
<td>52,6</td>
<td>13</td>
<td>0,22</td>
</tr>
<tr>
<td>(cm)</td>
<td>6</td>
<td>57,1</td>
<td>33</td>
<td>44,6</td>
<td>47,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cápsula rota +</td>
<td>4</td>
<td>17,4</td>
<td>15</td>
<td>19,2</td>
<td>18,8</td>
<td>7</td>
<td>0,55</td>
</tr>
<tr>
<td>- N° Ganglios + 0</td>
<td>19</td>
<td>82,6</td>
<td>63</td>
<td>80,8</td>
<td>81,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear</td>
<td>10</td>
<td>43,5</td>
<td>9</td>
<td>11,5</td>
<td>8,9</td>
<td>7</td>
<td>0,0006</td>
</tr>
<tr>
<td>II</td>
<td>13</td>
<td>56,5</td>
<td>55</td>
<td>70,5</td>
<td>64,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>14</td>
<td>56,5</td>
<td>14</td>
<td>17,9</td>
<td>26,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado Histol.</td>
<td>1</td>
<td>4,3</td>
<td>13</td>
<td>16,7</td>
<td>13,9</td>
<td>7</td>
<td>0,0006</td>
</tr>
<tr>
<td>I</td>
<td>9</td>
<td>39,1</td>
<td>55</td>
<td>70,5</td>
<td>63,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>13</td>
<td>56,5</td>
<td>14</td>
<td>17,9</td>
<td>22,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>11</td>
<td>43,5</td>
<td>31</td>
<td>39,7</td>
<td>40,6</td>
<td>7</td>
<td>0,21</td>
</tr>
<tr>
<td>Estadificación</td>
<td>10</td>
<td>30,4</td>
<td>13</td>
<td>16,7</td>
<td>19,8</td>
<td>7</td>
<td>0,53</td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>26,1</td>
<td>34</td>
<td>43,6</td>
<td>39,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>43,5</td>
<td>31</td>
<td>39,7</td>
<td>40,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>13</td>
<td>56,5</td>
<td>13</td>
<td>16,7</td>
<td>19,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioterapia</td>
<td>12</td>
<td>52,2</td>
<td>42</td>
<td>53,8</td>
<td>53,5</td>
<td>7</td>
<td>0,48</td>
</tr>
<tr>
<td>+</td>
<td>11</td>
<td>47,8</td>
<td>36</td>
<td>46,2</td>
<td>46,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quimioterapia</td>
<td>9</td>
<td>39,1</td>
<td>28</td>
<td>35,9</td>
<td>36,6</td>
<td>7</td>
<td>0,04</td>
</tr>
<tr>
<td>+</td>
<td>14</td>
<td>60,9</td>
<td>50</td>
<td>64,1</td>
<td>63,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hormonoterapia</td>
<td>14</td>
<td>60,9</td>
<td>45</td>
<td>57,5</td>
<td>58,4</td>
<td>7</td>
<td>0,49</td>
</tr>
<tr>
<td>+</td>
<td>9</td>
<td>39,1</td>
<td>33</td>
<td>42,3</td>
<td>41,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catepsina D</td>
<td>12</td>
<td>54,5</td>
<td>33</td>
<td>46,5</td>
<td>48,4</td>
<td>15</td>
<td>0,34</td>
</tr>
<tr>
<td>+</td>
<td>10</td>
<td>45,5</td>
<td>38</td>
<td>53,5</td>
<td>51,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicoprot. P +</td>
<td>4</td>
<td>28,6</td>
<td>12</td>
<td>30,8</td>
<td>30,2</td>
<td>55</td>
<td>0,58</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>71,4</td>
<td>27</td>
<td>69,2</td>
<td>69,8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10-a) Análisis de la asociación entre la expresión de Catepsina D y los parámetros clínico-patológicos.

La presencia de la proteasa citosólica catepsina D fue detectada en 45 de los cánceres (45,4%), en 51 no se detectó (47,2%) y en 8 no se pudo determinar (7,4%).

El análisis de la relación de esta proteasa con los parámetros clínico-patológicos expresado en la tabla 18 reflejó:

1) Una asociación significativa entre la falta de tinción positiva para la catepsina D y haber recibido tratamiento hormonal. Al 70,6% de los cánceres catepsina D- (n=36) se les administró tamoxifén (p=0,04).
2) Una falta de relación estadísticamente significativa entre la catépsina D y el resto de los parámetros clínico-patológicos.

10-b) Análisis de la asociación entre la expresión de Catépsina D y los marcadores tumorales moleculares.

En las tablas 9 a 17 se representan los resultados del análisis del grado de asociación entre la catépsina D y los marcadores tumorales moleculares.

1) Hemos observado una relación directa entre la tinción positiva de catépsina D y la tinción positiva de glicoproteína P. Esta asociación se aproximó a la significación estadística (p=0,06).

<table>
<thead>
<tr>
<th>Tabla 18. Asociación entre la inmunorreactividad de la catépsina D y los parámetros clínico-patológicos y la glicoproteína P. Chi cuadrado. Prueba exacta de Fisher.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetros</td>
</tr>
<tr>
<td>premenopausia</td>
</tr>
<tr>
<td>postmenopausia</td>
</tr>
<tr>
<td>Tumor Único T. Multicéntrico</td>
</tr>
<tr>
<td>Tamaño tumor 2<</td>
</tr>
<tr>
<td>Tamaño tumor 2–5</td>
</tr>
<tr>
<td>Tamaño tumor 5 ></td>
</tr>
<tr>
<td>Ganglios + No</td>
</tr>
<tr>
<td>Ganglios + No N1</td>
</tr>
<tr>
<td>Ganglios + No N2</td>
</tr>
<tr>
<td>N° Ganglios + 0</td>
</tr>
<tr>
<td>N° Ganglios + 0 1-3 más de 4</td>
</tr>
<tr>
<td>N° Ganglios + 0 1,8<</td>
</tr>
<tr>
<td>N° Ganglios + 0 1,8></td>
</tr>
<tr>
<td>Cápula rota +</td>
</tr>
<tr>
<td>Cápula rota -</td>
</tr>
<tr>
<td>Grado nuclear I</td>
</tr>
<tr>
<td>Grado nuclear II</td>
</tr>
<tr>
<td>Grado nuclear III</td>
</tr>
<tr>
<td>Grado Histol. I</td>
</tr>
<tr>
<td>Grado Histol. II</td>
</tr>
<tr>
<td>Grado Histol. III</td>
</tr>
<tr>
<td>Estadificación I</td>
</tr>
<tr>
<td>Estadificación II</td>
</tr>
<tr>
<td>Estadificación III</td>
</tr>
<tr>
<td>Radioterapia +</td>
</tr>
<tr>
<td>Radioterapia –</td>
</tr>
<tr>
<td>Quimioterapia +</td>
</tr>
<tr>
<td>Quimioterapia –</td>
</tr>
<tr>
<td>Hormonoterapia +</td>
</tr>
<tr>
<td>Hormonoterapia –</td>
</tr>
<tr>
<td>Glicoproteína P +</td>
</tr>
<tr>
<td>Glicoproteína P –</td>
</tr>
</tbody>
</table>
11-a) Análisis de la asociación entre la expresión de la Glicoproteína P y los parámetros clínico-patológicos.

La determinación de glicoproteína P se realizó en 58 tumores, objetivando una tinción positiva en 19 casos (16,7%) y negativa en 40 casos (37%).

En la tabla 18 están expresados los resultados del análisis de la asociación entre la glicoproteína P y los parámetros clínico-patológicos. Este análisis mostró una:

1) Asociación significativa entre la tinción positiva para la Glicoproteína P y tamaño tumoral, así, un 66,7% de los cánceres glicoproteína P+ (n=12) medían menos de 2 cm ($p=0,02$).

2) Ausencia de asociación significativa entre la glicoproteína P y el resto de los marcadores tumorales moleculares.

11-b) Análisis de la asociación entre la expresión de la Glicoproteína P y los marcadores moleculares tumorales.

Los datos se presentan en la tabla 19. El grado de asociación con los marcadores tumorales moleculares se comenta en los apartados anteriores y en las tablas 9 – 18 y 20 y 21.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Glicopr. P +</th>
<th>Glicopr. P –</th>
<th>% Total Fila</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausia</td>
<td>8</td>
<td>11</td>
<td>19,0</td>
<td>50</td>
<td>0,34</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>41</td>
<td>40</td>
<td>81,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tumor Único</td>
<td>16</td>
<td>36</td>
<td>89,7</td>
<td>50</td>
<td>0,61</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>2</td>
<td>4</td>
<td>10,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Tumor 2–5 (cm)</td>
<td>12</td>
<td>11</td>
<td>39,7</td>
<td>50</td>
<td>0,02</td>
</tr>
<tr>
<td>5 ></td>
<td>1</td>
<td>7</td>
<td>13,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglios + No</td>
<td>12</td>
<td>20</td>
<td>52,2</td>
<td>50</td>
<td>0,49</td>
</tr>
<tr>
<td>N1</td>
<td>4</td>
<td>14</td>
<td>31,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>2</td>
<td>6</td>
<td>13,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N° de Ganglios + 0 1-3</td>
<td>12</td>
<td>20</td>
<td>52,2</td>
<td>50</td>
<td>0,49</td>
</tr>
<tr>
<td>más de 4</td>
<td>2</td>
<td>7</td>
<td>15,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamaño Gangl. 1,8 < 1,8 ></td>
<td>12</td>
<td>18</td>
<td>54,5</td>
<td>53</td>
<td>0,16</td>
</tr>
<tr>
<td>Cápsula rota + –</td>
<td>1</td>
<td>8</td>
<td>15,5</td>
<td>50</td>
<td>0,15</td>
</tr>
<tr>
<td>17</td>
<td>32</td>
<td>84,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado nuclear I II III</td>
<td>11 2 5</td>
<td>27 3 10</td>
<td>29,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grado Histol. I II III</td>
<td>2 12 4</td>
<td>6 36 8</td>
<td>39,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estadificación I II III</td>
<td>11 12 15</td>
<td>12 26 8</td>
<td>39,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radioterapia + –</td>
<td>12 6</td>
<td>20 20</td>
<td>55,2</td>
<td></td>
<td>0,18</td>
</tr>
<tr>
<td>Quimioterapia + –</td>
<td>5 13</td>
<td>17 23</td>
<td>37,9</td>
<td></td>
<td>0,22</td>
</tr>
<tr>
<td>Hormonoterapia + –</td>
<td>9 9</td>
<td>22 18</td>
<td>53,4</td>
<td></td>
<td>0,47</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Estado hormonal</td>
<td>0,43</td>
<td>0,24</td>
<td>0,56</td>
<td>0,25</td>
<td>0,63</td>
</tr>
<tr>
<td>Tipo de tumor</td>
<td>0,27</td>
<td>0,29</td>
<td>0,54</td>
<td>0,53</td>
<td>0,45</td>
</tr>
<tr>
<td>Tamaño tumoral</td>
<td>0,91</td>
<td>0,25</td>
<td>0,10</td>
<td>0,28</td>
<td>0,26</td>
</tr>
<tr>
<td>Estadio Nodal</td>
<td>0,15</td>
<td>0,62</td>
<td>0,35</td>
<td>0,39</td>
<td>0,58</td>
</tr>
<tr>
<td>Número de ganglios</td>
<td>0,33</td>
<td>0,23</td>
<td>0,35</td>
<td>0,58</td>
<td>0,51</td>
</tr>
<tr>
<td>Tamaño ganglionar</td>
<td>0,02</td>
<td>0,46</td>
<td>0,20</td>
<td>0,31</td>
<td>0,34</td>
</tr>
<tr>
<td>Rotura capsular</td>
<td>0,36</td>
<td>0,38</td>
<td>0,18</td>
<td>0,45</td>
<td>0,58</td>
</tr>
<tr>
<td>Grado nuclear</td>
<td>0,0004</td>
<td>0,02</td>
<td>0,04</td>
<td>0,17</td>
<td>0,0001</td>
</tr>
<tr>
<td>Grado histológico</td>
<td>0,0001</td>
<td>0,005</td>
<td>0,04</td>
<td>0,01</td>
<td>0,0003</td>
</tr>
<tr>
<td>Estadificación</td>
<td>0,56</td>
<td>0,24</td>
<td>0,58</td>
<td>0,48</td>
<td>0,82</td>
</tr>
<tr>
<td>Radioterapia</td>
<td>0,35</td>
<td>0,51</td>
<td>0,03</td>
<td>0,33</td>
<td>0,06</td>
</tr>
<tr>
<td>Quimioterapia</td>
<td>0,09</td>
<td>0,52</td>
<td>0,27</td>
<td>0,35</td>
<td>0,50</td>
</tr>
<tr>
<td>Hormonoterapia</td>
<td>0,02</td>
<td>0,12</td>
<td>0,22</td>
<td>0,32</td>
<td>0,38</td>
</tr>
</tbody>
</table>
TABLA 21. GRADO DE ASOCIACIÓN ENTRE LOS MARCADORES TUMORALES MOLECULARES.

<table>
<thead>
<tr>
<th>Marcador/valor p=</th>
<th>RE</th>
<th>RPg</th>
<th>pS2</th>
<th>Hsp27</th>
<th>EGFR</th>
<th>C-erbB-2</th>
<th>Ki-67</th>
<th>PCNA</th>
<th>p53</th>
<th>Catepsina D</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE</td>
<td></td>
</tr>
<tr>
<td>RPg</td>
<td>0,00001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pS2</td>
<td>0,004</td>
<td>0,02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsp27</td>
<td>0,38</td>
<td>0,38</td>
<td>0,15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>0,00002</td>
<td>0,02</td>
<td>0,14</td>
<td>0,63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-erbB-2</td>
<td>0,05</td>
<td>0,05</td>
<td>0,36</td>
<td>0,14</td>
<td>0,07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki-67</td>
<td>0,008</td>
<td>0,008</td>
<td>0,35</td>
<td>0,08</td>
<td>0,23</td>
<td>0,05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA</td>
<td>0,009</td>
<td>0,002</td>
<td>0,56</td>
<td>0,006</td>
<td>0,19</td>
<td>0,08</td>
<td>0,0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p53</td>
<td>0,03</td>
<td>0,06</td>
<td>0,25</td>
<td>0,24</td>
<td>0,13</td>
<td>0,55</td>
<td>0,01</td>
<td>0,002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catepsina D</td>
<td>0,36</td>
<td>0,17</td>
<td>0,02</td>
<td>0,46</td>
<td>0,35</td>
<td>0,27</td>
<td>0,50</td>
<td>0,46</td>
<td>0,34</td>
<td></td>
</tr>
<tr>
<td>Glicoproteína P</td>
<td>0,22</td>
<td>0,09</td>
<td>0,32</td>
<td>0,19</td>
<td>0,48</td>
<td>0,44</td>
<td>0,15</td>
<td>0,25</td>
<td>0,58</td>
<td>0,06</td>
</tr>
</tbody>
</table>
I-C. ANÁLISIS DE LOS TUMORES QUE DESARROLLARON METÁSTASIS DURANTE LOS 36 MESES DE SEGUIMIENTO.

1-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces.

Durante los 36 meses posteriores al tratamiento quirúrgico aparecieron metástasis en 16 pacientes (14,8%). En la tabla 22a y 22b se representan los datos del análisis del grado de asociación y del riesgo relativo de recidiva a 36 meses con relación a los parámetros clínico-patológicos. Esta comparación mostró:

1) Una relación directa entre el desarrollo de metástasis y la afectación ganglionar axilar. Diez de las pacientes (62,5%) que recidivaron presentaban cánceres con positividad de los ganglios axilares. Esta asociación no alcanzó la significación fijada en el diseño (p=0,08).

2) Las recidivas también se relacionaron con el número de ganglios axilares. En seis de las enfermas (37,5%) que desarrollaron metástasis se habían contabilizado previamente 4 o más ganglios axilares infiltrados por tumor. La asociación también es directa sin alcanzar la significación estadística (p=0,07).

3) Se observó una asociación entre los tumores que desarrollaron enfermedad metastásica y el desbordamiento de la cápsula de la cápsula ganglionar. El 62,5% de los casos que recidivaron (n=10) tuvieron ganglios axilares positivos con su cápsula intacta. Sin embargo, si examinamos la tabla 22a apreciamos una mayor proporción de recidivas en los cánceres cuyos ganglios presentaron rotura de la cápsula ganglionar (recidivas/cápsula rota: 6/20, vs recidiva/cápsula intacta: 10/88, 11,4%; p=0,04).

4) Siete de las recidivas (43,8%) correspondieron a pacientes clasificados en un estadio III (p=0,01).

5) El 75% de las metástasis (n=12) se produjeron en pacientes con cánceres únicos, sin embargo, hay una mayor proporción de recidivas en el grupo de cánceres multicéntricos (4/11, 36,4%) en comparación con los únicos (12/97, 12,4%), (p=0,05).

6) En esta serie no se objetivó una asociación estadísticamente significativa entre las recidivas y:

a) El tamaño tumoral, aunque en el 68,8% de los casos que desarrollaron metástasis (n=11), los cánceres medían más de 2 cm.

b) El tamaño ganglionar. En el 61,5% (n=8) de los cánceres con ganglios axilares positivos sus adenopatías medían menos de 2 cm de diámetro.

c) El grado nuclear. No recidivó ningún cáncer de grado nuclear I; en cambio el 31,2% de las recidivas (n=5) se produjeron en cánceres de grado nuclear III.
d) El grado histológico, produciéndose el 87,5% de recidivas (n=14) en cánceres con grados histológicos medios y altos.

e) El estado hormonal. El 81,3% de las enfermas que desarrollaron enfermedad metastásica (n=13) correspondieron a pacientes postmenopáusicas.

f) Radioterapia. Habían sido radiadas más de la mitad (56,2%) de las pacientes que recidivaron.

g) Tratamiento con citostáticos. Al 56,3% de las pacientes que desarrollaron metástasis (n=9) no se les había administrado quimioterapia.

h) Hormonoterapia. La mitad de las pacientes que recidivaron (n=8) estaban recibiendo tamoxifén.

Tabla 22a. Asociación entre parámetros clínico-patológicos y recidiva a 36 meses. Chi cuadrado. Prueba exacta de Fisher.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Recidiva n=</th>
<th>Recidiva % columna</th>
<th>Sin Recidiva n=</th>
<th>Sin Recidiva % columna</th>
<th>% Total Fila</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premenopausia</td>
<td>3</td>
<td>18,7</td>
<td>18</td>
<td>19,6</td>
<td>19,4</td>
<td>0,62</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>13</td>
<td>81,3</td>
<td>74</td>
<td>80,4</td>
<td>80,6</td>
<td></td>
</tr>
<tr>
<td>Tumor Único</td>
<td>12</td>
<td>75,0</td>
<td>85</td>
<td>92,4</td>
<td>89,8</td>
<td>0,056</td>
</tr>
<tr>
<td>T. Multicéntrico</td>
<td>4</td>
<td>25,0</td>
<td>7</td>
<td>7,6</td>
<td>10,2</td>
<td></td>
</tr>
<tr>
<td>Tamaño tumoral 2 < (cm)</td>
<td>5</td>
<td>31,3</td>
<td>43</td>
<td>46,7</td>
<td>44,4</td>
<td>0,27</td>
</tr>
<tr>
<td>2-5</td>
<td>8</td>
<td>50,0</td>
<td>42</td>
<td>45,7</td>
<td>46,3</td>
<td></td>
</tr>
<tr>
<td>5 ></td>
<td>3</td>
<td>18,8</td>
<td>7</td>
<td>7,6</td>
<td>9,3</td>
<td></td>
</tr>
<tr>
<td>Ganglios +</td>
<td>6</td>
<td>37,5</td>
<td>50</td>
<td>54,3</td>
<td>51,9</td>
<td>0,08</td>
</tr>
<tr>
<td>N1</td>
<td>5</td>
<td>31,3</td>
<td>32</td>
<td>34,8</td>
<td>34,3</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>5</td>
<td>31,3</td>
<td>10</td>
<td>10,9</td>
<td>13,9</td>
<td></td>
</tr>
<tr>
<td>N< de ganglios + 0</td>
<td>6</td>
<td>37,5</td>
<td>50</td>
<td>54,3</td>
<td>51,9</td>
<td>0,07</td>
</tr>
<tr>
<td>1-3</td>
<td>4</td>
<td>25,0</td>
<td>29</td>
<td>31,5</td>
<td>30,6</td>
<td></td>
</tr>
<tr>
<td>más de 4</td>
<td>6</td>
<td>37,5</td>
<td>13</td>
<td>14,1</td>
<td>17,6</td>
<td></td>
</tr>
<tr>
<td>Tamaño Gangl. 1,8 < (cm)</td>
<td>8</td>
<td>61,5</td>
<td>44</td>
<td>49,4</td>
<td>51,0</td>
<td>0,30</td>
</tr>
<tr>
<td>1,8 ></td>
<td>5</td>
<td>38,5</td>
<td>45</td>
<td>50,6</td>
<td>49,0</td>
<td></td>
</tr>
<tr>
<td>Cápsula rota +</td>
<td>6</td>
<td>37,5</td>
<td>14</td>
<td>15,2</td>
<td>18,5</td>
<td>0,04</td>
</tr>
<tr>
<td>-</td>
<td>10</td>
<td>62,5</td>
<td>78</td>
<td>84,8</td>
<td>81,5</td>
<td></td>
</tr>
<tr>
<td>Grado nuclear I</td>
<td>11</td>
<td>68,7</td>
<td>60</td>
<td>65,2</td>
<td>65,7</td>
<td>0,35</td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>31,3</td>
<td>22</td>
<td>23,9</td>
<td>25,0</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>12,5</td>
<td>13</td>
<td>14,1</td>
<td>13,9</td>
<td></td>
</tr>
<tr>
<td>Grado histológico I</td>
<td>10</td>
<td>62,5</td>
<td>60</td>
<td>65,2</td>
<td>64,8</td>
<td>0,92</td>
</tr>
<tr>
<td>II</td>
<td>4</td>
<td>25,0</td>
<td>19</td>
<td>20,7</td>
<td>21,3</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>18,8</td>
<td>39</td>
<td>42,4</td>
<td>38,9</td>
<td>0,01</td>
</tr>
<tr>
<td>Estadificación I</td>
<td>6</td>
<td>37,5</td>
<td>40</td>
<td>43,5</td>
<td>42,6</td>
<td>0,55</td>
</tr>
<tr>
<td>II</td>
<td>7</td>
<td>43,8</td>
<td>13</td>
<td>14,1</td>
<td>18,5</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>2</td>
<td>56,3</td>
<td>50</td>
<td>54,3</td>
<td>54,6</td>
<td></td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>7</td>
<td>56,3</td>
<td>31</td>
<td>33,7</td>
<td>35,2</td>
<td>0,30</td>
</tr>
<tr>
<td>-</td>
<td>9</td>
<td>43,8</td>
<td>61</td>
<td>66,3</td>
<td>64,8</td>
<td></td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>8</td>
<td>50,0</td>
<td>57</td>
<td>62,0</td>
<td>60,2</td>
<td>0,26</td>
</tr>
<tr>
<td>-</td>
<td>8</td>
<td>50,0</td>
<td>35</td>
<td>38,0</td>
<td>39,8</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 22b. Estimación del riesgo relativo de recidiva a 36 meses con relación a los parámetros clínico-patológicos.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Riesgo Relativo</th>
<th>I.C. al 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postmenopausia/Premenopausia</td>
<td>0,95</td>
<td>0,29 – 3,05</td>
</tr>
<tr>
<td>Tumor Único/T. Multicéntrico</td>
<td>0,34</td>
<td>0,13 – 0,87</td>
</tr>
<tr>
<td>Tamaño tumoral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5 cm / 2 cm <</td>
<td>1,53</td>
<td>0,54 – 4,36</td>
</tr>
<tr>
<td>5 cm > / 2-5 cm</td>
<td>1,90</td>
<td>0,60 – 5,90</td>
</tr>
<tr>
<td>5 cm > / 2 cm <</td>
<td>2,88</td>
<td>0,81 – 10,14</td>
</tr>
<tr>
<td>Ganglios afectados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1/N0</td>
<td>1,26</td>
<td>0,41 – 3,83</td>
</tr>
<tr>
<td>N2/N1</td>
<td>2,50</td>
<td>0,80 – 7,30</td>
</tr>
<tr>
<td>N2/N0</td>
<td>3,11</td>
<td>1,09 – 8,81</td>
</tr>
<tr>
<td>Nº de ganglios +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- 3/0</td>
<td>1,13</td>
<td>0,34 – 3,71</td>
</tr>
<tr>
<td>más de 4/1-3</td>
<td>2,60</td>
<td>0,80 – 8,10</td>
</tr>
<tr>
<td>más de 4/0</td>
<td>2,94</td>
<td>1,07 – 8,05</td>
</tr>
<tr>
<td>Tamaño Gangl.</td>
<td>0,65</td>
<td>0,22 – 1,86</td>
</tr>
<tr>
<td>Cápsula rota/Cápsula intacta</td>
<td>2,64</td>
<td>1,08 – 6,41</td>
</tr>
<tr>
<td>Grado nuclear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/I</td>
<td>3,51</td>
<td>0,22 – 55,52</td>
</tr>
<tr>
<td>III/II</td>
<td>1,20</td>
<td>0,50 – 3,10</td>
</tr>
<tr>
<td>III/I</td>
<td>4,32</td>
<td>0,26 – 71,80</td>
</tr>
<tr>
<td>Grado histológico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/I</td>
<td>1,07</td>
<td>0,26 – 4,39</td>
</tr>
<tr>
<td>III/II</td>
<td>1,20</td>
<td>0,40 – 3,50</td>
</tr>
<tr>
<td>III/I</td>
<td>1,30</td>
<td>0,27 – 6,25</td>
</tr>
<tr>
<td>Estadificación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II/I</td>
<td>1,82</td>
<td>0,48 – 6,84</td>
</tr>
<tr>
<td>III/II</td>
<td>2,70</td>
<td>1,03 – 7,00</td>
</tr>
<tr>
<td>III/I</td>
<td>4,90</td>
<td>1,41 – 16,99</td>
</tr>
<tr>
<td>Radioterapia Si/Radioterapia No</td>
<td>1,06</td>
<td>0,42 – 2,65</td>
</tr>
<tr>
<td>Quimioterapia Si/Quimioterapia No</td>
<td>1,43</td>
<td>0,57 – 3,54</td>
</tr>
<tr>
<td>Hormonoterapia Si/Hormonoterapia No</td>
<td>0,66</td>
<td>0,26 – 1,62</td>
</tr>
</tbody>
</table>

1-b) Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces.

1) En las tablas 23a y 23b están representados los datos del análisis del grado de asociación y del riesgo relativo de recidiva a 36 meses con relación a los marcadores tumorales moleculares. Este análisis evidenció:

2) Una asociación significativa entre el desarrollo de enfermedad metastásica y la tinción positiva para el antígeno nuclear de proliferación celular Ki67, de tal modo, que el 81,2% de las recidivas (n=13), tuvieron tumores ki67+ (p=0,0004). Es decir, recidivaron un porcentaje importante de tumores con altos índices de proliferación celular.

3) Una asociación significativa entre las recidivas y la pS2 objetivando así, una ausencia de tinción para esta proteína en el 93,8% de los casos (n=15) con metástasis (p=0,01). En este caso la mayoría de las recidivas se han producido en pacientes con tumores pS2 negativo.

4) No encontramos una asociación estadísticamente significativa entre las recidivas y:
a) El RE. El 62,5% de los casos con metástasis (n=10) correspondieron a tumores con tinción positiva para RE, aunque proporcionalmente se aprecian más recidivas en cánceres RE negativo.

b) El RPg. El 56,2% de las recidivas (n=9) presentaron cánceres primarios RPg+.

c) La proteína Hsp27. El 92,3% de los casos que desarrollaron metástasis, sus cánceres habían sido Hsp27+.

d) El EGFR. En el 71,4% de los casos con enfermedad metastásica (n=10) los cánceres primarios fueron EGFR-.

e) La p185C-erbB-2. Se encontró similar proporción de cánceres p185C-erbB-2 positivos y negativos en los casos que desarrollaron enfermedad metastásica.

f) El antígeno nuclear PCNA. En el 64,3% de las recidivas (n=9), los cánceres primarios habían teñido positivamente para el PCNA.

g) La proteína p53. El 73,3% de las pacientes con metástasis (n=11) tuvieron cánceres p53 negativos.

h) La catepsina D. El 60% de los cánceres que desarrollaron enfermedad metastásica (n=9) fueron catepsina D+.

i) La glicoproteína P. En el 91% de los casos con metástasis (n=10), la glicoproteína P fue negativa, aunque su determinación se había realizado en 11 de las 16 pacientes (p=0.07).

<table>
<thead>
<tr>
<th>Marcador Molecular</th>
<th>Recidiva n=</th>
<th>% columna</th>
<th>Sin Recidiva n=</th>
<th>% columna</th>
<th>% Total Fila</th>
<th>Ausencias</th>
<th>Valor P=</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE</td>
<td>+</td>
<td>62,5</td>
<td>-</td>
<td>37,5</td>
<td>68,9</td>
<td>5</td>
<td>0,37</td>
</tr>
<tr>
<td>Rpg</td>
<td>+</td>
<td>56,3</td>
<td>-</td>
<td>43,8</td>
<td>39,6</td>
<td>2</td>
<td>0,46</td>
</tr>
<tr>
<td>PS2</td>
<td>+</td>
<td>6,3</td>
<td>-</td>
<td>93,8</td>
<td>31,0</td>
<td>8</td>
<td>0,01</td>
</tr>
<tr>
<td>Hsp27</td>
<td>+</td>
<td>92,3</td>
<td>-</td>
<td>7,7</td>
<td>84,8</td>
<td>16</td>
<td>0,37</td>
</tr>
<tr>
<td>EGFR</td>
<td>+</td>
<td>28,6</td>
<td>-</td>
<td>71,4</td>
<td>19,1</td>
<td>14</td>
<td>0,26</td>
</tr>
<tr>
<td>C-erbB-2</td>
<td>+</td>
<td>50,0</td>
<td>-</td>
<td>50,0</td>
<td>46,9</td>
<td>10</td>
<td>0,51</td>
</tr>
<tr>
<td>KI-67</td>
<td>+</td>
<td>92,9</td>
<td>-</td>
<td>7,1</td>
<td>50,0</td>
<td>16</td>
<td>0,0004</td>
</tr>
<tr>
<td>PCNA</td>
<td>+</td>
<td>64,3</td>
<td>-</td>
<td>35,7</td>
<td>48,4</td>
<td>13</td>
<td>0,16</td>
</tr>
<tr>
<td>P53</td>
<td>+</td>
<td>26,7</td>
<td>-</td>
<td>73,3</td>
<td>22,8</td>
<td>7</td>
<td>0,46</td>
</tr>
<tr>
<td>Catepsina D</td>
<td>+</td>
<td>60,0</td>
<td>-</td>
<td>40,0</td>
<td>49,0</td>
<td>8</td>
<td>0,26</td>
</tr>
<tr>
<td>Glicoprot.P</td>
<td>+</td>
<td>9,1</td>
<td>-</td>
<td>90,9</td>
<td>31,0</td>
<td>50</td>
<td>0,07</td>
</tr>
</tbody>
</table>

Tabla 23a. Asociación entre marcadores tumoreales moleculares y recidiva a 36 meses. Prueba exacta de Fisher.
Tabla 23b. Estimación del riesgo relativo de recidiva a 36 meses con relación a los marcadores tumorales moleculares.

<table>
<thead>
<tr>
<th>Marcador Molecular</th>
<th>Riesgo Relativo</th>
<th>I.C. al 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE+/RE-</td>
<td>0,75</td>
<td>0,29 - 1,88</td>
</tr>
<tr>
<td>Rpq+/Rpq-</td>
<td>0,84</td>
<td>0,34 - 2,09</td>
</tr>
<tr>
<td>pS2+/pS2-</td>
<td>0,14</td>
<td>0,02 - 1,07</td>
</tr>
<tr>
<td>Hsp27+/Hsp27-</td>
<td>2,15</td>
<td>0,3 - 15,28</td>
</tr>
<tr>
<td>EGFR+/EGFR-</td>
<td>1,68</td>
<td>0,59 - 4,77</td>
</tr>
<tr>
<td>C-erbB-2+/C-erbB-2-</td>
<td>1,13</td>
<td>0,42 - 2,98</td>
</tr>
<tr>
<td>Ki-67+/Ki67-</td>
<td>13,0</td>
<td>1,77 - 95,37</td>
</tr>
<tr>
<td>PCNA+/PCNA-</td>
<td>1,91</td>
<td>0,69 - 5,29</td>
</tr>
<tr>
<td>P53+/p53-</td>
<td>1,23</td>
<td>0,43 - 3,50</td>
</tr>
<tr>
<td>Catepsina D+/Catepsina D-</td>
<td>1,56</td>
<td>0,60 - 4,06</td>
</tr>
<tr>
<td>Glicoprot. P+/Glicoprot. P-</td>
<td>0,22</td>
<td>0,03 - 1,60</td>
</tr>
</tbody>
</table>

2-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces en pacientes con ganglios axilares positivos.

De las 52 pacientes con cánceres con ganglios axilares positivos, 10 (19,2%) enfermas desarrollaron enfermedad metastásica y que correspondieron al 62,5% de las 16 recidivas totales registradas durante los primeros 36 meses de seguimiento. Los datos del análisis del grado de asociación entre los parámetros clínico-patológicos y las recidivas se representan en la tabla 24. La comparación en este subgrupo objetivó únicamente una asociación significativa con la estadificación, puesto que el 70% de las recidivas (n=7) se produjeron en pacientes en el estadio III ($p=0.04$). Con el resto de los parámetros clínico patológicos no se evidenció ninguna asociación estadísticamente significativa.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Recidiva</th>
<th>Sin Recidiva</th>
<th>Total</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td>% columna</td>
<td>n=</td>
<td>% columna</td>
</tr>
<tr>
<td>Premenopausia</td>
<td>5</td>
<td>50,0</td>
<td>17</td>
<td>40,5</td>
</tr>
<tr>
<td>Postmenopausia</td>
<td>5</td>
<td>50,0</td>
<td>25</td>
<td>59,5</td>
</tr>
<tr>
<td>Tumor Único</td>
<td>7</td>
<td>70,0</td>
<td>38</td>
<td>90,5</td>
</tr>
<tr>
<td>Multicéntrico</td>
<td>3</td>
<td>30,0</td>
<td>4</td>
<td>9,5</td>
</tr>
<tr>
<td>Tamaño tumoral (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 < 5</td>
<td>2</td>
<td>20,0</td>
<td>11</td>
<td>26,2</td>
</tr>
<tr>
<td>5 ></td>
<td>3</td>
<td>30,0</td>
<td>3</td>
<td>7,1</td>
</tr>
<tr>
<td>Ganglios +</td>
<td>N1</td>
<td>5</td>
<td>50,0</td>
<td>32</td>
</tr>
<tr>
<td>N2</td>
<td>5</td>
<td>50,0</td>
<td>10</td>
<td>23,8</td>
</tr>
<tr>
<td>Nº de ganglios</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2,4</td>
</tr>
<tr>
<td>1–3</td>
<td>4</td>
<td>40,0</td>
<td>28</td>
<td>66,7</td>
</tr>
<tr>
<td>más de 4</td>
<td>6</td>
<td>60,0</td>
<td>13</td>
<td>31,0</td>
</tr>
<tr>
<td>Tamaño Gangl. 1,8 < 1,8</td>
<td>6</td>
<td>60,0</td>
<td>20</td>
<td>48,8</td>
</tr>
<tr>
<td>></td>
<td>4</td>
<td>40,0</td>
<td>21</td>
<td>51,2</td>
</tr>
<tr>
<td>Cápsula rota +</td>
<td>6</td>
<td>60,0</td>
<td>14</td>
<td>33,3</td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>40,0</td>
<td>28</td>
<td>66,7</td>
</tr>
<tr>
<td>Grado nuclear</td>
<td>I</td>
<td>0</td>
<td>70,0</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>7</td>
<td>70,0</td>
<td>26</td>
<td>61,9</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>30,0</td>
<td>14</td>
<td>33,3</td>
</tr>
<tr>
<td>Grado Histológico I</td>
<td>1</td>
<td>10,0</td>
<td>4</td>
<td>9,5</td>
</tr>
<tr>
<td>II</td>
<td>6</td>
<td>60,0</td>
<td>26</td>
<td>61,9</td>
</tr>
<tr>
<td>III</td>
<td>3</td>
<td>30,0</td>
<td>12</td>
<td>28,6</td>
</tr>
<tr>
<td>Estadificación</td>
<td>I</td>
<td>0</td>
<td>30,0</td>
<td>2</td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>30,0</td>
<td>28</td>
<td>66,7</td>
</tr>
<tr>
<td>III</td>
<td>7</td>
<td>70,0</td>
<td>12</td>
<td>28,6</td>
</tr>
<tr>
<td>Radioterapia +</td>
<td>4</td>
<td>60,0</td>
<td>25</td>
<td>59,5</td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>40,0</td>
<td>17</td>
<td>40,5</td>
</tr>
<tr>
<td>Quimioterapia +</td>
<td>7</td>
<td>70,0</td>
<td>23</td>
<td>54,8</td>
</tr>
<tr>
<td>-</td>
<td>3</td>
<td>30,0</td>
<td>19</td>
<td>45,2</td>
</tr>
<tr>
<td>Hormonoterapia +</td>
<td>5</td>
<td>50,0</td>
<td>30</td>
<td>71,4</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
<td>50,0</td>
<td>12</td>
<td>28,6</td>
</tr>
</tbody>
</table>

2-b) Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces en pacientes con ganglios axilares positivos.

Los datos se resumen en la tabla 25. El análisis de la asociación de los marcadores tumorales moleculares en las 10 pacientes con metástasis y ganglios positivos objetivó que:

1) La tinción positiva para el antígeno ki67 se relacionó significativamente con las metástasis en pacientes con afectación ganglionar. En el 100% (n=10) de los casos los cánceres fueron ki67+ (p=0,0007).

2) La tinción positiva para la catepsina D se asoció significativamente con la aparición de enfermedad metastásica cuando existieron ganglios axilares positivos. El 77,7% (n=7) de
los casos con metástasis, los cánceres habían teñido positivamente para la catepsina D ($p=0.02$).

3) No se demostró una asociación estadísticamente significativa entre la enfermedad metastásica registrada en cánceres con ganglios axilares positivos y:

a) El RE, así, el 60% de las recidivas ($n=6$) correspondieron a cánceres RE+.

b) El RPg, observando un 60% de metástasis ($n=6$) en cánceres primarios RPg+.

c) La proteína pS2, objetivando la ausencia de tinción en el 90% de estos cánceres ($n=9$).

d) La Hsp27. El 100% de las recidivas ($n=10$) en este grupo tuvieron tumores Hsp27+.

e) El EGFR. El 77,8% de los cánceres recidivados ($n=7$) fueron EGFR-.

f) La expresión de C-erbB-2. En el 55,6% de los casos ($n=5$) los cánceres primarios habían sido p185C-erbB-2+.

g) El PCNA. En el 66,7% de las recidivas los cánceres ($n=6$) habían teñido positivamente para el PCNA.

h) La p53, de tal modo, que en el 80% de los casos con metástasis ($n=8$), sus cánceres fueron p53-.

i) La glicoproteína P, así el 83,3% de los cánceres primarios ($n=5$) habían sido glicoproteína P negativo.

Tabla 25. Asociación entre los marcadores tumoriales moleculares y recidiva a 36 meses en pacientes con ganglios axilares positivos. Prueba exacta de Fisher.

<table>
<thead>
<tr>
<th>Marcador Molecular</th>
<th>Recidiva</th>
<th>Sin Recidiva</th>
<th>Total</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n=%$ columna</td>
<td>$n=%$ columna</td>
<td>$n=%$ Fila</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>+ 6 60,0</td>
<td>- 4 40,0</td>
<td>10 61,5</td>
<td>3 38,5</td>
<td>3 0,60</td>
</tr>
<tr>
<td>RPg</td>
<td>+ 6 60,0</td>
<td>- 4 40,0</td>
<td>12 54,8</td>
<td>0 45,2</td>
<td>0 0,52</td>
</tr>
<tr>
<td>PS2</td>
<td>+ 1 10,0</td>
<td>- 9 90,0</td>
<td>10 28,2</td>
<td>3 71,8</td>
<td>3 0,22</td>
</tr>
<tr>
<td>Hsp27</td>
<td>+ 9 100,0</td>
<td>- 0 0,0</td>
<td>9 83,3</td>
<td>4 16,7</td>
<td>4 0,16</td>
</tr>
<tr>
<td>EGFR</td>
<td>+ 2 22,2</td>
<td>- 7 77,8</td>
<td>9 22,9</td>
<td>4 77,1</td>
<td>4 0,66</td>
</tr>
<tr>
<td>P185C-erbB-2</td>
<td>+ 5 55,6</td>
<td>- 4 44,4</td>
<td>4 52,9</td>
<td>3 47,1</td>
<td>3 0,31</td>
</tr>
<tr>
<td>Ki67</td>
<td>+ 10 100,0</td>
<td>- 0 0,0</td>
<td>10 54,5</td>
<td>8 45,5</td>
<td>8 0,0007</td>
</tr>
<tr>
<td>PCNA</td>
<td>+ 6 66,7</td>
<td>- 3 33,3</td>
<td>9 47,4</td>
<td>5 52,6</td>
<td>5 0,25</td>
</tr>
<tr>
<td>P53</td>
<td>+ 2 20,0</td>
<td>- 8 80,0</td>
<td>9 22,5</td>
<td>2 77,5</td>
<td>2 0,62</td>
</tr>
<tr>
<td>Catepsina D</td>
<td>+ 7 77,8</td>
<td>- 2 22,2</td>
<td>9 56,3</td>
<td>4 43,7</td>
<td>4 0,02</td>
</tr>
<tr>
<td>Glicoprot. P</td>
<td>+ 1 16,7</td>
<td>- 5 83,3</td>
<td>5 23,1</td>
<td>26 76,9</td>
<td>26 0,57</td>
</tr>
</tbody>
</table>
3-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces en pacientes con ganglios axilares negativos.

De las 56 pacientes con cánceres con ganglios axilares negativos, 6 (10,7%) desarrollaron metástasis, que equivalen a un 37,5% del total de recidivas (n=16) producidas durante los primeros 36 meses de seguimiento. Según se resume en la tabla 26, en este subgrupo ningún parámetro clínico-patológico se asoció significativamente con la aparición de metástasis, aunque destaca que no recidivó ningún tumor con un grado nuclear I y la mayor proporción de recidivas se produjeron en los tumores con grado nuclear e histológico III. Ningún tumor sobrepasó los 5 cm, siendo en la mitad de los casos menores de 2 cm. Cinco de estas 6 recidivas correspondieron a pacientes postmenopáusicas y según la estadificación desarrollaron enfermedad metastásica 3 pacientes en el estadio I y 3 pacientes en el estadio II. Con relación al tratamiento adyuvante, a la mitad se le administró radiación postoperatoria y tamoxifén. LLama la atención que ninguna de las 6 pacientes que desarrollaron enfermedad metastásica recibió quimioterapia en el postoperatorio.

Tabla 26. Asociación entre parámetros clínico-patológicos y recidiva a 36 meses en pacientes con ganglios axilares negativos. Chi cuadrado y prueba exacta de Fisher.

<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Recidiva n=</th>
<th>Sin Recidiva n=</th>
<th>Total % Fila</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% columna</td>
<td>% columna</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>35</td>
<td>28,6</td>
<td>0,44</td>
</tr>
<tr>
<td></td>
<td>16,7</td>
<td>70,0</td>
<td>71,4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>35</td>
<td>52,9</td>
<td>0,37</td>
</tr>
<tr>
<td></td>
<td>83,3</td>
<td>3,0</td>
<td>92,9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>82,9</td>
<td>7,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,44</td>
<td>0,37</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,51</td>
<td>0,98</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>0,37</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,59</td>
<td>0,66</td>
<td>0,37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,37</td>
<td>0,66</td>
<td>0,37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,38</td>
<td>0,37</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,59</td>
<td>0,66</td>
<td>0,37</td>
<td></td>
</tr>
</tbody>
</table>
3-b) Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces en pacientes con ganglios axilares negativos.

El análisis de los marcadores biológicos moleculares, en este grupo de 6 pacientes con enfermedad metastásica sin afectación ganglionar, mostró que únicamente la ausencia de tinción para la proteína pS2 se asoció significativamente con la aparición de metástasis ($p=0,049$). Según se resume en la tabla 27, no se encontró asociación estadísticamente significativa con el resto de los marcadores moleculares.

Tabla 27. Asociación entre los marcadores tumorales moleculares y recidiva a 36 meses en pacientes con ganglios axilares negativos. Prueba exacta de Fisher.

<table>
<thead>
<tr>
<th>Marcador Molecular</th>
<th>Recidiva</th>
<th>Sin Recidiva</th>
<th>Total</th>
<th>Ausencias</th>
<th>Valor p=</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n= % columna</td>
<td>n= % columna</td>
<td>% Fila</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE</td>
<td>+ 4 66,7</td>
<td>37 77,1</td>
<td>75,9 24,1</td>
<td>2</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>- 2 33,3</td>
<td>11 22,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPg</td>
<td>+ 3 50,0</td>
<td>32 66,7</td>
<td>64,8 35,2</td>
<td>2</td>
<td>0,35</td>
</tr>
<tr>
<td></td>
<td>- 3 50,0</td>
<td>16 33,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS2</td>
<td>+ 0 100,0</td>
<td>19 42,2</td>
<td>37,3 62,7</td>
<td>5</td>
<td>0,049</td>
</tr>
<tr>
<td></td>
<td>- 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hsp27</td>
<td>+ 3 75,0</td>
<td>35 87,5</td>
<td>86,4 13,2</td>
<td>12</td>
<td>0,45</td>
</tr>
<tr>
<td></td>
<td>- 1 25,0</td>
<td>5 12,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EGFR</td>
<td>+ 2 40,0</td>
<td>5 12,2</td>
<td>15,2 84,8</td>
<td>10</td>
<td>0,16</td>
</tr>
<tr>
<td></td>
<td>- 3 60,0</td>
<td>36 87,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P185C-erbB-2</td>
<td>+ 2 40,0</td>
<td>23 52,3</td>
<td>51,0 49,0</td>
<td>7</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>- 3 60,0</td>
<td>21 47,7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ki67</td>
<td>+ 3 75,0</td>
<td>19 43,2</td>
<td>45,8 54,2</td>
<td>8</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td>- 1 25,0</td>
<td>25 56,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA</td>
<td>+ 3 60,0</td>
<td>19 44,2</td>
<td>45,8 54,2</td>
<td>8</td>
<td>0,42</td>
</tr>
<tr>
<td></td>
<td>- 2 40,0</td>
<td>24 55,8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P53</td>
<td>+ 2 40,0</td>
<td>10 21,7</td>
<td>23,5 76,5</td>
<td>5</td>
<td>0,33</td>
</tr>
<tr>
<td></td>
<td>- 3 60,0</td>
<td>36 78,3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catepsina D</td>
<td>+ 2 33,3</td>
<td>26 56,5</td>
<td>53,8 46,2</td>
<td>4</td>
<td>0,26</td>
</tr>
<tr>
<td></td>
<td>- 4 66,7</td>
<td>20 43,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glicoprot. P</td>
<td>+ 0 100,0</td>
<td>12 44,4</td>
<td>37,5 62,5</td>
<td>24</td>
<td>0,07</td>
</tr>
<tr>
<td></td>
<td>- 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
II- ANÁLISIS DEL INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACIÓN A LOS PARÁMETROS CLÍNICO-PATOLÓGICOS Y LOS MARCADORES TUMORALES MOLECULARES. MÉTODO DE KAPLAN-MEIER Y ANÁLISIS UNIVARIANTE.

1) Análisis del intervalo libre de enfermedad con relación a los parámetros clínico-patológicos.

1-) Según se expresa en las gráficas donde están representadas las curvas de supervivencia, presentaron una disminución significativa del intervalo libre de enfermedad las pacientes que tuvieron:

a) Tumores multicéntricos \((p=0,03) \), (Gráfica 1).
b) Ganglios axilares positivos \((p=0,04) \), (Gráfica 2).
c) Más de 4 ganglios axilares afectados \((p=0,04) \), (Gráfica 3).
d) Desbordamiento de la cápsula ganglionar \((p=0,02) \), (Gráfica 4).
e) Estadio III \((p=0,005) \), (Gráfica 5).
f) Cánceres con grado nuclear III y ganglios N2 \((p=0,01) \), (Gráfica 10).
g) Ausencia de expresión de la proteína pS2 \((p=0,02) \), (Gráfica 15).

El análisis de las gráficas de supervivencia libre de enfermedad no objetivó diferencias significativas entre las curvas con relación a:

a) El tamaño tumoral (Gráfica 6).
b) El tamaño de los ganglios axilares, (Gráfica 7).
c) El grado nuclear, (Gráfica 8).
d) El grado histológico, (Gráfica 9).
e) El estado hormonal, (Gráfica 11).
f) El tratamiento radioterápico, (Gráfica 12).
g) La administración de quimioterapia, (Gráfica 13).
h) La hormonoterapia, (Gráfica 14).
2) **Análisis del intervalo libre de enfermedad con relación a los marcadores tumoraless moleculares.**

2-) Según se refleja en las gráficas donde están representadas las curvas de supervivencia, presentaron una disminución significativa del intervalo libre de enfermedad las pacientes con:

- a) Ausencia de expresión de la proteína pS2 y ganglios negativos \((p=0.048) \), (Gráfica 16).
- b) Tumores Ki-67 positivos \((p=0.0005) \), (Gráfica 17).
- c) Cánceres Ki-67 positivo y ganglios positivos \((p=0.001) \), (Gráfica 18).
- d) Cánceres catepsina D positivo y ganglios positivos \((p=0.02) \), (Gráfica 20).

El análisis de las gráficas de supervivencia libre de enfermedad no objetivó diferencias significativas entre las curvas con relación a:

- a) El estado del RE, (Gráfica 21).
- b) El estado del RPg, (Gráfica 22).
- c) La expresión de la proteína Hsp27, (Gráfica 23).
- d) La expresión del EGFR, (Gráfica 24).
- e) La expresión de C-erbB-2, (Gráfica 26).
- f) El antígeno nuclear de proliferación celular PCNA, (Gráfica 27).
- g) La expresión de la proteína p53, (Gráfica 28).
- h) La expresión de la catepsina D, (Gráfica 19).
- i) La expresión de la glicoproteína P, (Gráfica 29).

En pacientes con ganglios axilares negativos la presencia del EGFR \((p=0.06) \) y la positividad para la Glicoproteína P \((p=0.07) \) se relacionaron con una disminución del intervalo libre de enfermedad a 36 meses, aunque en estos casos no se alcanzó la significación estadística prefijada en el diseño. (Gráficas 25 y 30).

Según el análisis univariante, presentado en la tabla 28, se asociaron a un mayor riesgo de aparición de metástasis durante los primeros 36 meses de seguimiento: la presencia de más de un foco de cáncer ductal infiltrante en la misma mama; los cánceres con ganglios en estadio N2, afectación de 4 o más ganglios y rotura con desbordamiento de la cápsula ganglionar; las pacientes clasificadas en el estadio III (TNM) y los cánceres con porcentajes de células Ki-67 por arriba del valor de la mediana.
<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Razón de Riesgo</th>
<th>I.C. 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postmenopausia/Premenopausia</td>
<td>1,02</td>
<td>0,3 - 3,6</td>
</tr>
<tr>
<td>Tumor Multicéntrico/T. Unico</td>
<td>3,3</td>
<td>1,06 - 10,87</td>
</tr>
<tr>
<td>Tamaño tumoral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-5cm/2cm < 5cm</td>
<td>1,6</td>
<td>0,5 - 48,0</td>
</tr>
<tr>
<td>5cm >/2cm</td>
<td>3,6</td>
<td>0,9 - 15,1</td>
</tr>
<tr>
<td>Ganglios afectados</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N1/NO</td>
<td>1,3</td>
<td>0,4 - 4,4</td>
</tr>
<tr>
<td>N2/NO</td>
<td>3,7</td>
<td>1,2 - 13,0</td>
</tr>
<tr>
<td>N° de ganglios +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1- 3/0</td>
<td>1,2</td>
<td>0,3 - 4,2</td>
</tr>
<tr>
<td>Más de 4/0</td>
<td>3,7</td>
<td>1,2 - 11,4</td>
</tr>
<tr>
<td>Tamaño Gangl. 1,8 cm </1,8 cm ></td>
<td>0,66</td>
<td>0,2 - 2,0</td>
</tr>
<tr>
<td>Cápsula rota/Cápsula intacta</td>
<td>3,1</td>
<td>1,1 - 8,7</td>
</tr>
<tr>
<td>Grado nuclear I/II</td>
<td>0,8</td>
<td>0,3 - 2,2</td>
</tr>
<tr>
<td>Grado nuclear y N2</td>
<td>1,6 x 10^6</td>
<td>0,0 - 46,4</td>
</tr>
<tr>
<td>Grado histológico II/II</td>
<td>1,1</td>
<td>0,2 - 5,0</td>
</tr>
<tr>
<td>Grado histológico y N2</td>
<td>1,4</td>
<td>0,3 - 7,9</td>
</tr>
<tr>
<td>Estadificación II/II</td>
<td>4,5</td>
<td>0,7 - 25,0</td>
</tr>
<tr>
<td>Radioterapia Sí/Radioterapia No</td>
<td>1,06</td>
<td>0,4 - 2,8</td>
</tr>
<tr>
<td>Quimioterapia Sí/Quimioterapia No</td>
<td>1,5</td>
<td>0,6 - 4,1</td>
</tr>
<tr>
<td>Hormonoterapia Sí/Hormonoterapia No</td>
<td>0,65</td>
<td>0,24 - 1,7</td>
</tr>
<tr>
<td>RE+/RE-</td>
<td>0,7</td>
<td>0,2 - 1,9</td>
</tr>
<tr>
<td>RPg+/RPg-</td>
<td>0,8</td>
<td>0,3 - 2,2</td>
</tr>
<tr>
<td>PS2+/pS2-</td>
<td>0,14</td>
<td>0,02 - 1,04</td>
</tr>
<tr>
<td>PS2+/pS2- y N-</td>
<td>0,02</td>
<td>2x10^-5 - 20,3</td>
</tr>
<tr>
<td>Hsp27+/Hsp27-</td>
<td>2,3</td>
<td>0,3 - 18,0</td>
</tr>
<tr>
<td>EGFR+/EGFR-</td>
<td>1,8</td>
<td>0,6 - 5,8</td>
</tr>
<tr>
<td>C-erbB-2+/C-erbB-2-</td>
<td>1,2</td>
<td>0,4 - 3,3</td>
</tr>
<tr>
<td>Ki-67+/Ki-67-</td>
<td>15,0</td>
<td>1,9 - 114,0</td>
</tr>
<tr>
<td>PCNA+/PCNA-</td>
<td>2,0</td>
<td>0,7 - 61,0</td>
</tr>
<tr>
<td>P53+/P53-</td>
<td>1,3</td>
<td>0,4 - 4,0</td>
</tr>
<tr>
<td>Catepsina D+/Catepsina D-</td>
<td>1,7</td>
<td>0,6 - 4,7</td>
</tr>
<tr>
<td>Catepsina D+/Catepsina D- y N+</td>
<td>5,1</td>
<td>1,1 - 27,7</td>
</tr>
<tr>
<td>Glicoproteína P+/Glicoproteína P-</td>
<td>0,2</td>
<td>0,02 - 1,5</td>
</tr>
</tbody>
</table>
CURVAS DE SUPERVIVENCIA. INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACION A PARAMETROS CLINICO-PATOLOGICOS Y MARCADORES TUMORALES MOLECULARES

Gráfica 1. TIPO DE TUMOR

Gráfica 2. ESTADIFICACION. CATEGORIA N.

Gráfica 3. NUMERO DE GANGLIOS

Gráfica 4. ROTURA DE LA CAPSULA G.
CURVAS DE SUPERVIVENCIA. INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACION A PARAMETROS CLINICO-PATOLOGICOS Y MARCADORES TUMORALES MOLECULARES

Gráfica 5. ESTADIFICACION TNM

Gráfica 6. TAMAÑO TUMORAL

Gráfica 7. TAMAÑO GANGLIONAR

Gráfica 8. GRADO NUCLEAR
CURVAS DE SUPERVIVENCIA. INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACION A PARAMETROS CLINICO-PATOLOGICOS Y MARCADORES TUMORALES MOLECULARES

Gráfica 9. GRADO HISTOLOGICO

Gráfico 10. GRADO NUCLEAR Y N2

Gráfica 11. ESTADO HORMONAL

Gráfica 12. RADIOTERAPIA
Curvas de supervivencia. Intervalo libre de enfermedad a 36 meses con relación a parámetros clínico-patológicos y marcadores tumorales moleculares.

Gráfica 13. Quimioterapia
- Supervivencia acumulada
- P = 0.4

Gráfica 14. Hormonoterapia
- Supervivencia acumulada
- P = 0.4

Gráfica 15. pS2
- Supervivencia acumulada
- P = 0.02

Gráfica 16. pS2 y GANGLIOS NEGATIVOS
- Supervivencia acumulada
- P = 0.048
CURVAS DE SUPERVIVENCIA. INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACIÓN A PARÁMETROS CLÍNICO-PATOLOGICOS Y MARCADORES TUMORALES MOLÉCULARES

Gráfica 17. Ki-67

Gráfica 18. Ki-67 y GANGLIOS POSITIVOS

Gráfica 19. CATEPSINA D

Gráfica 20. CATEPSINA D y GANGLIOS +
CURVAS DE SUPERVIVENCIA. INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACIÓN A PARÁMETROS CLÍNICO-PATOLOGICOS Y MARCADORES TUMORALES MOLECULARES

Gráfica 21. RE
p = 0,49

Gráfica 22. RPg
p = 0,7

Gráfica 23. Hsp27
p = 0,4

Gráfica 24. EGFR
p = 0,3
CURVAS DE SUPERVIVENCIA. INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACION A PARAMETROS CLINICO-PATOLOGICOS Y MARCADORES TUMORALES MOLECULARES

Gráfica 25. EGFR y N-

\[p = 0.06 \]

\[p = 0.8 \]

Gráfica 27. PCNA

\[p = 0.19 \]

Gráfica 28. p53

\[p = 0.7 \]
CURVAS DE SUPERVIVENCIA. INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACIÓN A PARÁMETROS CLINICO-PATOLOGICOS Y MARCADORES TUMORALES MOLECULARES

Gráfica 29. GLICOPROTEÍNA P

Gráfica 30. GLICOPROTEÍNA P y N-

$p=0.08$

$p=0.07$
III- ANÁLISIS MULTIVARIANTE DE LOS PARÁMETROS CLÍNICO-PATOLÓGICOS Y DE LOS MARCADORES TUMORALES MOLECULARES.

Se han construido diversos modelos de regresión de riesgos proporcionales de Cox para valorar la relación entre las distintas variables y la contribución que aporta cada uno de los factores pronóstico. También hemos ensayado distintos modelos predictivos para la enfermedad metastásica que nos permiten medir el riesgo y la supervivencia libre de enfermedad de grupos de pacientes con determinados valores en dichos factores pronóstico. En estos modelos se han introducido los potenciales factores de riesgo y las variables de control científicamente relevantes y con una buena justificación teórica, aparte de su significación estadística en los análisis uni y bivariantes. Fueron comprobadas las asunciones de validez de los diferentes modelos y de todos los analizados han sido seleccionados finalmente aquellos que contienen las variables tipo de tumor, estadificación y ki67.

En el modelo 1, expresado en la tabla 29, la razón de riesgos de metástasis de las pacientes con tumores multicéntricos es de 3,35 veces (I.C. al 95%: 1,1 – 10,45) el de las enfermas con tumores únicos. De manera similar, para la variable estadificación, la razón de riesgos de metástasis para las pacientes clasificadas en un estadio III es de 6,2 veces (IC: al 95% 1,6 – 24,0) el de las pacientes en un estadio I. Las gráficas 31 y 32 muestran las funciones de supervivencia ajustadas para cada una de las variables y sus covariables correspondientes. Las pacientes con tumores multicéntricos y aquéllas clasificadas en el estadio III presentaron una disminución del intervalo libre de enfermedad a 36 meses.

En el modelo 2, mostrado en la tabla 30, la razón de riesgos de metástasis de las pacientes con cánceres Ki-67+ es 15,3 veces superior (IC al 95%: 1,9 – 117,6) al de las enfermas con cánceres Ki67-, y la razón de riesgos para las pacientes clasificadas en un estadio III es de 9,3 veces (IC al 95%: 1,9 – 45,3) el de las enfermas clasificadas en un estadio I. En este modelo al realizar el ajuste de una variable por la otra se observó una disminución de la supervivencia libre de enfermedad a 36 meses de las pacientes con cánceres Ki-67 y las clasificadas en el estadio III. (Gráficas 33 y 34).

Por tanto, en esta serie de 108 cánceres ductales infiltrantes, entre las variables correspondientes a los parámetros clínico-patológicos, las de mayor valor pronóstico para la...
Resultados

enfermedad mestastásica a 36 meses han sido el tipo de tumor multicéntrico y el estadio III de la clasificación TNM. De los marcadores tumorales moleculares, el antígeno nuclear de proliferación celular Ki-67, fue la variable que mejor predijo un mal pronóstico a corto plazo.
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>R</th>
<th>H-R</th>
<th>Inferior</th>
<th>Superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPOTUMO2</td>
<td>1,2083</td>
<td>0,5808</td>
<td>4,3289</td>
<td>1</td>
<td>0,0375</td>
<td>0,1256</td>
<td>3,3479</td>
<td>1,0726</td>
<td>10,4503</td>
</tr>
<tr>
<td>ESTADIFICACION</td>
<td>8,9300</td>
<td></td>
<td></td>
<td>2</td>
<td>0,0115</td>
<td>0,1828</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTADIFICACION (1)</td>
<td>0,5492</td>
<td>0,7092</td>
<td>0,5998</td>
<td>1</td>
<td>0,4386</td>
<td>0,0000</td>
<td>1,7319</td>
<td>0,4314</td>
<td>6,9533</td>
</tr>
<tr>
<td>ESTADIFICACION (2)</td>
<td>1,8244</td>
<td>0,6911</td>
<td>6,9690</td>
<td>1</td>
<td>0,0083</td>
<td>0,1835</td>
<td>6,1991</td>
<td>1,5998</td>
<td>24,0207</td>
</tr>
</tbody>
</table>

Nota: H-R = Razón de riesgo; TIPOTUMO2 = multicéntrico/único; Estadificación (1) = al Estadio II/I (TNM); Estadificación (2) = al Estadio III/I (TNM).
Tabla 30. Análisis multivariante de riesgos proporcionales de Cox.

<table>
<thead>
<tr>
<th>Modelo 2</th>
<th>Chi-cuadrado</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26,354</td>
<td>3</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Variables en la ecuación

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>df</th>
<th>Sig.</th>
<th>R</th>
<th>H-R</th>
<th>Inferior</th>
<th>Superior</th>
</tr>
</thead>
<tbody>
<tr>
<td>KI67 (1)</td>
<td>1,2083</td>
<td>0,5808</td>
<td>4,3289</td>
<td>1</td>
<td>0,0088</td>
<td>0,1974</td>
<td>15,2775</td>
<td>1,9846</td>
<td>117,6037</td>
</tr>
<tr>
<td>ESTADIFICACION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESTADIFICACION (1)</td>
<td>0,6010</td>
<td>0,8378</td>
<td>0,5145</td>
<td>1</td>
<td>0,4732</td>
<td>0,0000</td>
<td>1,8239</td>
<td>0,3531</td>
<td>9,4212</td>
</tr>
<tr>
<td>ESTADIFICACION (2)</td>
<td>2,2309</td>
<td>0,8078</td>
<td>7,6274</td>
<td>1</td>
<td>0,0057</td>
<td>0,2125</td>
<td>9,3082</td>
<td>1,9111</td>
<td>45,3368</td>
</tr>
</tbody>
</table>

Nota: H-R= razón de riesgo; KI67 (1)= KI67+/KI67-; Estadificación (1)= Estadio II/I (TNM), Estadificación (2)= Estadio III/I (TNM).
ANÁLISIS MULTIVARIANTE DE LOS PARÁMETROS CLÍNICOS-PATOLOGICOS Y DE LOS MARCADORES TUMORALES MOLECULARES

Gráfica 31. Tipo de tumor.

Función de supervivencia según el tipo de tumor ajustado por estadiaje

Gráfica 32. Estadiaje.

Función de supervivencia según estadiaje ajustado por tipo de tumor
ANÁLISIS MULTIVARIANTE DE LOS PARAMETROS CLINICO-PATOLOGICOS Y DE LOS MARCADORES TUMORALES MOLECULARES

Gráfica 33. Estadaje.

Función de supervivencia según el estadaje
Ajustado por Ki67

Gráfica 34. Ki-67.

Función de supervivencia según Ki67
Ajustado por estadaje
DISCUSIÓN

I- A. DESCRIPCIÓN GENERAL DE LA SERIE

El estudio incluye 108 pacientes con carcinoma ductal infiltrante de mama, cuya evaluación se inició desde el momento de la intervención quirúrgica. Las enfermas han sido clasificadas de acuerdo con criterios anatomopatológicos sustentados en la extensión local y regional del tumor y, además, se han valorado una serie de nuevas variables comúnmente denominadas, “marcadores tumorales moleculares”, con el fin de obtener de una manera más precisa indicadores de agresividad biológica tumoral que nos permitan predecir las probabilidades de metástasis. Por tal motivo, el principal objetivo de este estudio ha sido el analizar una serie de factores que puedan influir o condicionar el pronóstico del cáncer mamario.

A diferencia de los estudios experimentales, donde es posible controlar las distintas variables, los trabajos clínicos poseen el inconveniente de la gran variabilidad de los individuos que componen la cohorte en estudio y de numerosos factores que no son susceptibles de dicho control. Aunque los procedimientos que incluyen el procesamiento de las muestras y las tinciones con sus respectivos controles están bien estandarizados y el examen anatomopatológico ha sido realizado siempre por el mismo patólogo, no es posible excluir sesgos ocasionados por la inadecuada fijación de los tejidos y las variaciones en la sensibilidad de los anticuerpos monoclonales que pueden alterar la tinción. Por diferentes motivos, tampoco se han efectuado las tinciones en todas las muestras de tejido neoplásico y a esto hay que sumar las dificultades para obtener significación estadística en algunas comparaciones cuyo reducido tamaño muestral conduce a una falta de potencia estadística. Teniendo en cuenta estas consideraciones, y a pesar de las limitaciones que imponen los estudios clínicos, creemos haber recogido los datos suficientes para completar nuestros objetivos y obtener unas conclusiones.

En esta serie, la relación postmenopáusica/premenopáusica de es de 4:1 ocasionando una elevación de la edad media por un exceso de pacientes postmenopáusicas; sin embargo, si comparamos las medias de edad de las pacientes premenopáusicas (44,7 años IC al 95%: 41,7-47,2) y postmenopáusicas (66,3 años, IC al 95%: 64,5-68,1) de manera individual, observamos que se corresponden con las medias descritas en otras publicaciones (Henderson et al., 1974; Henderson y Canellos et al., 1980; Parkin et al., 1984; Fisher et al., 1985; Olivotto et al., 1994).

En nuestra serie el porcentaje de cirugías conservadoras practicadas (42,5%) se sitúa en el rango (30-60%) de las series europeas (Veronesi et al., 1995) y se aleja de los porcentajes
publicados (25,4%) en series americanas (Osteen et al., 1994). En nuestros objetivos no contemplamos la valoración del tratamiento quirúrgico con relación al pronóstico, porque se ha demostrado que la evolución final del cáncer de mama depende más de las características biológicas que de la extensión ablativa quirúrgica (Fisher et al., 1985; Braun et al., 2000). Tampoco consideramos el tratamiento adyuvante, aunque sabemos que puede condicionar un retraso en la aparición de las metástasis al quedar incluidos sus efectos en el período de seguimiento prefijado en el diseño (EBCTCG, 1995).

Los tumores multicéntricos constituyeron el 10,2% de todos los tumores. Esta cifra se encuentra dentro de los valores observados en otras publicaciones, si se considera exclusivamente los focos de cáncer infiltrante situados en el mismo cuadrante, pero distantes de la lesión primaria o en un cuadrante distinto del asiento del tumor. (Fisher et al., 1975; Tinnemans et al., 1986; Sarnelli y Squartini, 1986; Kurtz et al, 1990).

Con relación al tamaño destaca un 44,4% de tumores con un tamaño inferior a los 2 cm, evidenciando que muchos han sido diagnosticados en una fase con buenas posibilidades de curación como es la tendencia actual. El tamaño tumoral es considerado un factor pronóstico importante para establecer el riesgo de metástasis, ya que la incidencia varía en relación directa con el tamaño tumoral (Nemoto et al., 1980; Fisher et al., 1981). La mitad de las enfermas (51,9%) presentaban ausencia de afectación ganglionar axilar y casi un tercio de los tumores presentaban afectación de 1-3 ganglios (30,6%) y menos de una quinta parte (17,6%) más de 4 ganglios. La mayoría de los autores coinciden que el número de los ganglios axilares afectados se correlaciona mejor con el pronóstico, siendo 4 el número de ganglios positivos un criterio para separar grupos de alto y bajo riesgo de recidiva (Berg, 1955; Fisher et al., 1978; Fisher et al., 1983; Henderson y Canellos 1980; Carbone, 1981). El nivel de los ganglios axilares resecados en nuestra serie revela la tendencia a la disminución de los procedimientos quirúrgicos más agresivos, puesto que el 22% de los ganglios resecados correspondieron a un nivel III. La disección de los niveles I y II se consideran en la actualidad apropiados para estimar la diseminación de la enfermedad y establecer la necesidad de un tratamiento adyuvante sistémico cuando existe afectación ganglionar. (Fisher et al., 1981; Boova et al., 1982). En la serie que nos ocupa el 38,5% de los ganglios positivos presentaban infiltración con rotura de la cápsula ganglionar. Aparte del número de ganglios axilares afectados, el desbordamiento de la cápsula ganglionar es considerado un parámetro de evolución desfavorable (Fisher et al., 1976; Mambo et al., 1977; Goldstein, 1995; Leonard et al., 1995). En cuanto al estadio en nuestra serie destaca un número proporcional de pacientes en los estadios I (38,8%) y II (42,6%). En la actualidad los cánceres en estadio I y II constituyen el 80-85% de los cánceres intervenidos en la
La mayoría de los países occidentales; la cifra de tumores en estadio III y IV se ha reducido a menos del 20% (Haid y Zuckerman 1982; Nemoto et al., 1980).

La media de seguimiento sobrepasa los 4 años (IC al 95%: 46,7-52,2 meses), habiendo completado cada una de las participantes del estudio un tiempo de seguimiento de 36 meses establecido en el diseño. En el cáncer de mama este período de vigilancia parece insuficiente debido a que las metástasis pueden aparecer varios años después del tratamiento quirúrgico. Sin embargo, entre un 5 y un 25 % de las metástasis aparecen durante los primeros 3 años postcirugía en pacientes con ganglios negativos (Rosen et al., 1989). La estadificación TNM del cáncer de mama es el mejor indicador de pronóstico en la actualidad aunque es indiscutible que, aún considerando los mejores resultados, un 10% de pacientes en el estadio I y hasta un 40% de enfermas en el estadio II desarrollan enfermedad metastásica durante los 5-10 años de seguimiento; por tanto, en casos de tumores menores de 2 y 5 cm y ausencia de afectación ganglionar, la estadificación TNM no puede definir con exactitud subgrupos de bajo y alto riesgo de metástasis. Una desventaja adicional del sistema TNM es que una estadificación exacta precisa del examen anatomopatológico del tumor y de los ganglios y que, sobre la base de la estadificación principalmente ganglionar, se establece una terapia adyuvante que no deja de ser empírica. Debido a las limitaciones del sistema de clasificación TNM, se considera necesaria su ampliación incorporando nuevas variables que definan las características biológicas del tumor. De este modo, nuestro estudio pretende estudiar aquellas variables que puedan ser complementarias a este sistema de estadificación.

Durante los 36 meses de seguimiento se registraron 16 metástasis, de éstas, recidivaron el 7,1% (3/42) de las pacientes clasificadas en un estadio I, el 13,0% (6/46) del estadio II y el 35% (7/20) del estadio III. Los porcentajes de metástasis en los estadios I, II y III se sitúan en el rango esperado, aunque resulta difícil pronosticar de manera individual qué pacientes del estadio I y del estadio II con N- recidivarán basándonos exclusivamente en la clasificación TNM. El porcentaje de recidivas regionales ha sido bajo correspondiendo al 1,8% de la serie y las metástasis óseas representaron el 50% de las recidivas a distancia, siendo estas cifras muy similares a las que se encuentran en otras series (Lenz et al., 1931; Staley, 1956; Rutgers et al.1989).
I-B ANÁLISIS DE LA ASOCIACIÓN ENTRE LOS MARCADORES TUMORALES MOLECULARES Y LOS PARÁMETROS CLÍNICO-PATOLÓGICOS.

En nuestra serie hemos observado una asociación significativa entre la gradación histológica y nuclear y los marcadores tumorales moleculares y, de este modo, podemos rechazar la hipótesis nula que establece que no existe asociación entre los marcadores tumorales moleculares y los parámetros clínico-patológicos. (Tabla 20).

1-a) Análisis de la asociación entre el RE y los parámetros clínico-patológicos.

En nuestro estudio utilizando el Am-ER1D5 y un dintel de positividad correspondiente al 10% o más de las células ductales con núcleos teñidos, el 65,7% de los cánceres fueron RE positivos. (Tabla 4). Estos resultados se encuentran dentro del rango publicado en la literatura (Keshgegian et al., 1987; Deligeorgi-Politi et al., 1989; Stierer et al., 1993; Golough et al., 1997; Ramos Fernández et al., 1998), a pesar de que existen controversias sobre cual debe ser el dintel de positividad para el RE determinado mediante tinción IHQ. Keshgegian et al., (1987) y Bose et al., (1996) consideran que un 10% es un punto de corte adecuado, en cambio, para Pelosi et al., (1994) y Archer et al., (1995) este umbral de positividad se sitúa en el 5% de las células ductales teñidas.

Hemos observado que los cánceres RE+ presentaban bajos grados histológicos y nucleares y un reducido tamaño de los ganglios axilares positivos. (Tabla 9 y 20). Esta asociación inversa y significativa concuerda con la señalada en la literatura donde la expresión del RE se asocia a tumores bien diferenciados (Bloom y Richardson et al., 1957; McCarty et al., 1980; Fisher et al., 1980; Rasmussen et al., 1981; Keshgegian et al., 1987; Elston y Ellis, 1991; Stierer et al., 1992; Ramos-Fernández et al., 1998). En nuestra serie los ganglios positivos de los cánceres RE- fueron significativamente de mayor tamaño que el de los tumores RE+. En cambio, con el tamaño tumoral los porcentajes de positividad han sido similares en todas las categorías T, aunque los tumores pequeños tienden a ser RE+. En la literatura se describe que la expresión del RE varía inversamente con el tamaño tumoral; en nuestro caso, esta asociación no ha sido estadísticamente significativa (Hernández et al., 1983; Clark et al., 1984; Thorpe y Rose, 1986; Pichon et al., 1996). También hemos constatado en este estudio, así como se describe en otras series publicadas, que la positividad del RE no siempre se asocia significativamente con el tamaño tumoral, el estadío ganglionar y el número de ganglios afectados, si bien, la tendencia observada es que tumores pequeños y aquellos sin invasión ganglionar sean RE+ (Maynard et
Discusión

al., 1978; Rich et al., 1978; Furmanski et al., 1980; Clark et al., 1984; Molino et al., 1992; Ramos Fernández et al., 1998; Gorlich y Jandrig, 1999). (Tabla 9).

Con relación al estado hormonal encontramos una discreta mayor proporción de cánceres RE+ en pacientes postmenopáusicas, aunque las diferencias no fueron estadísticamente significativas. (Tabla 9). Los tumores RE+ son más frecuentes en pacientes postmenopáusicas (McGuire et al., 1974; Lippman y Allegra, 1980; Hellín et al., 1988), sin embargo, algunos autores tampoco observan diferencias entre la expresión del RE y el estado hormonal (Clark et al., 1984; Berger et al., 1991).

La asociación también fue directa y significativa con la terapia hormonal, como era de esperar, debido a la selección de pacientes RE+ para este tipo de terapia. A la inversa sucede con el tratamiento quimioterápico donde un mayor número de tumores RE-, por considerarse un parámetro de peor pronóstico y de pobre respuesta al tratamiento hormonal, son seleccionados a recibir tratamiento con citotóxicos. Por otra parte, no se observaron diferencias significativas con el tratamiento radioterápico que se administra según la técnica quirúrgica o la positividad de los ganglios axilares. (Tabla 9).

1-b) Análisis de la asociación entre el receptor de estrógeno y los marcadores tumorales moleculares.

En nuestra serie la positividad para el RE se relacionó significativamente con la presencia del RPg y la proteína pS2, con la ausencia de expresión del EGFR, C-erbB-2 y p53, y con bajos índices de los antígenos nucleares Ki-67 y PCNA. Según estos datos, los cánceres RE+ mantienen una dependencia hormonal, parecen no depender de los factores de crecimiento y no acumulan proteína p53. (Tabla 21). La asociación fue directa y muy significativa entre la inmunotinción del RE y la expresión de 2 proteínas, el RPg y la pS2, inducidas directamente por estimulación estrogénica lo que sugiere la existencia de una vía estrogénica funcional y hormonodependencia (Horwitz et al., 1975; Horwitz y McGuire, 1978; Fisher et al., 1983; Clarke et al., 1993). (Tabla 9). La asociación positiva entre la expresión de la pS2 y los RE y RPg ha sido confirmada en diversas series publicadas basadas en estudios inmunoenzimáticos e inmunohistoquímicos (Rio et al., 1987; Foekens et al., 1990; Cappelletti et al., 1992; Thor et al., 1992; Dookeran et al., 1993; Horiguchi et al., 1996; Elledge et al., 2000).

Sin embargo, no se ha objetivado una asociación entre el RE y la catepsina D; otra proteasa inducida por los estrógenos. (Tabla 9). Esta falta de asociación podría deberse a una alteración de la vía del RE o que su síntesis se realice por otras vías diferentes. En la mayoría de las
publicaciones, donde la expresión de catepsina D se ha determinado por métodos bioquímicos o inmunoenzimáticos, se señala una asociación estadísticamente significativa entre este enzima y el RE (Thorpe et al., 1989; Spyrats et al., 1989; Gion et al., 1995). Por el contrario, hay autores que no han constatado una relación significativa entre la catepsina D y los receptores hormonales (Marsigliante et al., 1992; Barbi et al., 1994; Foekens et al., 1999). González-Vela et al., (1999) en un estudio con tinción IHQ citan una asociación inversa entre la expresión de la catepsina D en el componente estromal y el RE. Losch et al., (1998) quienes compararon inmunohistoquimicamente la expresión de catepsina D en el componente estromal y ductal, no encontraron asociación alguna con este último. Aunque los métodos bioquímicos poseen la desventaja de la contaminación producida por el componente estromal, en cualquier caso, la elevada expresión de catepsina D en el estroma sería ocasionada por un efecto paracrino inducido por el componente ductal. Además estos estudios demuestran que en algunos cánceres de mama la expresión de la catepsina D no siempre va ligada a la expresión del RE.

También hemos observado una relación inversa muy significativa entre la expresión del RE y el EGFR, que en caso del C-erbB-2 la asociación se sitúa cerca al límite de la significación estadística (p=0,05). (Tabla 9). El RE varía inversamente con la expresión de los receptores de la familia ERBB (EGFR y C-erbB-2), corroborándose en distintos estudios la existencia de una comunicación recíproca entre las vías del RE y la de los factores de crecimiento (Sansbury et al., 1987; Reubi et al., 1989; Cerra et al., 1995; Quenel et al., 1995; Schroeder et al., 1997; Gago et al., 1998). Las líneas celulares RE- expresan cantidades superiores de RNAm–EGFR en comparación con las RE+ probablemente por una regulación recíproca de ambos genes (Lee et al., 1990). La sobreexpresión de C-erbB-2 induce una disminución de la expresión del RE que es independiente de la estimulación del RE por su ligando, aunque se ha demostrado que la estimulación del receptor C-erbB-2 por la heregulina es capaz de inducir la fosforilación del RE y estimular por este mecanismo la síntesis de progesterona. Paradójicamente, esta estimulación del RE ocasiona una disminución de su expresión (Pietras et al., 1995). Berthois et al., (1989) demostraron en las células MCF7 la inducción del RE y en menor medida del RPg por la acción del EGF. También se ha podido comprobar experimentalmente en células MCF7 la activación del RE independiente del ligando (estradiol) por el IGF-1 y otros factores de crecimiento, con la consecuente expresión de progesterona, pS2 y catepsina D, proteínas que dependen de la vía estrogénica para su síntesis (Stoica et al., 2000; Wang et al., 2000). Por tanto, estos estudios muestran la existencia de una compleja interconexión entre las diferentes vías de señalización.

La positividad para el RE también varió inversamente y muy significativamente con la expresión de los antígenos nucleares de proliferación celular, Ki-67 y PCNA. (Tabla 9). En
ambos casos la presencia del RE se asoció a bajos índices de proliferación celular. Diferentes técnicas utilizadas para medir la actividad proliferativa celular han confirmado que la ausencia del RE está relacionada con tumores proliferativos, caracterizados por aneuploidía y alta gradación nuclear, en los que se ha producido una pérdida de regulación de la vía estrogénica o que son estimulados por factores de crecimiento (Silvestrini et al., 1979; Clark et al., 1989). Los cánceres con elevados índices de ki-67 se asocian significativamente a una disminución o ausencia del RE, aneuploidía y alto grado nuclear (Gerdes et al., 1986; Weikel et al., 1991; Pelosi et al., 1994; Ioachim et al., 1996; Oehler et al., 1997). En el caso del PCNA, Guillet et al. (1993) observaron que de 3 anticuerpos (PC10, 19A2, KiS1), únicamente el 19A2 se relacionó inversamente con el RE.

Hemos apreciado que la inmunotinción positiva para el RE se asoció significativamente con una ausencia de tinción para la p53. (Tabla 9). La expresión de p53 se ha relacionado con la negatividad para el RE, aneuploidía, alta gradación nuclear, mayor tamaño tumoral y elevada actividad proliferativa (Cattoretti et al., 1988; Thor et al., 1992; Stenmark-Askmalm et al., 1994; Beck et al., 1995; Soong et al., 1997). La ausencia de expresión de p53 y la positividad para el RE en nuestra serie indica que se mantiene un grado de diferenciación, así, algunos tumores mantienen su ploidía y muestran un menor pleomorfismo nuclear. Por otra parte, la presencia de un número reducido de tumores RE+/p53+ pone de manifiesto que hay tumores que mantienen la vía estrogénica intacta, pero acumulan ciertas alteraciones en el gen p53. Los dos eventos podrían además ser independientes demostrando por tanto, una gran complejidad de las vías de señalización.

Un elevado porcentaje de tumores RE+ presentaban inmunotinción positiva para la proteína de choque térmico HSp27 (87,9%), aunque esta asociación careció de significación estadística. (Tabla 9). Esta proteína de unión al RE mantiene con éste receptor una relación directa, siendo la mayoría de los tumores RE+/Hsp27+, aunque no todos los tumores RE+ expresan la proteína Hsp27 (Ciocca et al., 1993; Oesterreich et al., 1996). En la inducción de esta proteína también intervienen una serie de factores físicos y químicos que pueden ser independientes de la presencia del RE (Chretien y Laundry 1988; Santell et al., 1992; Zhou et al., 1993; Faucher et al., 1993; Huot et al., 1995; Konishi et al., 1997).

La positividad del RE se ha relacionado con una ausencia de expresión de la glicoproteína P, aunque la asociación no es significativa. (Tabla 9). Los resultados en este estudio concuerdan con los descritos por algunos autores qué a pesar de observar una mayor expresión de la glicoproteína P en tumores diploides, así, como en aquéllos con altos grados histológicos, no
pudieron demostrar asociación alguna con los parámetros de pronóstico clásicos (De la Torre et al., 1995; Wallner et al., 1991). En cambio, Charpin et al., (1994) en un estudio de 213 pacientes señalan una débil pero significativa asociación entre la tinción IHQ de la glicoproteína P y el RE.

2-a) Análisis de la asociación entre el receptor de progesterona y los parámetros clínico-patológicos.

En nuestra serie, mediante tinción con el Am-PR88 y utilizando un dintel de positividad del 10%, el 59,3% de los cánceres fueron RPg+. (Tabla 4). Este porcentaje se sitúa dentro del rango publicado en diferentes series basadas en la tinción inmunohistoquímica. La expresión del RPg también varía dependiendo del estado hormonal y de la presencia del RE (Thorpe et al., 1986, Wenger et al., 1993, Pichon et al., 1996, Balleine et al., 1999).

De manera similar, como sucedió con el RE, hemos observado que el RPg se asoció significativamente con grados nucleares e histológicos bajos y por tanto, con tumores bien diferenciados. (Tabla 10). El RPg precisa para su síntesis de una vía estrogénica funcional y al igual que el RE se relaciona con tumores que presentan una buena diferenciación tumoral y un menor pleomorfismo nuclear (Pichon et al., 1980; Stierer et al., 1993).

A diferencia del RE, se observó un mayor porcentaje de tumores RPg+ en pacientes premenopáusicas que en postmenopáusicas, aunque las diferencias no fueron estadísticamente significativas. (Tabla 10). Castagnetta et al., (1999) también citan la ausencia de diferencias en los patrones de tinción IHQ de pacientes premenopáusicas y postmenopáusicas. Nuestros datos concuerdan con los observados en varios estudios en los que se describe una mayor proporción de tumores RPg+ en premenopáusicas (Clark et al., 1984; Thorpe et al., 1988; Ferno et al., 1990; Romain et al., 1995).

Hemos objetivado una mayor expresión del RPg en los cánceres multicéntricos en comparación con los tumores únicos y, aunque esta asociación carece de significación estadística, muestra que la mayoría de los tumores multicéntricos son hormonalmente activos y por ende, dependientes de la vía del RE. (Tablas 9 y 10). En este estudio no se ha evidenciado una asociación estadísticamente significativa entre los RE y RPg y el resto de los parámetros clínico-patológicos, a excepción de la gradación histológica y nuclear. (Tabla 20). Nuestros datos concuerdan con los publicados por algunos autores (Clark et al., 1984; Berger et al., 1991; Campani et al., 1991; Molino et al., 1992), sin embargo, en la literatura la ausencia de expresión del RPg se ha relacionado con tumores de gran tamaño, la presencia de metástasis ganglionares,
elevada expresión de C-erbB-2, EGFR y p53 y con la disminución de los niveles de pS2, Catepsina D y Bcl-2 (Gross et al., 1984; Thorpe et al., 1988; Thor et al., 1992; Frankfurt et al., 1997; Thor et al., 1992; Gion et al., 1995).

Tampoco hemos observado diferencias significativas con relación al tratamiento adyuvante. (Tabla 10). La positividad o negatividad del RPg no fue un criterio de selección para la radioterapia ni la quimioterapia y, aunque una discreta mayor proporción de pacientes con cánceres RPg+ recibieron tamoxifén, la elección de la hormonoterapia se basó en la positividad para el RE.

2-b) Análisis de la asociación del receptor de progesterona y los marcadores tumorales moleculares.

De manera similar como sucedió con el RE, la expresión del RPg en esta serie se relacionó significativamente con la presencia de pS2, ausencia del EGFR y C-erbB-2 y con bajos índices de los antígenos nucleares de proliferación celular, Ki-67 y PCNA. Por consiguiente, en nuestra serie la expresión del RPg se asoció a características citológicas de diferenciación, baja actividad proliferativa y hormonodependencia. (Tablas 20 y 21).

Además hemos observado una asociación directa y significativa entre el RPg y la proteína pS2 ya publicada en otros trabajos (Rio et al., 1987; Cappelletti et al., 1992; Thor et al., 1992; Dookeran et al., 1993; Horiguchi et al., 1996; Valeron et al., 1997; Thompson et al., 1998). Esta proteína al igual que el RPg dependen de una vía estrogénica funcional, sin embargo, del mismo modo que se objetivó con el RE, encontramos un porcentaje de tumores RPg+/pS2- (52,9%), así, no todos los tumores RE+ y RPg+ son pS2+ evidenciando una posible pérdida del mecanismo de regulación transcripcional de los estrógenos y de los mecanismos de diferenciación celular.

La expresión del RPg se relacionó muy significativamente con bajos índices de los antígenos de proliferación celular ki67 y PCNA (Tabla 10). En la literatura se describe que los cánceres muy proliferativos se caracterizan por una ausencia del RE y RPg y lo contrario sucede en los cánceres con baja expresión de estos antígenos (Charpin et al., 1988; Haerslev et al., 1994; Archer et al., 1995; Schonborn et al., 1995; Ioachim et al., 1996; Oehler et al., 1997; Molino et al., 1997).

También hemos observado una relación inversa significativa entre la expresión del RPg y el EGFR y el C-erbB-2, con una mayor proporción de tumores RPg+/EGFR- y RPg+/C-erbB-2–.
En el cáncer de mama se ha demostrado una reciprocidad de las vías estrogénicas y la de los factores de crecimiento, de manera que, siendo el RPg el producto directo de la estimulación estrogénica no es ajena la existencia de una relación inversa entre este receptor y el EGFR y C-erbB-2 en aquellos tumores que expresan preferentemente el RE (Cappelletti et al., 1988; Cerra et al., 1995; Quenel et al., 1995; Torregrosa et al., 1997; Gago et al., 1998).

La expresión del RPg en este trabajo se relacionó con la ausencia de tinción para la proteína p53, aunque dicha asociación no alcanzó la significación estadística al obtener un valor de p=0,06. (Tabla 10). Varios trabajos citan que la expresión de p53 se asocia a la ausencia del RE y RPg, siendo este fenotipo tumoral considerado de mal pronóstico (Ostrowski et al., 1991; Beck et al., 1995; Gohring et al., 1995; Tsuda et al., 1998).

De manera similar, como ocurrió con el RE, encontramos un mayor número de tumores RPg+ y Hsp27+, aunque no existieron diferencias significativas entre la proporción de tumores Hsp27 positivos o negativos en el grupo de tumores RPg+ y por tanto, la asociación careció de significación estadística. (Tabla 10). Los niveles de Hsp27 son mayores en los tumores RE+/RPg+ (King et al., 1986; King et al., 1987; Oesterreich et al., 1996). Algunos autores sin embargo, no han encontrado una asociación estadísticamente significativa entre la expresión de la proteína Hsp27 y el RPg (Cano et al., 1988; Artero Mora et al., 1989). Los resultados en esta serie son similares a los descritos por estos autores con la excepción de que la determinación de Hsp27 en estos trabajos se basó en el análisis inmunoenzimático.

No se observó una asociación estadísticamente significativa entre la tinción positiva para el RPg y la catepsina D, aunque si hubo una mayor proporción de tumores RPg+/catepsina D+. (Tabla 10). Otros autores tampoco han demostrado esta asociación por métodos inmunoenzimáticos (Maudelonde et al., 1988; Pujol et al., 1993; Barbi et al., 1994) y por métodos inmunohistoquímicos (Losch et al., 1998). La expresión elevada de Catepsina D puede ser inducida por estrógenos y factores de crecimiento en células RE+ (Cavailles et al., 1988; Touito et al., 1991), sin embargo, la sobreexpresión inducida de catepsina D objetivado en tumores RE- se produce constitutivamente por mecanismos aún no conocidos (Giamarchi et al., 1999).

La expresión del RPg se relacionó directamente con la tinción positiva de la glicoproteína, aunque esta asociación no alcanzó la significación estadística (p=0,09). (Tabla 10). La elevada expresión de glicoproteína P se ha objetivado en cánceres de mama avanzados, siendo la
Discusión

mayoría de estos tumores RPg-. Para Charpin et al., (1994) la inmunotinción positiva de la glicoproteína P no se correlacionó con la expresión del RPg.

3-a) Análisis de la asociación entre la expresión de la proteína pS2 y los parámetros clínico-patológicos.

En este estudio mediante tinción IHQ y utilizando un punto de corte equivalente a un 10% de las células teñidas, un 28.7% de los tumores fueron considerados pS2+. (Tabla 4). En dos series los porcentajes publicados han sido del 29% y 40% (Schwartz et al., 1991; Molina et al., 1990). En trabajos donde el dintel de positividad se ha fijado en un 5% o más de células teñidas los porcentajes han variado entre un 46% - 68% (Thor et al., 1992; Henry et al., 1991; Cappeletti et al., 1992), mientras que empleando un punto de corte del 10%, la expresión de pS2 se ha situado entre un 66% y 77% (Koerner et al., 1992; Dookeran et al., 1993). Destaca que algunos de estos estudios incluían tumores que contenían una reducida proporción de células pS2 (Henry et al., 1991; Thor et al., 1992). El anticuerpo monoclonal que hemos utilizado se obtiene de la estimulación antigénica contra un péptido sintético de 31 residuos de aminoácidos pertenecientes a la región carboxiterminal de la proteína pS2. En cambio, en la serie de Dookeran et al., (1993) un elevado porcentaje de positividad (77%) se consiguió empleando un anticuerpo monoclonal inducido contra el péptido intacto, lo que le permite reaccionar con un mayor número de sitios antigenicos. La expresión de pS2 depende del tipo de anticuerpo monoclonal utilizado, del dintel de positividad elegido y de la presencia del RE, de este modo, las variaciones en los porcentajes de expresión entre las distintas series y la nuestra, se deben principalmente a las diferencias en la sensibilidad de los anticuerpos monoclonales y al dintel de positividad elegido.

En nuestra serie la expresión de pS2 se relacionó significativamente con grados histológicos y nucleares bajos, es decir, con tumores bien diferenciados. (Tabla 11). Esta asociación de tipo inversa es similar a la observada entre los receptores hormonales y la gradación nuclear e histológica y concuerda con la descrita en la mayoría de las series consultadas en donde la expresión de pS2 disminuye en los cánceres indiferenciados (Henry et al., 1991; Thor et al., 1992; Cappelletti et al., 1992; Dookeran et al., 1993; Spyrotos et al., 1994; Racca et al., 1995).

No se encontró una asociación estadísticamente significativa entre la expresión de la pS2 y el estado hormonal, ya que la proporción de tumores pS2+ en pacientes premenopáusicas y postmenopáusicas fue similar. (Tabla 11). Algunos autores refieren valores significativamente menores de pS2 en pacientes postmenopáusicas en comparación con mujeres con ciclos menstruales activos (Pujol et al., 1999), sin embargo, en esta serie como ha sucedido en otras
(Thor et al., 1992; Cappelletti et al., 1992; Dookeran et al., 1993; Racca et al., 1995) no objetivamos una asociación significativa entre la expresión de pS2 y el estado menstrual. Estos datos parecen indicar que la expresión de pS2 depende de la estimulación estrogénica, pero es independiente del estado hormonal de las enfermas.

En nuestra serie, de manera similar como ocurrió con el RE y RPg, esta proteína no mostró una asociación con el tamaño tumoral, afectación ganglionar, tamaño ganglionar y tipo de tumor. (Tabla 11). Esta carencia de asociación entre la expresión de pS2 y el tamaño tumoral se ha observado tanto en series donde la determinación de pS2 se ha efectuado por métodos inmunoenzimáticos (Foekens et al., 1990) como por tinciones inmunohistoquímicas (Cappelletti et al., 1992; Dookeran et al., 1993). En contraste, Henry et al., (1991) describieron en su serie que los tumores pequeños y bien diferenciados teñían intensamente. Autores como Foekens et al., 1990; Thor et al., 1992; Cappelletti et al., 1992 y Dookeran et al., 1993, no encontraron diferencias significativas entre la expresión de pS2 y el estado ganglionar y el estadio T. De este modo, la ausencia de asociación con los parámetros de pronóstico clásicos, salvo la gradación histológica y nuclear, también observada con los receptores hormonales, se mantienen con esta proteína dependiente de la vía del RE. Así, la proteína pS2 parece relacionarse con el grado de diferenciación de un tumor y es independiente del tamaño tumoral y de la afectación ganglionar, salvo los tumores de gran tamaño y con ganglios positivos que además muestran características citológicas de desdiferenciación.

El 41,3% de tumores pS2+ no recibieron radiaciones ionizantes frente a un 22,2% de los pS2+ radiados, siendo estas diferencias significativas y que se deben a un mayor número de mastectomías en el grupo no radiado. (Tabla 11). También a un mayor porcentaje de pacientes pS2+ no se les administró quimioterapia ni tamoxifén, aunque en estos casos las diferencias no fueron significativas. Estas enfermas habían sido consideradas de buen pronóstico y sometidas a vigilancia exclusivamente.

3-b) Análisis de la asociación entre la expresión de la proteína pS2 y los marcadores tumoriales moleculares.

En nuestro estudio hemos observado que esta proteína al igual que el RE y RPg se asoció a bajos grados histológicos (p=0,04) y nucleares (p=0,04) y a la presencia del RE (p=0,004), RPg (p=0,02) y catepsina D (p=0,02). (Tablas 20 y 21). Por consiguiente, este marcador se ha relacionado con características citológicas de diferenciación y de dependencia hormonal.
En esta serie hemos observado una relación directa y estadísticamente significativa entre la expresión de pS2 y catepsina D. (Tabla 11). Una asociación positiva significativa entre la proteína pS2 y los receptores hormonales y la catepsina D ha sido descrita en estudios inmunoenzimáticos e inmunohistoquímicos y que parece lógica si consideramos que los estrógenos y factores de crecimiento inducen la expresión de ambas proteínas por interacción con sus regiones promotoras (Cavailles et al., 1993; Gianmarchi et al., 1999). Este tipo de asociación entre la pS2 y los receptores de estrógeno y progesterona ya comentada, ha sido descrita por varios autores (Foekens et al., 1990; Thor et al., 1992, Cappelletti et al., 1992; Dookeran et al., 1993; Detre et al., 1994; Spyratos et al., 1994). Ardanavis et al., (1997) citan una asociación significativa entre la pS2 y la catepsina D. En contraste, Racca et al., (1995) que también midieron la expresión de pS2 por métodos bioquímicos, no observaron una asociación significativa entre los niveles de pS2 (punto de corte 11 ng/mg) y la catepsina D.

La pS2 se relacionó directamente, aunque sin significación estadística, con la proteína Hsp27. (Tabla 11). La Hsp27 es también una proteína regulada por los estrógenos y una asociación positiva con los RE y pS2 fue publicada por Thor et al., (1991). Los datos de nuestra serie también sugieren una relación directa entre ambas. Por otra parte, aunque las dos proteínas dependen de la vía del RE para su síntesis, otros factores aparte de los estrógenos también pueden intervenir en la estimulación y síntesis de ambas y podrían explicar las diferencias observadas (Giamarchi et al., 1999; Osterreich et al., 1996; Kiang et al., 2000).

También se apreció una discreta mayor proporción de tumores pS2+/C-erbB-2+, aunque las diferencias con relación a tumores pS2+/CerbB-2- no han sido significativas. (Tabla 11). In vitro se ha demostrado que la expresión de C-erbB-2 disminuye por estimulación estrogénica, mientras que la pS2-RNA aumenta y por tanto, es de esperar una relación inversa (Warri et al., 1991). Otros autores por métodos inmunoenzimáticos (Valeron et al., 1997) y por IHQ (Rio et al., 1987) no han podido constatar una relación estadísticamente significativa entre la pS2 y el C-erbB-2.

En esta serie la expresión de pS2 varió inversamente con la del EGFR, evidenciando una mayor proporción de tumores pS2+/EGFR- que de pS2+/EGFR+, aunque en este caso la asociación tampoco alcanzó la significación estadística. (Tabla 11). Una relación inversa significativa fue descrita por Foekens et al., 1990, empleando enzimoinmunonanálisis. La pS2 también puede ser inducida por el EGF (El-Tanani y Green, 1997), sin embargo, en esta serie, dada la asociación significativa con el RE, el mayor número de tumores RE+ que EGFR+ y
Discusión

siendo el estradiol su principal inductor, es muy probable que la mayoría de los tumores pS2+ dependan más de la vía estrogénica que de la vía de los factores de crecimiento.

En nuestro estudio más de la mitad de los tumores pS2+ fueron PCNA y Ki-67 negativos. Sin embargo, a diferencia de otras series (Henry et al., 1991; Cappelletti et al., 1992) en la nuestra, la asociación con los antígenos de proliferación celular careció de significación estadística. (Tabla 11). No obstante, el número de tumores pS2+ en esas series fue considerablemente superior a los registrados en este trabajo. De manera similar, como sucedió con los cánceres RE+ y RPg+, una mayor expresión de pS2+ se ha observado en los tumores con baja actividad proliferativa.

Hubo también una mayor proporción de tumores pS2+/p53- en comparación con pS2+/p53+, siendo esta relación inversa y similar a la observada entre el RE y p53, aunque en este caso la asociación también careció de significación estadística. (Tabla 11). Se ha demostrado que la expresión de p53 varía inversamente con los niveles de pS2 (Thompson et al., 1990).

Se observó una relación directa entre la expresión de pS2 y la glicoproteína P, siendo la proporción de tumores pS2+/glicoproteína P+ superior a los pS2+/glicoproteína P-. (Tabla 11). Sin embargo, el grado de asociación no fue estadísticamente significativo de manera análoga al observado entre el RE y la glicoproteína P. Charpin et al., (1994) señalan una débil asociación de la glicoproteína P con el RE y la ausencia con el RPg y pS2. Estos datos parecen indicar que la expresión de ambas proteínas son eventos independientes.

4-a) Análisis de la asociación entre la expresión de la proteína Hsp27 y los parámetros clínico-patológicos.

Mediante tinción IHQ con el Am-D5 se demostró que el 72,2% de los tumores fueron Hsp27+. (Tabla 4). En el cáncer de mama los porcentajes de tinción positiva fluctúan entre un 40-70%, aunque los patrones de tinción varían en función del estado hormonal y del fenotipo tumoral (Ciocca et al., 1993; Araya et al., 1994).

En esta serie hemos objetivado una asociación directa significativa entre la expresión de Hsp27 y la gradación histológica. Esta relación también se observó con la gradación nuclear, aunque en este caso la asociación careció de significación estadística. (Tabla 12). De este modo, en este estudio la expresión de Hsp27 se corresponde con una baja diferenciación celular y contrasta con la publicación de Love et al., (1994), donde la máxima expresión de Hsp27 se objetivó en tumores bien diferenciados. No obstante, en varios estudios la expresión de Hsp27
se ha relacionado con tumores muy proliferativos, con el fenómeno de diseminación metastásica y con la inducción de resistencia a la doxurobicina, y por tanto, con tumores de mayor agresividad (Lemieux et al., 1997; Oesterreich et al., 1993; Fuqua et al., 1994; Kolar et al., 1998).

También se ha observado una mayor proporción de cánceres Hsp27+ en pacientes premenopáusicas en comparación con las postmenopáusicas (Tabla 12). Sin embargo, este dato careció de significación estadística y es contrario al publicado por Artero Mora et al., (1989) y Cano et al., (1989) que citan un mayor número de tumores Hsp27+ en pacientes postmenopáusicas. A diferencia de la serie que nos ocupa, estos estudios emplearon el método inmunorradiométrico para medir la expresión de la proteína, aunque por medio de tinción IHQ Love et al., (1994) también demostraron una mayor expresión de Hsp27 en pacientes postmenopáusicas.

No se encontró asociación con el tamaño tumoral, el tipo de tumor, el grado nuclear, la afectación ganglionar, tamaño de los ganglios y el desbordamiento de la cápsula ganglionar. (Tabla 12). En los trabajos donde la determinación de la Hsp27 se ha realizado por métodos inmunoenzimáticos no se han objetivado diferencias significativas entre cánceres Hsp27 positivos y negativos con relación a estos parámetros (Cano et al., 1988; Artero-Mora et al., 1989; Marsigliante et al., 1992). En cambio, en los estudios inmunohistoquímicos sí se ha observado una asociación estadísticamente significativa entre la expresión de Hsp27 y la afectación ganglionar y los estadios T avanzados (Thor et al., 1991; Love et al., 1994). En nuestro estudio se apreció una discreta mayor proporción de tumores Hsp27+ en tumores con ganglios axilares positivos, con más de 4 ganglios afectados, con el desbordamiento de la cápsula ganglionar y con tumores con un grado nuclear III, sin embargo, las diferencias son escasas y carecen de significación estadística. En la serie que nos ocupa los porcentajes de expresión de la Hsp27 también han sido superiores a los publicados en otras series: 55% en el estudio de Heyderman et al.,(1989); 26% en tumores con ganglios negativos y 45% con ganglios positivos en la serie de Thor et al., (1991); y 43% en la de Tetu et al., (1995). En estos trabajos se han empleado distintos anticuerpos monoclonales, así, los resultados discordantes podrían deberse a la gran variabilidad en los porcentajes de tinción producto de las diferentes sensibilidades de los anticuerpos y de la metodología empleada.
4-b) Análisis de la asociación entre la expresión de la proteína Hsp27 y los marcadores tumorales moleculares.

En nuestra serie hemos observado una asociación significativa entre la expresión de la Hsp27 y elevados índices de PCNA. Esta asociación careció de significación estadística con el antígeno Ki-67 (p=0,08), aunque también se evidenció una mayor proporción de tumores Hsp27+/Ki67+. (Tabla 12). En la literatura la detección positiva de Hsp27 se ha relacionado significativamente con: el crecimiento celular in vitro, tumores avanzados, invasión tumoral, y con la inducción de resistencia a drogas. Las Hsp27 pueden participar en el crecimiento de los tumores y en la resistencia a ciertos agentes citotóxicos. La expresión de Hsp27 en tumores con elevados índices de los antígenos de proliferación celular sugiere la participación de esta proteína en el crecimiento celular (Mahvi et al., 1993; Lemieux et al., 1997; Oesterreich et al., 1993; Fuqua et al., 1994; Kolar et al., 1998). En nuestro estudio la Hsp27 se ha relacionado con tumores proliferativos y con rasgos citológicos de desdiferenciación.

La relación también fue directa con la expresión de C-erbB-2, p53, catepsina D y glicoproteína P, con una mayor proporción de tumores Hsp27+/C-erbB-2+, Hsp27+/p53+, Hsp27+/catepsina D+, aunque en ningún caso la asociación entre la Hsp27 y estos marcadores fue estadísticamente significativa. (Tabla 12). Con relación a los receptores hormonales y a la pS2 la relación también ha sido directa y sin significación estadística (ver 1-b, 2-b, 3-b). Los resultados de los trabajos publicados son discordantes encontrando algunos una asociación significativa con los RE (Coffer et al., 1985; King et al., 1986; Giani et al., 1989; Nardelli et al., 1989; Takahashi et al., 1995) y pS2 (Thor et al., 1991), mientras que otros, señalan la ausencia de relación con los RE y RPg (Cano et al., 1988; Van der Walt et al., 1988; Artero Mora et al., 1989). Marsigliante et al. (1992), mediante enzimoinmunoanálisis, describen una asociación significativa entre la Hsp27 y la catepsina D. La relación con C-erbB-2 y p53 varía inversamente con los tumores RE+/Hsp27+ (Takahashi et al., 1995).

5-a) Análisis de la asociación entre el EGFR y los parámetros clínico-patológicos.

Utilizando el Am-E30 y un dintel de positividad del 10% o más de las células teñidas, un 16,7% de los cánceres en esta serie fueron considerados EGFR+. (Tabla 4). Los porcentajes de positividad determinados mediante métodos inmunoenzimáticos y tinción IHQ varían en la literatura entre un 14-93% (Klijn et al., 1994), aunque cifras alrededor del 30% se registraron con mayor frecuencia (Toi et al., 1988; Battaglia et al., 1988; Cattoretti et al., 1988; Murphy et al., 1990; Gasparini et al., 1992; Osaki et al., 1992; Schroeder et al., 1997; Ratnakar et al., 1998). El porcentaje de positividad que hemos encontrado en esta serie se encuentra dentro del
rango publicado aunque, debido a la relación recíproca observada entre el EGFR y el RE, la baja expresión del EGFR en esta serie podría ser la consecuencia de un elevado porcentaje de tumores RE+ (apartado 1-b).

Los tumores con una gradación histológica y nuclear III presentaron una elevada expresión del EGFR en comparación con aquellos clasificados en GH y GN II y I (Tabla 13). De este modo, en nuestra serie la expresión del EGFR se relacionó muy significativamente con tumores indiferenciados. La expresión de este receptor se ha correlacionado con la gradación histológica en diversos estudios inmunohistoquímicos, así, los tumores indiferenciados se tiñen con mayor intensidad (Sainsbury et al., 1987; Delarue et al., 1988; Pirinen et al., 1995). También se ha demostrado un incremento en la expresión de este receptor en las metástasis ganglionares con respecto a sus tumores primarios, siendo generalmente estos tumores de mayor tamaño e indiferenciados (Sainsbury et al., 1985; Battaglia et al., 1988).

No hemos encontrado diferencias significativas en la expresión del EGFR con relación al estado hormonal, tipo de tumor y tamaño tumoral. Sin embargo, los porcentajes de positividad observados para el EGFR fueron mayores en tumores en estadio N2, con afectación de 4 o más ganglios y similares en los distintos estadios T. (Tabla 13). Tampoco hubo diferencias con relación al tipo de tratamiento adyuvante administrado. Ratnakar et al., (1998) señalan una mayor expresión de este receptor en las pacientes postmenopáusicas. Algunos autores describen que la expresión del EGFR se relaciona significativamente con tumores grandes, con la invasión ganglionar y con una alta gradación histológica (Sainsbury et al., 1987; Delarue et al., 1988; Battaglia et al., 1988; Torregrosa et al., 1997). Nuestros resultados concuerdan con los observados por otros autores que no han objetivado una asociación entre la expresión del EGFR y el tamaño tumoral, grado histológico, afectación ganglionar y diferenciación histológica (Wrba et al., 1988; Gasparini et al., 1992; Toi et al., 1994; Klijn et al., 1994; Pirinen et al., 1995; Schroeder et al., 1997; Oehler et al., 1997). Estos trabajos han sido realizados con tinciones inmunohistoquímicas empleando diferentes anticuerpos monoclonales y la mayoría concuerdan en que la expresión del EGFR no se relacionó significativamente con los parámetros clínico-patológicos. Cerra et al., (1995), mediante determinación inmunoenzimática del EGFR han obtenido resultados similares.

5-b) Análisis de la asociación entre el EGFR y los marcadores tumorales moleculares.

En nuestro estudio la tinción positiva para el EGFR se ha relacionado con tumores indiferenciados (p=0,003) y con la ausencia de expresión del RE (p=0,00002) y el RPg
(p=0,02). (Tabla 20). Por consiguiente, la expresión del EGFR va ligada a una ausencia de hormonodependencia y a la desdiferenciación celular. En nuestra serie la positividad del EGFR solo podría explicar la patogénesis en un pequeño porcentaje de los cánceres. Además, la ausencia de expresión del EGFR se relacionó significativamente con una elevada positividad para el RE, lo que sugiere que en un importante porcentaje de tumores su crecimiento depende más de la vía de señalización estrogénica. Esta relación inversa entre el EGFR y los receptores hormonales (apartado 1-b) es descrita en estudios inmunoenzimáticos (Pérez et al., 1984; Sainsbury et al., 1985; Wyss et al., 1987; Nicholson et al., 1988; Pekonen et al., 1988; Battaglia et al., 1988; Cappelletti et al., 1988; Cerra et al., 1995) e inmunohistoquímicos (Sainsbury et al., 1987; Cattoretti et al., 1988; Klijn et al., 1994; Schroeder et al., 1997; Ruibal et al., 1999). En contraste, no hemos observado una asociación estadísticamente significativa con las proteínas dependientes del RE, la pS2 y la catepsina D. Las diferencias entre las proporciones de tumores EGFR+/pS2+ y EGFR+/pS2- y EGFR+/catepsina D+ y EGFR+/catepsina D- no fueron significativas. (Tablas 11 y 13). La falta de asociación en comparación con la observada con el RE, se debe al mayor número de tumores RE+/EGFR- (n=56), que pS2+/EGFR- (n=24), y catepsina D+/EGFR- (n=33). (Tabla 9,11 y 13).

En nuestra serie la tinción positiva para el EGFR varió directamente con la inmunotinción del C-erbB-2, aunque el número de tumores que tiñeron positivamente para ambos receptores fue reducido (n=12) y la asociación fue débil (p=0,07). (Tabla 13). Esta relación concuerda con los datos señalados en la literatura donde, además, la expresión simultánea del EGFR y C-erbB-2 es considerada de mal pronóstico (Nicholson et al., 1993; Newby et al., 1997; Torregrosa et al., 1997; Naidu et al., 1998; Ratnakar et al., 1998). Sin embargo, para Gusterson et al., (1987); Osaki et al., (1992) y Toi et al., (1994), la expresión del EGFR no se relacionó con la de C-erbB-2. La expresión conjunta de ambos receptores puede ocasionar un aumento en la vía de señalización del EGFR como han demostrado experimentalmente Worthylate et al., (1999). De este modo, la sobreexpresión de C-erbB-2 produce una activación constitutiva de ambos receptores y una inhibición del proceso de regulación de los niveles de los receptores EGFR que se traduce en un aumento de la proliferación y el crecimiento celular.

Se observó una mayor proporción de tumores EGFR+/Ki67+ y EGFR+/PCNA+ que de EGFR+/Ki67- y EGFR+/PCNA-, siendo la relación con estos antígenos directa, aunque sin significación estadística. (Tabla 13). Gasparini et al., (1992) citan una pobre asociación del EGFR con el Ki67 que mantienen (p=0,07) en un estudio más amplio realizado en 1994. En cambio, en otras publicaciones se hace referencia a la asociación significativa entre el EGFR y el Ki67 (Nicholson et al., 1993; Cerra et al., 1995; Ioachim et al., 1996; Oehler et al., 1997) y
el PCNA (Sherestha et al., 1992; Frassoldati et al., 1997). En consecuencia, este marcador tumoral molecular va ligado a tumores con una elevada actividad proliferativa (fase S alta, Ki67+), ausencia del RE y un peor pronóstico.

También observamos una relación directa con el p53, con una mayor proporción de tumores EGFR+/p53+ en comparación con EGFR+/p53−, aunque esta asociación careció de significación estadística. (Tabla 13). La proliferación celular estimulada por los factores de crecimiento pueden favorecer la acumulación de alteraciones genéticas y estas a su vez, ocasionarían una desinhibición facilitando el crecimiento celular estimulado por la vía de los factores de crecimiento. Para Gasparini et al., (1994) la asociación entre el EGFR y p53 fue débil (p=0,06). Una relación directa entre el EGFR y la p53 ha sido citada por Cattoretti et al., (1988).

Se ha observado una relación inversa sin significación estadística entre la expresión del EGFR y la glicoproteína P. (Tabla 13). No obstante, el reducido número de casos limita nuestros resultados. Clarke et al., (1992) hacen referencia a que la sobreexpresión de MDR1 (glicoproteína P) se asocia a tumores RE- y una elevada expresión del EGFR, siendo la asociación positiva en este caso.

6-a) Análisis de la asociación entre la expresión del oncogén C-erbB-2 (p185.C-erbB-2) y los parámetros clínico-patológicos.

Mediante tinción IHQ con el Am-CB11 y estableciendo un dintel de positividad del 10% o más de las células teñidas, un 42,6% de los tumores fueron C-erbB-2+. (Tabla 4). Los porcentajes de positividad en este estudio se encuentran dentro del rango descrito en la literatura, que para los cánceres ductales infiltrantes varía entre un 11–52,7% (Slamon et al., 1987; Allred et al., 1992; Dawkins et al., 1993; Stal et al., 1994; Marks et al., 1994; Quenel et al., 1995; Balsari et al., 1999; Yokota et al., 1999; Molina et al., 1999; Shimizu et al., 2000; Jakic-Razumovic et al., 2000). La tinción IHQ permite la determinación de la sobreexpresión de la proteína exclusivamente. Sin embargo, estos datos pueden ser analizados con relación al pronóstico ya que varios trabajos han demostrado la existencia de una buena correlación entre la amplificación del gen medida por Southern blot y la sobreexpresión determinada por métodos inmunoenzimáticos e inmunohistoquímicos (Venter et al., 1987; van de Vijver et al., 1988; Slamon et al., 1989; Borg et al., 1990; Hanna et al., 1990; Ciocca et al., 1992; Dawkins et al., 1993; Marks et al., 1994; Dalifard et al., 1998).

En este estudio objetivamos una mayor expresión de C-erbB-2 en tumores de tamaño superior a los 2 cm y con alta gradación histológica, aunque estos datos carecieron de
significación estadística. (Tabla 14). Tampoco se evidenció una asociación significativa entre la expresión de C-erbB-2 y el estado hormonal, el tipo de tumor, la afectación ganglionar, el grado nuclear y el estadaje. Los datos en esta serie concuerdan con los publicados por varios autores que señalan una ausencia de asociación entre la expresión de C-erbB-2 y los parámetros de pronóstico clásicos: edad, tamaño tumoral, afectación ganglionar, gradación histológica y nuclear (van de Vijver et al., 1988; Clark y McGuire 1991; O’Reilly et al., 1991; Ciocca et al., 1992; Marks et al., 1994). Gullick et al., (1991) observaron en una serie de 183 cánceres de mama que la tinción IHQ de C-erbB-2 se relacionó significativamente con altos grados histológicos, pero careció de asociación con el resto de los parámetros clínico-patológicos. Por el contrario, otros investigadores inicialmente han encontrado que la amplificación del gen C-erbB-2 se relacionaba con parámetros clásicos de mal pronóstico: mayor tamaño tumoral, afectación ganglionar, afectación de más de 4 ganglios, alta gradación histológica y nuclear (Slamon et al., 1987; Zhou et al., 1987; Berger et al., 1988; Tavassoli et al., 1989; Rilke et al., 1991; Delarue et al., 1994). Posteriormente la medición de la sobreexpresión por métodos inmunohistoquímicos en algunos casos ha constatado una asociación entre tumores C-erbB-2+ con los parámetros clínico-patológicos clásicos (Gusterson et al., 1988; Iglehart et al., 1990; Baak et al., 1991; Ciocca et al., 1992; Marks et al., 1994; Quenel et al., 1995; Jakic-Razumovic et al., 2000). Así, los resultados publicados en la literatura son discordantes. También algunos autores (Varley et al., 1987; Potter et al., 1990; Barnes et al., 1992; Stal et al., 1994; Wiesener et al., 1998) consideran que la expresión de C-erbB-2 puede estar relacionada con la proliferación celular y la afectación ganglionar, sin embargo, este hecho no ha podido ser demostrado fehacientemente en otros estudios que midieron la actividad proliferativa celular mediante tinción IHQ para el Ki-67 (Kommos et al., 1990; Bacus et al., 1990).

No se observaron diferencias significativas con relación a la positividad de C-erbB-2 y recibir tratamiento adyuvante, aunque a un número importante de pacientes C-erbB-2+ (n=27) no fueron radiadas. (Tabla 14). La administración de citotóxicos se relacionó con un grupo de tumores RE+/C-erbB-2+ (n=26), considerados de mal pronóstico (Allred et al., 1992; Wright et al., 1992; Borg et al., 1994; Houston et al., 1999).

6-b) Análisis de la asociación entre la expresión del oncogen C-erbB-2 (p185. C-erbB-2) y los marcadores tumorales moleculares.

En esta serie hemos objetivado que la expresión de C-erbB-2 se ha relacionado con la ausencia del RE y RPg (p=0,05) y débilmente con la sobreexpresión de Ki-67 (p=0,05), PCNA, (p=0,08) y EGFR (p=0,08). (Tabla 21). De este modo, la expresión de C-erbB-2 se ha asociado, aunque débilmente, con la independencia hormonal, con la proliferación celular y con la vía de
discusión 199

los factores de crecimiento. Pietras et al., (1995) demostraron experimentalmente que el C-erbB-2 al ser estimulado por la heregulina era capaz de inducir una disminución de la expresión de los RE y, paradójicamente, estimular la actividad del RE independiente del estradiol ocasionando la síntesis de progesterona. La mayoría de los trabajos publicados basados en técnicas inmunohistoquímicas citan la relación inversa entre la expresión de C-erbB-2 y los receptores hormonales (Gusterson et al., 1988; O’Reilly et al., 1991; Ciocca et al., 1992; Allred et al., 1992; Stal et al., 1994; Delarue et al., 1994; Quenel et al., 1995). Por otra parte, la reciprocidad de las vías tampoco excluye que tumores RE+ puedan crecer por la activación del oncogen C-erbB-2 (Pietras et al., 1995) y de hecho, se ha señalado que un grupo de tumores RE+/C-erbB-2+ se comportan agresivamente (Allred et al., 1992; Wight et al., 1992; Borg et al., 1994).

Hemos objetivado una asociación directa entre la sobreexpresión de C-erbB-2 y los antígenos nucleares de proliferación celular, principalmente con el Ki-67 y en menor medida con el PCNA. (Tabla 14). Inicialmente mediante la medición de la fracción S por citometría de flujo se observó una correlación entre la sobreexpresión de la proteína y el crecimiento celular (Gusterson et al., 1988; van de Vijver et al., 1988; Baak et al., 1991; Ciocca et al., 1992) que posteriormente también se demostró con los estudios inmunohistoquímicos para el Ki-67 y el PCNA (Archer et al., 1995; Ioachim et al., 1996; Wiesener et al., 1998; Gago et al., 1998). Así, los tumores C-erbB-2+ tienden a ser proliferativos y su sobreexpresión le concede un fenotipo capaz de crecer independiente de la presencia de factores de crecimiento mitogénicos (IGF-1 y EGF) para la célula mamaria, aunque también pueden hacerlo de manera sinérgica con éstos (Ethier y Cundiff, 1987; Ram et al., 1996; Woods Ignatoski et al., 1999). La C-erbB-2 se encuentra constitutivamente fosforilada en los cánceres de mama que sobreexpresan este receptor; propiedad que favorece el crecimiento independiente del IGF-1 y el EGF. Además, la activación constitutiva de C-erbB-2 produce un aumento progresivo en los niveles de C-erbB-3 (Woods Ignatoski et al., 1999). La heregulina posee la propiedad de actuar como un mitógeno similar al IGF-1 o al EGF (Ram et al., 1995; Ethier et al., 1996) y puede activar el C-erbB-2 al formar éste un heterodímero con C-erbB-3. El C-erbB-3 y en menor medida el C-erbB-2 es un potente activador de la vía de la fosfatidil inositol 3 cinasa (PI 3) utilizada por el IGF-1. Se ha demostrado experimentalmente que la actividad mitogénica del IGF-1 en las células mamarias depende de la integridad de sitios de unión en el C-erbB-2 (Myers et al., 1996). De este modo, el C-erbB-2 activado puede estimular la vía PI 3 cinasa del IGF-1 y la vía de las MAP cinasas del EGF (Marte et al., 1995). También se ha objetivado que muchas células inducen la muerte celular programada por bloqueo de los receptores de IGF-1, de la vía de la PI 3 cinasa o de la Akt cinasa activada por PI 3 cinasa. Así, el C-erbB-2 es un potente oncogén capaz de inducir la
proliferación celular y evitar la muerte celular programada (Kulik et al., 1997; King et al., 1997).

A diferencia de otros autores, que mediante técnicas inmunohistoquímicas han demostrado una asociación significativa entre la expresión de C-erbB-2 y p53 (Iwaya et al., 1991; Isola et al., 1992; Stenmark-Askmalm;1994; Tsuda et al., 1998), en nuestra serie, al igual que en la serie de Marks et al., 1994 y en la de Harbeck et al., 1998 (ganglios negativos), no se ha observado una asociación significativa con p53, siendo la proporción de tumores C-erbB-2+/p53+ y C-erbB-2+/p53- similar. (Tabla 14). Diversos trabajos que han analizado las alteraciones del gen p53 han corroborado que la sobreexpresión de la proteína p53 se asocia a tumores con amplificación de C-erbB-2, elevados índices de ki67 y ausencia del RE. La expresión conjunta de ambos marcadores se relaciona con parámetros de mal pronóstico (Seshadri et al., 1996; Iacopetta et al., 1998). Además, la amplificación del gen C-erbB-2 en algunos cánceres de mama antecede a las alteraciones observadas en el gen p53, por tanto, los dos eventos pueden ocurrir de manera independiente y progresivamente (Barnes et al., 1992; Liu et al., 1992; Smith et al., 2000). En la serie de Rudolph et al., (1999), aunque no existió un correlación significativa entre el C-erbB-2 y la p53, ambos se relacionaron significativamente con tumores de mayor tamaño, alta gradación histológica, aneuploidía, ausencia de receptores hormonales, elevada expresión de la topoisomerasa II alfa y de Ki-67. Lukas et al., (2000) han señalado que las mutaciones en el gen p53 pueden producirse precozmente y durante la progresión del cáncer, o ser incluso independientes o estar relacionados con otros eventos.

7-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular Ki-67 y los parámetros clínico-patológicos.

Empleando el MIB-1 y como punto de corte la mediana del valor correspondiente a un 15% de los núcleos teñidos, un 42,6% de los tumores fue considerado ki67+. (Tabla 4). Este anticuerpo ha demostrado ser de utilidad en las muestras parafinadas y comparable e incluso superior al Ki-67 clásico (Barbareschi et al., 1994; Weidner et al., 1994). Una buena parte de los investigadores utilizan la mediana para establecer el dintel de positividad, puesto que para este marcador no se ha fijado aún el punto de corte preciso (Gerdes et al., 1984; Wintzer et al., 1991; Sahin et al., 1991; Gagli et al., 1993; Barbareschi et al., 1994). Sobre la base de la mediana es posible separar dos grupos de poblaciones tumorales, una con un elevado índice de células Ki-67 o tumores muy proliferativos y otra con un índice Ki-67 bajo, es decir, tumores cuyas células se replican en menor número o lo hacen a un ritmo mas lento. Otra posibilidad es establecer una curva ROC para determinar cuál es el porcentaje ideal que debe ser usado como dintel de positividad, aunque este método se aplica a estudios retrospectivos. Sin embargo, la mediana se convierte en el mejor parámetro de discriminación de tumores con elevada y baja expresión de Ki-67, especialmente en aquellos cuya distribución de células Ki-67 no sigue una distribución Gaussiana. Los índices de expresión de este marcador determinado mediante tinción IHQ en las lesiones benignas de la mama son muy bajos de 0 a 4%, en comparación con los cánceres que varían de 3 a 98% (Dervan et al., 1989). En consecuencia, el valor de la mediana se situaría fuera del rango considerado normal para el tejido mamario sano. Varios trabajos han corroborado la utilidad del antígeno Ki67 para medir la fracción de crecimiento de una población celular, siendo comparable a métodos precisos como la autorradiografía con timidina tritiada, el número de AgNOR, la citometría de flujo y la tinción con bromodeoxirribonucleato (Silvestrini et al., 1988; Dervan et al., 1989; Ruschoff et al., 1990; Sahin et al., 1991; McGrogan et al., 1997).

En nuestra serie los valores de Ki-67 por encima de la mediana se asociaron significativamente a altos grados histológicos (p=0,0004) y nucleares (p=0,0007) y por ende, con tumores con arquitectura citológica de desdiferenciación. (Tabla 15). En la mayoría de los trabajos revisados se cita que la expresión del antígeno va ligada a tumores muy proliferativos (elevado índice mitótico, alta fracción S), aneuploidía y con elevada gradación histológica y nuclear (Charpin et al., 1988; Bouzubar et al., 1989; Ruschoff et al., 1990; Vielh et al., 1990; Sahin et al., 1991; Weikel et al., 1991; Pelosi et al., 1994; Weidner et al., 1994; Pinder et al., 1995; McGrogan et al., 1997; Midulla et al., 1999; Harbeck et al., 1999).
En este estudio hemos observado una relación directa entre la expresión de Ki67 y el tamaño tumoral, siendo el porcentaje tumores Ki-67+/T3 superior a Ki-67+/T1, aunque las diferencias no fueron estadísticamente significativas (p=0,09). (Tabla 15). Tampoco se encontraron diferencias significativas entre la expresión de Ki-67 y la afectación ganglionar, número de ganglios, tamaño ganglionar, rotura de la cápsula ganglionar, tipo de tumor, estado hormonal y el estadiaje. (Tabla 15). Sin embargo, la tendencia observada fue una mayor expresión de Ki-67 en tumores con ganglios N2 y cápsula rota (Tabla 15). Autores como Barnard et al., (1987) también han encontrado una débil asociación entre la inmunotinción positiva del antígeno Ki-67 y el tamaño tumoral, el estado ganglionar y el estado hormonal. Pinder et al., (1995) en una serie de 177 cánceres citan una correlación significativa con el tamaño tumoral que fue independiente de la afectación ganglionar y del estado hormonal. Otros autores no han evidenciado una correlación entre la expresión del antígeno y el tamaño tumoral y las metástasis ganglionares (Lelle et al., 1987; McGurrin et al., 1987; Weikel et al., 1991; Campani et al., 1991). No obstante, diversas series que incluyen un número amplio y reducido de casos hacen referencia a la correlación positiva y significativa entre los tumores con elevados índices Ki-67 y el tamaño tumoral y el compromiso ganglionar (Charpin et al., 1988; Viehl et al., 1990; Weikel et al., 1991; Wintzer et al., 1991; Gaglia et al., 1993;).

Con relación a la terapia adyuvante un mayor número de pacientes con tumores Ki-67+ recibieron quimioterapia en comparación con cánceres Ki-67 no tratados (p=0,06), aunque esto se debe a que la elevada expresión de Ki-67 se relacionó con la ausencia del RE y por tanto, estas pacientes fueron seleccionadas a recibir citotóxicos. La proporción de tumores Ki67+ en tratamiento con tamoxifén fue proporcional al grupo ki67+ sin tratamiento y tampoco se objetivaron diferencias con el tratamiento radioterápico (Tabla 15).

7-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular Ki-67 y los marcadores tumoriales moleculares.

En nuestro estudio los elevados índices de ki67 se han relacionado de manera muy significativa con características celulares de desdiferenciación: alto grado histológico (p=0,0004) y nuclear (p=0,0007), la ausencia de RE (p=0,008) y RPG (p=0,008), elevada expresión de PCNA (p=0,0000), C-erbB-2 (p=0,05) y p53 (p=0,01). (Tablas 20 y 21). La asociación del MIB1 con el PCNA fue altamente significativa ya que ambos antígenos están directamente relacionados con el crecimiento y proliferación celular, sin embargo, sus funciones son diferentes durante el ciclo de división celular. El PCNA funciona principalmente como un cofactor esencial en la actividad de la DNA polimerasa delta y en la síntesis y reparación del DNA (Tan et al., 1986; Prelich et al., 1987; Jaskulska et al., 1988; Lee et al., 1989), mientras
que el antígeno Ki-67 actúa como un eficiente factor en la biogénesis del RNA ribosomal (McCallum y Hall 2000). Por tanto, la acción de ambos antígenos es esencial durante el proceso de división celular. Existe una buena correlación entre el Ki-67 y el PCNA, además ambos se asocian a aneuploidía, alta gradación histológica y nuclear y elevada fracción S (Dawson et al., 1990; Pelosi et al., 1994; Gasparini et al., 1994; Yu et al., 1995).

En nuestra serie el antígeno Ki-67 también se relacionó de manera directa y significativa con la expresión de p53. (Tabla 15). Los cánceres de mama con alteraciones en el gen p53 presentan elevados índices de Ki-67, elevada fracción S, aneuploidía, sobreexpresión de C-erbB-2 y negatividad para el RE y RPg. Estos datos indican que en estos tumores se han producido varias alteraciones genéticas (Cattoretti et al., 1988; Beck et al., 1995; Seshadri et al., 1996; Iacopetta et al., 1998; Midulla et al., 1999; Rudolph et al., 1999). Isola et al. (1992) han sugerido que la sobreexpresión de C-erbB-2 o p53 pueden aumentar la tasa de proliferación celular, así, ambas proteínas se relacionan de manera independiente con la proliferación celular.

8-a) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular PCNA y los parámetros clínico-patológicos.

Con el PCNA también se utilizó el valor de la mediana como punto de corte (15,9%; Am-PC10) para seleccionar tumores con elevado y bajo índice de proliferación celular. (Tabla 4). De este modo, un 42,6% de los tumores fueron considerados PCNA+. En los cánceres los promedios de porcentajes de positividad IHQ para el PCNA varían entre un 10,2% y un 18%, aunque éstos también oscilan en función del tipo de anticuerpo utilizado y la proporción de núcleos aneuploides y diploides. Este antígeno ha sido considerado de utilidad para valorar la actividad proliferativa celular y además, ha mostrado una buena correlación con otros métodos como la medición de la fracción S por citometría de flujo (Dawson et al., 1990; Visscher et al., 1992; Aaltomaa et al., 1992; Sherestha et al., 1992; Siitonen et al., 1993; Thomas et al., 1993). No obstante, algunos autores prefieren expresar sus resultados basándose en el índice de tinción del PCNA en vez de utilizar el valor de la mediana (Haerslev et al., 1994; Schimmelpenning et al., 1994; Sheen-Chen et al., 1997).

En nuestro estudio este antígeno, al igual que sucedió con el Ki-67, mostró una asociación muy significativa con altos grados histológicos (p=0,002) y nucleares (p=0,009). (Tabla 16). Estos resultados concuerdan con los publicados por varios investigadores que, a pesar de haber empleado diferentes anticuerpos monoclonales, objetivaron una relación inversa entre este antígeno y la desdiferenciación celular. Así, elevados porcentajes de núcleos teñidos se relacionaron con un peor grado histológico y nuclear y con la aneuploidía (Visscher et al., 1992;
Aaltomaa et al., 1992; Siitonen et al., 1993; Guillet et al., 1993; Frierson, 1993; Gohring et al., 1994; Haerslev et al., 1994; Schimmelpenning et al., 1994; Heimann et al., 1997). Se han detectado incrementos progresivos en los índices de PCNA desde las lesiones con cambios anaplásicos incipientes hasta el desarrollo de un cáncer infiltrante, sugiriendo la participación activa de este marcador en los procesos de proliferación celular (Sherestha et al., 1992; Kalogeraki et al., 1994; Cardillo et al., 1995).

En nuestro estudio no se han encontrado diferencias estadísticamente significativas entre la elevada expresión de este antígeno y el resto de los parámetros clínico patológicos. Tan solo hemos observado una discreta mayor proporción de tumores PCNA+ en los casos N2, cuando están afectados más de 4 ganglios, con un tamaño ganglionar superior a la mediana, con la rotura de la cápsula ganglionar y en el estadio III (Tabla 16). Gohring et al., (1994) citan una ausencia de asociación entre este marcador y la edad, estado menopáusico y la afectación ganglionar. Thomas et al., (1993) tampoco observaron una asociación estadísticamente significativa con los parámetros de pronóstico clásicos. No obstante, otros autores hacen referencia a la asociación significativa entre la expresión de PCNA y el tamaño tumoral y la afectación ganglionar (Frierson, 1993; Haerslev et al., 1994; Schonborn et al., 1995), aduciendo que la expresión de este marcador se relaciona con tumores más agresivos.

8-b) Análisis de la asociación entre la expresión del antígeno nuclear de proliferación celular PCNA y los marcadores tumoriales moleculares.

En nuestra serie la expresión de PCNA se ha relacionado a características citológicas de dediferenciación, alto grado nuclear (p=0,009) e histológico (p=0,002), ausencia del RE (p=0,009) y RPg (p=0,002), positividad para Hsp27 (p=0,006) y Ki-67 (p=0,0000) y por tanto, con pleomorfismo nuclear, pérdida de dependencia hormonal y aumento de la proliferación celular.

En esta serie hemos observado una relación directa y estadísticamente significativa entre la expresión de PCNA y la positividad para la proteína p53. (Tabla 16). Esta asociación ha sido objetivada en tumores con elevado grado histológico y aneuploidia (Schimmelpenning et al., 1994; Haerslev et al., 1995) y concuerda con los hallazgos de este estudio. La p53 no interacciona directamente con la PCNA, pero regula la actividad de este cofactor a través de la p21 que a su vez es regulada por la p53. La p21 interfiere con el movimiento de la DNA polimerasa durante la fase de elongación de la cadena del DNA (Flores-Rozas et al., 1994). También la p21 produce el desacoplamiento del complejo PCNA-Fen1 necesario para degradar las uniones DNA-primeros RNA en los extremos 5’ de los fragmentos inmaduros de Ozakazi.
previo a su unión en una hebra continua de DNA (Chen et al., 1996). La proteína p21 es necesaria para regular la actividad de la PCNA, así, las alteraciones en la p53 que interfieren con la actividad de esta proteína podrían ocasionar una desinhibición del complejo PCNA-Fen1 y un aumento en la síntesis de DNA. La GADD45 es otra proteína nuclear en parte regulada por la p53 e inducida ante una lesión al DNA. Esta proteína se une a las cinasas dependiente de ciclinas y al PCNA produciendo una inhibición de la entrada de las células en la fase S y estimulando la excisión y reparación de los segmentos de DNA dañados (Smith et al., 1994; Carrier et al., 1994). En este estudio no se han medido los niveles de p21 y GADD45 y por consiguiente, no podemos concluir que la asociación sea debido a alteraciones en estas proteínas, sin embargo, es importante señalar que estos mecanismos podrían explicar la relación observada entre la expresión de p53 y el PCNA.

En este estudio los cánceres con elevados índices de PCNA han sido independientes de la expresión de la catepsina D y de la glicoproteína P. La expresión conjunta del PCNA y de la glicoproteína P se ha objetivado en tumores avanzados de mama que desarrollaron metástasis locorregionales (Botti et al., 1993). Asimismo, Frassoldati et al., (1997) han evidenciado un aumento en la expresión del PCNA, EGFR y glicoproteína P en un grupo de tumores avanzados que no respondieron a la quimioterapia.

9-a) Análisis de la asociación entre la expresión del oncogén supresor p53 y los parámetros clínico-patológicos.

En esta serie empleando el Am-IgG2b (DO-7) y un dintel de positividad del 10% o más de los núcleos teñidos, se detectó la proteína p53 en el 21,3% de los tumores. (Tabla 4). En el cáncer de mama los porcentajes de positividad para la p53 varían entre un 15,5 - 58%, aunque algunos de los estudios incluyen tumores que contienen pocas células con núcleos teñidos. La variabilidad en la tinción IHQ también depende de variaciones en el ciclo de división celular y de la proporción de células aneuploides (Cattoretti et al., 1988; Davidoff et al., 1991; Thor et al., 1992; Isola et al., 1992; Allred et al., 1993; Lipponen et al., 1993; Marks et al., 1994; Bland et al., 1995; Fresno et al., 1997). Cifras similares (20 –24%) a la registrada en este estudio han sido descritas utilizando el anticuerpo monoclonal Pab1801 (Davidoff et al., 1991; Thor et al., 1992; Marks et al., 1994; Bland et al., 1995). Los resultados no difieren excesivamente con la utilización de los anticuerpos DO-1 y DO-7 (Levesque et al., 1998; Fresno et al., 1997).

En nuestro estudio la sobreexpresión de p53 se relacionó significativamente con altos grados nucleares e histológicos y por consiguiente, con características histológicas y citológicas de desdiferenciación.(Tabla 17). Estos resultados están en consonancia con los publicados en otras
En esta serie hemos objetivado una sobreexpresión de p53 en tumores T3, en los casos con afectación de 4 o más ganglios o rotura capsular y en el estadio III, aunque las diferencias con respecto a las otras categorías dentro de cada grupo no fueron estadísticamente significativas. (Tabla 17). Resultados similares a los nuestros se describieron en la literatura donde, a pesar de que la expresión de p53 se relacionó con altos grados histológicos y nucleares, no se demostró una asociación estadísticamente significativa con el tamaño tumoral, la afectación ganglionar y el estado hormonal (Silvestrini et al., 1993; Caleffi et al., 1994; Pietilainen et al., 1995; Beck et al., 1995; Gohring et al., 1995; Bianchi et al., 1997; Levesque et al., 1998; Berns et al., 1998). En cambio, en otros estudios sí se ha observado una asociación entre la sobreexpresión de p53 y tumores con un diámetro superior a los 2 cm y con las metástasis ganglionares (Alrred et al., 1993; Marks et al., 1994; Stenmark-Askmalm et al., 1994). Isola et al., (1992) encontraron una débil asociación con el tamaño tumoral (p=0,09) y ausencia de relación con la edad y el estado hormonal.

Con relación al tratamiento adyuvante no se observaron diferencias significativas, aunque un número reducido de pacientes (n=14) con cánceres p53+ no recibieron citotóxicos y en cambio, fueron tratadas con tamoxifén. (Tabla 17).

9-b) Análisis de la asociación entre la expresión del oncogén supresor p53 y los marcadores tumorales moleculares.

La sobreexpresión del gen p53 se detectó casi en una cuarta parte de los cánceres de mama en esta serie, por tanto, las alteraciones de este gen en las ¾ partes restantes no pueden explicar la patogénesis de estos tumores. Sin embargo, hasta un 20% de las tinciones inmunohistoquímicas no detectan la proteína mutada y de producirse este hecho puede ocasionar un error al interpretar los resultados. A pesar de estas consideraciones, la presencia de p53 en nuestra serie como en otras, se ha relacionado con altos grados nucleares (p=0,0006) e histológicos (p=0,00006), ausencia del RE (p=0,03) y elevados índices de proliferación celular, Ki-67 (p=0,01) y PCNA (p=0,002). En consecuencia, en nuestra serie la expresión de esta
proteína se ha relacionado con parámetros de mayor agresividad: falta de diferenciación, hormonoindependencia y crecimiento celular.

La p53 varió inversa y significativamente con el RE, mientras que con el RPg la asociación no alcanzó la significación estadística (p=0,06). (Tablas 9 y 10). En cambio, con los antígenos de proliferación celular, Ki-67 y PCNA, la relación fue directa y significativa (Tablas 15 y 16). En varios trabajos se cita la relación entre la sobreexpresión de p53 y la negatividad para los receptores hormonales, la sobreexpresión de C-erbB-2, la elevada fracción S y altos índices de Ki-67. Estos cánceres tienden a ser indiferenciados, proliferativos y relacionados con un mal pronóstico (Cattoretti et al., 1988; Isola et al., 1992; Allrred et al., 1993). La pérdida de p53 puede liberar la inhibición de los mecanismos homeostáticos que controlan la proliferación celular, producir deficiencias en la reparación del DNA que favorecen la acumulación de alteraciones genéticas y sobreexpresión de oncogenes y condicionar la pérdida de los mecanismos apoptóticos. La sobreexpresión de p53 es un indicador de potencial maligno y debe ser valorado en conjunto con otros marcadores de pronóstico.

En nuestra serie no hemos observado una asociación estadísticamente significativa entre la p53 y la catepsina D, aunque si se objetivó una discreta mayor proporción de tumores p53+/catepsina D+. En contraste, la proporción de tumores p53+/glicoproteína P+ fue similar a p53+/glicoproteína P-. (Tabla 17). En la literatura existen controversias con relación al grado de asociación entre estos marcadores, así, Isola et al., (1993) mediante determinación IHQ en 262 cánceres de mama con ganglios negativos, destaca una ausencia de asociación estadísticamente significativa entre la catepsina D y el C-erbB-2 y la p53. Moriki et al., (1995) en una serie pequeña de 35 pacientes describen una relación entre la expresión de C-erbB-2 y p53 con la elevada actividad proliferativa. No encontraron sin embargo, una asociación con la glicoproteína P. En cambio Charpin et al., (1994), en un estudio de 213 cánceres de mama, describen una asociación estadísticamente significativa entre la expresión de la glicoproteína P, la catepsina D y la p53. Se considera que la expresión conjunta de p53 y la glicoproteína P está relacionada con un fenotipo tumoral más agresivo y resistencia a citotóxicos. Algunos experimentos han demostrado que la proteína p53 mutada puede activar la región promotora del gen MDR1 que codifica la glicoproteína P. Además, el acumulo nuclear de p53 y la expresión de glicoproteína P se ha observado en tumores de mama localmente avanzados (Moriki et al., 1995; Schneider y Romero et al., 1995; Linn et al., 1996). Sin embargo, Lizard-Nacol et al., (1999), que han analizado mediante RT-PCR la expresión del gen MDR1 y p53 en 75 cánceres de mama y 36 muestras de tejido normal, no encontraron una correlación entre ambos genes. Este examen demostró niveles elevados de MDR1 tanto en tejido neoplásico como en el normal,
mientras que la expresión de p53 fue alta en el tejido canceroso y baja en el normal. En el caso del gen MDR1 su presencia en tejido normal y neoplásico sugiere un mecanismo de inducción del gen y no de una selección clonal. Por tanto, la ausencia de correlación entre ambos genes puede ser el resultado de dos procesos independientes.

10-a) Análisis de la asociación entre la expresión de la catepsina D y los parámetros clínico-patológicos.

Con el Am-C5 y utilizando un dintel de positividad del 10% o más de las células teñidas, el 45% de los tumores fueron catalogados como catepsina D+. (Tabla 4). En el cáncer de mama el porcentaje de células ductales que expresan esta proteasa determinada por técnicas inmunohistoquímicas fluctúa entre un 38,9% y un 79%, así, las cifras registradas en nuestro estudio se sitúan en el rango publicado (Henry et al., 1990; Domagala et al., 1992; Isola et al., 1993; Gohring et al., 1996; Ramírez-Ortega et al., 1997; Losch et al., 1998; Tetu et al., 1999). Algunos autores describen por separado los porcentajes de positividad para la catepsina D en las células ductales y estromales compuestas por macrófagos y fibroblastos. La positividad para la catepsina D en el componente estromal varía entre un 18 y 44% (Losch et al., 1998; Tetu et al., 1999). Cuando la determinación de la catepsina D se ha realizado mediante inmunoensayo cuantitativo, el punto de corte ha variado ampliamente (20-45 pmol/mg prt.), aunque en gran parte de los estudios se ha situado alrededor de los 40 pmol/mg ptr (Pujol et al., 1993; Barbi et al., 1994; Ferno et al., 1994; Gohring et al., 1996; Harbeck et al., 1999; Foekens et al., 1999; Eskelinen et al., 1999). En contraste, en los estudios inmunohistoquímicos aún no se ha establecido el valor de mayor sensibilidad y especificidad para la catepsina D. Isola et al., (1993) y Tetu et al., (1999) han considerado un dintel de positividad del 10% o más de las células ductales teñidas. Contrariamente a lo que sucede con otros marcadores tumorales, existen discrepancias cuando se compara la expresión de catepsina D por métodos bioquímicos con los inmunohistoquímicos. Los métodos inmunohistoquímicos permiten la medición de la expresión de la catepsina D en las células ductales y estromales, en contraposición con los métodos bioquímicos donde no es posible estudiar separadamente ambos componentes. Por otra parte, los métodos bioquímicos están bien estandarizados en comparación con los métodos inmunohistoquímicos que emplean distintos anticuerpos monoclonales que poseen diferentes sensibilidades. Remmele et al., (1993) señalan que existe una buena correlación entre los métodos bioquímicos e inmunohistoquímicos en las células ductales en comparación con los macrófagos, sin embargo, los resultados en los casos individuales varían dentro de un amplio rango lo que dificulta las comparaciones de ambos métodos. Para Razumovic et al., (1997) no existió una correlación estadísticamente significativa entre la determinación de la catepsina D por métodos inmunoenzimáticos e inmunohistoquímicos. Hubo sin embargo, una significativa
asociación entre la positividad del componente estromal con la concentración de catepsina D en el componente ductal.

En este estudio hemos valorado la positividad de la catepsina D en las células ductales. La expresión de catepsina D no se asoció significativamente con ninguno de los parámetros clínico-patológicos. (Tabla 18). En la bibliografía consultada encontramos muchas discrepancias en los resultados tanto en series que incluyen un gran número de enfermos como aquellas que poseen un número reducido. En estos trabajos no se ha podido demostrar una correlación entre la expresión IHQ de la catepsina D y los parámetros clínico-patológicos (Domagala et al., 1992; Aaltonen et al., 1995; Ramírez-Ortega et al., 1997; Losch et al., 1998; González Vela et al., 1999). Según Isola et al., (1993) una elevada expresión de catepsina D se relacionó significativamente con tumores grandes, pero no con el grado histológico. Para Nadji et al., (1996) una fuerte tinción de catepsina D en las células estromales se asoció significativamente con el tamaño tumoral, alto grado nuclear e histológico. De manera similar, Tetu et al., (1999) encuentran que la expresión de la catepsina D en el componente estromal se relacionó significativamente con parámetros de mal pronóstico y con la expresión de otras proteasas. Lah et al., (2000) señalan que una intensa tinción para la catepsina D se observó en tumores con altos estadios TNM y con ganglios positivos.

Con la determinación de la catepsina D por métodos enzimáticos los resultados son variables. Así, Thorpe et al., (1989) en un estudio de 396 enfermas (242 pre/perimenopáusicas y 154 postmenopáusicas) objetivaron que los niveles de catepsina D no se relacionaron significativamente con la edad, tamaño tumoral, afectación ganglionar y grado de anaplasia. Tandon et al., (1990) en una serie de 397 pacientes encuentran que la expresión de Catepsina D en los tumores N- se asoció significativamente con la aneuploidía, pero no con la edad y el tamaño tumoral. Según Duffy et al., (1991) la catepsina D no se relacionó con la afectación ganglionar y el estadío y únicamente mostró una asociación con la gradación histológica. Barbi et al., (1994) señala que la concentración citosólica de la catepsina D se correlacionó con la gradación histológica y la afectación ganglionar, pero no con la edad, tipo histológico ni el contenido de RE. Para Gohring et al., (1996) la afectación ganglionar fue la única variable que se asoció significativamente con la concentración de catepsina D. Foekens et al. (1999) hace referencia a una débil asociación entre el contenido citosólico de la catepsina D determinado por métodos inmunoenzimáticos y los parámetros clínico-patológicos.
Tampoco hemos observado diferencias significativas entre la expresión de la catepsina D y el tipo de tratamiento adyuvante, si bien, este marcador no constituye un parámetro de referencia para la administración de una terapia complementaria. (Tabla 18).

10-b) Análisis de la asociación entre la expresión de la catepsina D y los marcadores tumorales moleculares.

En nuestra serie la catepsina D no se asoció significativamente con ningún parámetro clínico-patológico y entre los marcadores tumorales moleculares solamente con la expresión positiva de pS2 y débilmente con la glicoproteína P (p=0,06). (Tabla 18). Según refleja la bibliografía consultada existen discrepancias sobre el grado de asociación de la catepsina D con los parámetros clásicos y con algunos marcadores tumorales moleculares, incluso cuando se han empleado en su medición métodos bien estandarizados como son las técnicas bioquímicas. Estas diferencias hacen que resulte difícil definir el verdadero rol de esta proteasa en el cáncer mamario.

En esta serie no se ha observado una asociación estadísticamente significativa entre la expresión de la catepsina D y el RE y RPg. (Tablas 9 y 10). Esta ausencia de correlación entre la expresión de catepsina D en las células ductales y el RE se ha observado en pacientes con ganglios negativos en estudios inmunoenzimáticos (Tandon et al., 1990;) e inmunohistoquímicos (Isola et al., 1993; Nadji et al., 1996) y también en pacientes con ganglios positivos y negativos empleando técnicas bioquímicas e inmunoenzimáticas (Duffy et al., 1991; Pujol et al., 1993; Barbi et al., 1994; Razumovic et al., 1997; Glikman et al., 1997) e inmunohistoquímicas (Gohring et al., 1996; Losch et al., 1998; González-Vela et al., 1999). En tumores RE+ la expresión de catepsina D puede ser inducida por los estrógenos, insulina, EGF y FGF (Cavailles et al., 1988; Touito et al., 1991), mientras que en células RE- la región CatD HS4 del gen puede controlar la expresión constitutiva por un mecanismo aún no conocido (Giamarchi et al., 1999). Otros autores han observado que la tinción positiva para la catepsina D en las células ductales se relaciona significativamente con la presencia del RE (Henry et al., 1990; González-Vela et al., 1999) Gion et al., 1995 hacen referencia a la asociación directa significativa de la catepsina con el RE y RPg. Foekens et al., (1999) también cita una débil asociación entre la catepsina D y los receptores hormonales. En términos generales a pesar de la diversidad de trabajos donde se mezclan tumores en diferentes estadios, se emplean distintos métodos de medición y diferentes anticuerpos monoclonales, la expresión de la catepsina parece depender de otra serie de factores aparte de la estimulación estrogénica, puesto que a excepción de algunos pocos trabajos, el grado de asociación estadísticamente significativa con los receptores hormonales es débil o nulo. Pujol et al., (1999) citan que en mujeres hormonalmente
activas el estímulo estrogénico influyó principalmente en los niveles de expresión de la proteína pS2 y fue casi nulo con relación a la catepsina D.

Un número reducido de tumores tiñeron positivamente para la catepsina D y la glicoproteína P, siendo la relación positiva, pero sin alcanzar la significación estadística prefijada en el diseño (p=0,06). (Tabla 18). Charpin et al., (1994) encuentran una asociación directa y estadísticamente significativa entre la expresión de la glicoproteína P y la catepsina D. La expresión individual de cada marcador se ha relacionado con un mal pronóstico, sin embargo, se desconoce la implicación en el pronóstico de la expresión conjunta de ambos marcadores al no existir suficientes datos en la literatura.

11-a) Análisis de la asociación entre la expresión de la glicoproteína P y los parámetros clínico-patológicos.

La determinación IHQ de la glicoproteína P se realizó en 58 tumores con el anticuerpo monoclonal JSB-1 y empleando un dintel de positividad mínimo del 10% de las células teñidas. Por este método, la presencia de la glicoproteína P se detectó en el 16,7% de los casos, siendo ésta una cifra baja, pero incluida en el rango (14% - 75%) descrito descrita en la literatura. (Tabla 4). La heterogeneidad observada en algunos tumores es también un hecho destacado (Wishart et al., 1990; Ro et al., 1990; Sanfilippo et al., 1991; De la Torre et al., 1994; Charpin et al., 1994; Linn et al., 1995; Gregorecyk et al., 1996; Filipits et al., 1996; Hegewisch-Becker et al., 1998).

En nuestro estudio la expresión de glicoproteína P fue independiente del estado hormonal, el tipo de tumor, la afectación ganglionar, el tamaño ganglionar, la rotura de la cápsula ganglionar, la gradación nuclear e histológica y el estadaje. (Tabla 19). Esta ausencia de asociación entre la expresión IHQ de la glicoproteína P y los parámetros clínico-patológicos se ha señalado en algunos trabajos (Charpin et al., 1994; De la Torre et al., 1995). Mediante técnicas que miden los niveles del RNA mensajero del gen MDR1 (glicoproteína P), tampoco se ha observado una correlación con la edad, estado hormonal, tamaño tumoral y afectación ganglionar (Wallner et al., 1991; Punyammalee et al., 1997). Trock et al.,(1997) citan en un metanálisis que la expresión de la glicoproteína P no se asoció significativamente con el tamaño tumoral, afectación ganglionar, grado histológico, ni con el contenido de RE. Aunque algunos autores consideran este marcador como factor de pronóstico, su expresión está mas relacionada con la respuesta al tratamiento quimioterápico.
11-b) Análisis de la asociación entre la expresión de la glicoproteína P y los marcadores tumorales moleculares.

El grado de asociación entre la expresión de la glicoproteína P y los marcadores tumorales moleculares ha sido comentado en las secciones anteriores. No se objetivó asociación estadísticamente significativa con ninguno de los marcadores tumorales moleculares a excepción de la relación positiva con el Rp (p=0,09) y con la catepsina D (p=0,06). (Tabla 21). El número de casos en esta serie es reducido, sin embargo, en series con mayor número de tumores se obtuvieron conclusiones similares. Experimentalmente Clarke et al., (1992) demostraron que la transfección del gen MDR1 induce un estado de resistencia en la célula receptora y un incremento en los niveles de expresión del EGFR, sin producir ninguna alteración en los niveles de los receptores hormonales. Por otra parte, la sobreexpresión del gen MDR1 en tejidos normales y en neoplasias avanzadas o que han sido tratadas previamente con citotóxicos, sugiere un mecanismo de inducción y pone en tela de juicio la función directa de esta proteína en la patogénesis del cáncer de mama.

I-C- ANALISIS DE LOS TUMORES QUE DESARROLLARON METASTASIS DURANTE LOS 36 MESES DE SEGUIMIENTO.

1-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces.

En nuestro estudio hemos observado una relación directa entre el desarrollo de enfermedad metastásica y la afectación ganglionar (p=0,08), especialmente cuando existen metástasis en 4 o más ganglios (p=0,07) y con la rotura con desbordamiento de la cápsula ganglionar (p=0,01). (Tabla 22a). El riesgo relativo de metástasis de las pacientes con ganglios en estadio N2 es 3 veces (I.C. al 95%:1,09 – 8,81) el de las pacientes con ganglios en estadio N0 y casi 3 veces superior en aquellas pacientes que presentaban afectación de 4 o más ganglios (I.C. al 95%:1,07 – 8,05) y en los casos de rotura por infiltración de la cápsula ganglionar (I.C. al 95%: 1,08 – 6,41). (Tabla 22b). Esta asociación directa entre las metástasis y la afectación ganglionar es importante desde el punto de vista clínico, debido a que la probabilidad de metástasis es mayor cuando existen ganglios axilares positivos. La afectación ganglionar axilar siempre ha constituido un factor de pronóstico en los cánceres mamarios, sin embargo, a diferencia de la serie que nos ocupa, los datos de recidivas y supervivencia generalmente se han descrito a intervalos de vigilancia de 5, 10 y 20 años. Durante este período las recidiva ha variado en función no sólo de la presencia de metástasis ganglionar, sino del número de ganglios afectados, fundamentalmente cuando este es igual o superior a 4 (Berg y Robbins, 1966; Fisher et al.,
Discusión

También la rotura con desbordamiento de la cápsula ganglionar ha sido un parámetro pronóstico, siendo el número de metástasis superior en los cánceres que presentaban la violación de la cápsula en comparación con aquellos que aún infiltrados la mantenían intacta (Fisher et al., 1976; Mambo et al., 1977; Goldstein et al., 1995; Leonard et al., 1995).

El estadio III (TNM) se asoció al desarrollo de enfermedad metastásica precoz. (Tabla 22a). El riesgo relativo de metástasis estimado para las pacientes clasificadas en un estadio III es 4,9 veces (I.C. al 95%:1,41 – 16,99) el de las pacientes en estadio I, mientras que el riesgo relativo de las enfermas en estadio II es 1,8 veces superior (I.C. 95%:0,5 – 7) al de las pacientes en estadio I y el de las pacientes en estadio III 2,7 veces (I.C. 95%:1,04 – 7) el de las pacientes en estadio II. (Tabla 22b). Por consiguiente, el estadio III se asocia a la aparición de enfermedad metastásica precoz, careciendo de significación estadística la asociación entre las metástasis y el estadio II y I. En diferentes series se describe una elevada frecuencia de recidivas locales y a distancia observadas durante los 5 primeros años de seguimiento en pacientes que habían sido clasificadas en el estadio III (Schottenfeld et al., 1976; Arnold y Lesnick 1979; Scholl et al., 1994; Schwartz et al., 1994). Uno de los factores determinantes de las recidivas en este estadio lo constituye la afectación ganglionar axilar (Frachia et al., 1980; McCready et al., 1989).

La multicentricidad ha sido otro parámetro clínico-patológico relacionado directamente con las metástasis precoces, siendo la proporción de pacientes con cánceres infiltrantes multicéntricos que desarrollaron enfermedad metastásica superior a la proporción en cánceres únicos. (Tabla 22a). El riesgo relativo de metástasis es 2,94 veces mayor (I.C. al 95%:1,15 – 7,7) cuando se posee más de un foco de cáncer infiltrante en la misma mama que en el caso de padecer un tumor único. (Tabla 22b). La presencia de multicentricidad se ha relacionado con un aumento del riesgo de recidiva local y de metástasis ganglionares (Lesser et al., 1989; Kurtz et al., 1990; Dawson et al., 1993). En nuestra serie la multicentricidad no se asoció a ningún parámetro clínico-patológico, lo que nos hace suponer que la presencia de más de un foco de cáncer infiltrante en la misma mama supone un riesgo adicional para la recidiva a distancia probablemente por una mayor carga tumoral.

No hemos objetivado una asociación estadísticamente significativa entre las metástasis y la gradación nuclear (p=0,35) e histológica (p=0,95). (Tabla 22a). La proporción de metástasis fue similar en las diferentes categorías de gradación histológica y nuclear, aunque destaca que no recidivó ninguna paciente con un tumor clasificado en un grado nuclear 1. (Tabla 22a). Varios estudios han constatado que los tumores con altos grados histológicos y nucleares presentan una
Discusión

elevada frecuencia de metástasis ganglionares y recidivas en comparación con los tumores con bajos grados histológicos y nucleares (Bloom y Richardson 1957; Black et al., 1975; Andersen et al., 1981; Fisher et al., 1990; Elston et al., 1991; Henson et al., 1991). El riesgo relativo de metástasis de un grado histológico II con respecto del I fue de 1,07 (I.C. 95%: 0,26 – 4,39) y de 1,3 de un GH III con relación a un GHI (I.C. 95%: 0,27 – 6,25), aunque estos datos carecen de significación estadística al incluir el valor nulo en el intervalo de confianza. (Tabla 22b). El riesgo relativo de metástasis para un tumor con gradación nuclear III con respecto del I fue 4,3 veces superior (I.C. 95%: 0,26 – 71,8) y de un grado nuclear II con relación al I que fue 3,5 veces mayor (I.C. 95%: 0,22 – 55,5). (Tabla 22b). En nuestro estudio observamos que la gradación nuclear parece relacionarse mejor con las metástasis que la gradación histológica, aunque este dato carece de valor desde el punto de vista estadístico ya que los intervalos de confianza fluctúan ampliamente alrededor del valor nulo y por tanto, no podemos rechazar la Ho. También objetivamos un exceso de pacientes con cánceres clasificados en grados histológicos y nucleares intermedios, lo que dificulta las comparaciones. Así, en esta serie la aparición de las metástasis precoces fue un evento independiente de la gradación histológica y nuclear. En un estudio llevado a cabo por Rosen y Groshen., (1990), basado en 644 pacientes con cáncer de mama en estadios I y II, la gradación nuclear e histológica se relacionó significativamente con las recidivas en pacientes con tumores T1 NO, en cambio, careció de significación en las recidivas de pacientes en estadios II.

El estado hormonal de las enfermas no influyó en la aparición de las metástasis, puesto que la proporción de recidivas en premenopáusicas y postmenopáusicas fue similar. (Tabla 22a). Según el estado hormonal, el riesgo relativo de metástasis de una premenopáusa en comparación con una postmenopáusa equivale a 0,95 (I.C. 95%: 0,29 – 3,05; p=0,62), aunque este dato carece de significación estadística. (Tabla 22b). En nuestra serie el estado hormonal no parece influir en la aparición de las metástasis. Para Hyman et al., (1972) el estado menstrual no se asoció a la aparición de la enfermedad metastásica. En la literatura no hay datos concluyentes que indiquen que el estado hormonal sea un factor de pronóstico, aunque se ha señalado que las enfermas menores de 50 años tienen una mejor evolución (Adami et al., 1986). Según algunos autores las pacientes perimenopáusicas tuvieron un peor pronóstico que las premenopáusicas y postmenopáusicas (Tough, 1969; Cutler et al., 1970). Para otros, en cambio, la edad mas que el estado hormonal se relaciona con el pronóstico. Las pacientes con un cáncer a una edad inferior a los 35 años presentaron un menor intervalo libre y supervivencia global (Nixon et al., 1994; Albain et al., 1994; Bonnier et al., 1995). Sin embargo, para Rosen et al., (1984) el pronóstico de éstas fue similar al de las pacientes de mayor edad.
No hubo relación entre la aparición de las metástasis y el tratamiento radioterápico. (*Tabla 22a*). El tratamiento radioterápico no disminuyó el riesgo de metástasis (RR:1,06; I.C. 95%:0,42 – 2,65). (*Tabla 22b*). Los estudios aleatorizados señalan que la radioterapia postoperatoria produce una disminución significativa de la recidiva locorregional, sin mejorar la supervivencia global y por tanto, una escasa influencia sobre la enfermedad diseminada (Overgaard *et al.*, 1990; EBCTCG, 1995).

Nueve de las pacientes que recidivaron no habían recibido quimioterapia adyuvante, sin embargo, la proporción de pacientes tratadas con citotóxicos y que desarrollaron enfermedad metastásica fue discretamente superior al grupo no tratado. (*Tabla 22a*). En nuestra serie la administración o la ausencia de tratamiento quimioterápico adyuvante no se relacionó (RR:1,43; I.C. 95%: 0,57 – 3,54; p=0,3) ni evitó la aparición de metástasis (*Tabla 22b*).

En contraste, apreciamos una discreta mayor proporción de metástasis en el grupo no tratado con tamoxifén, aunque las diferencias carecieron de significación estadística (p=0,26). (*Tabla 22a*). El riesgo relativo de metástasis de pacientes tratadas con tamoxifén fue 0,7 veces (I.C. al 95%:0,26 – 1,62) el del grupo sin tamoxifén, aunque este dato carece de significación estadística. Por consiguiente, el desarrollo de la enfermedad metastásica durante los 36 meses de seguimiento ha sido independiente de la administración o no de un tratamiento adyuvante. Aunque algunas pacientes han completan los 5 años de seguimiento y otras se aproximan a este intervalo, desconocemos por el momento en el resto de la serie si la administración de quimioterapia u hormonoterapia puede condicionar un retraso en la aparición de metástasis..

1-b) **Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces.**

En nuestra serie la ausencia de expresión de la proteína pS2 y la elevada expresión del antígeno Ki-67, superior al valor de la mediana, se relacionaron significativamente con la aparición de enfermedad metastásica. (*Tabla 23a*).

El riesgo relativo de metástasis fue 13 veces superior (I.C. al 95%:1,8 – 95,4) en las pacientes con cánceres con porcentajes de células Ki-67 por arriba del valor de la mediana (15%). (*Tabla 23b*). Por tanto, de todas las variables de nuestra serie, este marcador ha sido el que mejor se ha relacionado con el curso clínico de las enfermas. La tinción IHQ de este antígeno expresado en células que se están dividiendo activamente permite valorar la fracción de crecimiento y es comparable en su medición a métodos más sofisticados y más caros como son el índice de timidina tritiada, la medición de la fase de síntesis celular por citometría de
flujo, la medición de la timidina cinasa, la determinación del número de AgNOR y la tinción con bromodeoxiridina (Silvestrini et al., 1988; Dervan et al., 1989; Ruschoff et al., 1990; Isola et al., 1990; Sahin et al., 1991; McGrogan et al., 1997). En nuestro estudio, como se ha comentado en el apartado 7-b, los tumores con un porcentaje de células Ki-67 por encima de la mediana se han asociado a altos grados histológicos y nucleares, ausencia de receptores hormonales y positividad para C-erbB-2 y p53. Varios trabajos destacan que la elevada expresión de este antígeno se asocia significativamente con el desarrollo de enfermedad metastásica y con parámetros clásicos y con éstos marcadores tumorales considerados de mal pronóstico (Bouzubar et al., 1989; Sahin et al., 1991; Weikel et al., 1991; Gaglia et al., 1993; Railo et al., 1993; Beck et al., 1995; Racca et al., 1995; Ioachim et al., 1996; Pierga et al., 1996; Oehler et al., 1997; Molino et al., 1997; Rudolph et al., 1999).

En nuestra serie la ausencia de tinción de la proteína pS2 se asoció a las metástasis precoces (p=0,01). El riesgo relativo de metástasis de las pacientes con cánceres pS2+ es 0,14 veces el de las pacientes con cánceres pS2-, es decir, la positividad de esta proteína disminuye el riesgo de metástasis 7,14 veces (I.C. 95%: 0,02 – 1,07). Sin embargo, la inclusión del valor nulo en el límite superior del intervalo de confianza no permite rechazar la hipótesis nula. (Tabla 22b). Se observó además, un mayor número de metástasis en tumores pS2- con grados histológicos y nucleares II y III. (Tabla 22a y 23a). Así, en nuestra serie la ausencia de pS2 se asoció a cánceres que presentaron una moderada y escasa diferenciación celular. Lo contrario se evidenció en el grupo de pacientes que no recidivaron durante los 36 meses, en éstos, la tinción positiva de pS2 fue frecuente en tumores con grados histológicos y nucleares I y II, y por tanto, con mejor diferenciación celular (p=0,04 y p=0,08, respectivamente). Los fenotipos tumorales pS2-/Ki67+ (n=12), pS2-/PCNA (n=9), pS2-/catepsina D+ (n=9) fueron frecuentes en las pacientes que desarrollaron metástasis precoces. (Tabla 23a). Estos datos apoyan la hipótesis que considera que la falta de tinción para pS2, una proteína cuya síntesis es inducida principalmente por los estrógenos, traduce en algunos tumores una pérdida de la funcionalidad de la vía estrogénica, una menor diferenciación citológica, mayor proliferación celular y un estado de menor hormonodependencia. En la serie que nos ocupa, la información aportada por esta proteína ha sido superior a la suministrada por los receptores hormonales. En los trabajos basados en la determinación de la pS2 mediante técnicas inmunoenzimáticas, inmunorradiométricas y Northern blotting, la ausencia de expresión de esta proteína se ha relacionado con una disminución del ILE (Foekens et al., 1990; Foekens et al., 1993; Foekens et al., 1994; Gion et al., 1993; Thompson et al., 1998). En contraste, a lo observado en esta serie, otros autores mediante determinación IHQ no han objetivado una asociación entre la recidiva y la positividad de esta proteína, si bien, estos estudios a diferencia del nuestro, emplearon un
dintel de positividad del 5% y la expresión de la proteína pS2 fue muy superior a la que hemos registrado (Henry et al., 1991; Thor et al., 1992; Cappelletti et al., 1992; Dookeran et al., 1993).

En esta serie la ausencia de glicoproteína P también se relacionó directamente con el desarrollo de enfermedad metastásica, aunque sin lograr la significación estadística preestablecida en el diseño. (Tabla 23a). El riesgo relativo de metástasis fue menor (RR: 0,22; I.C. 95%:0,03 – 1,60) en tumores glicoproteína P+ que en glicoproteína P-. (Tabla 23b). La determinación de glicoproteína P se realizó sólo en 11 de las 16 pacientes que eventualmente recidivaron y por tanto, la falta de estos datos y la inclusión del valor nulo en el intervalo de confianza no permite sostener esta afirmación. Los resultados en esta serie contrastan con los publicados en la literatura donde la elevada expresión y no la ausencia de glicoproteína P se ha relacionado con tumores avanzados, indiferenciados y con elevados índices de proliferación celular; con una menor respuesta al tratamiento quimioterápico; con el desarrollo de metástasis locorregionales y a distancia; y con una menor supervivencia (Verelle et al., 1991; Botti et al., 1993; Charpin et al., 1994; De la Torre et al., 1995; Linn et al., 1995; Linn et al., 1996; Gregorcey et al., 1996). Sin embargo, a diferencia de nuestra serie, la mayoría de estos estudios se han basado en la determinación de la glicoproteína P en tumores de mama avanzados. Aún así, existen contradicciones con relación al verdadero valor pronóstico de esta glicoproteína. Un metanálisis reciente concluye que la glicoproteína P esta relacionada con la resistencia y pobre respuesta a la quimioterapia (Trock et al., 1997).

En nuestra serie las metástasis precoces han sido independientes de la expresión de los receptores hormonales, y aunque el riesgo relativo de metástasis de las pacientes con cánceres RE+ (RR:0,75; I.C. 95%: 0,3 – 1,9) y RPg+ (RR:0,8; I.C. 95%: 0,34 – 2,1) es menor en comparación con las enfermas con RE y RPg negativo, la inclusión del valor nulo en el intervalo de confianza muestra que el grado de asociación no es estadísticamente significativo. Al menos la mitad de las pacientes que recidivaron tuvieron tumores RE+/Ki-67+, aunque la asociación careció de significación. (Tabla 23a). En cambio, en las 92 pacientes que durante los 36 meses se mantuvieron libre de metástasis, la ausencia de metástasis se relacionó con una mayor proporción de tumores RE+/ki-67- (67,3%) en comparación con RE-/ki-67+ (32,3%). En estos casos la presencia del RE junto con la baja expresión de ki-67 se asoció significativamente con la ausencia de enfermedad metastásica (p=0,009) y por ende, un mejor pronóstico en este grupo. Varios autores han demostrado el valor pronóstico de los receptores de estrógeno y progesterona en el cáncer de mama (Bishop et al., 1979; Samaan et al., 1981; Crowe et al., 1991; Fisher et al., 1988). No obstante, una elevada expresión del RE también se ha relacionado con tumores con un pronóstico tan desfavorable como los tumores RE- (Thorpe et al., 1993;
Encarnación et al., 1993). Nosotros hemos observado que el RE cuando se mide conjuntamente con el Ki-67 se comporta como una variable de confusión, dependiendo el valor pronóstico del antígeno de proliferación celular Ki-67.

El desarrollo de enfermedad metastásica fue independiente de la expresión de la Hsp27 (p=0,37), aunque el 92,3% (n=12) de las pacientes que recidivaron sus tumores primarios habian teñido positivamente para la Hsp27+. (Tabla 23a). Un riesgo relativo de metástasis de 2,15 de tumores Hsp27+ con respecto a Hsp27- (I.C. 95%:0,3 – 15,3) careció de significación estadística. (Tabla 23b). En este estudio la expresión de esta proteína se ha relacionado directamente con tumores proliferativos (ki-67: p=0,08; y PCNA: p=0,006) y con rasgos citológicos de desdiferenciación con (alto grado histológico: p=0,01), es decir, con parámetros considerados de mal pronóstico. (Tabla 21). Aunque previamente se había señalado que la expresión de Hsp27 se asociaba a una disminución del ILE (Chamness et al., 1989), especialmente en pacientes con ganglios negativos (Tandon et al.,1990), estudios posteriores han puesto de manifiesto que este marcador no es de gran valor pronóstico, a pesar de que su positividad se ha relacionado con tumores con escasa diferenciación, estadios T avanzados y disminución de la supervivencia (Thor et al., 1991; Love et al., 1994; Tetu et al., 1995). Además, aunque las Hsp27 pueden ser inducidas en las células neoplásicas por estrógenos y factores de crecimiento, su escasa especificidad puede deberse a que su síntesis también puede ser estimulada tanto en células normales como neoplásicas por una amplia variedad de estímulos físicos y químicos (Chretien y Laundry 1988; Santell et al., 1992; Zhou et al., 1993; Faucher et al., 1993; Huot et al., 1995; Konishi et al., 1997).

Tampoco hemos observado una asociación estadísticamente significativa entre las metástasis y la expresión del EGFR, aunque proporcionalmente recidivaron más tumores EGFR+ que EGFR-. (Tabla 23a). El riesgo relativo de metástasis fue 1,68 mayor (I.C. 95%:0,59 – 4,77) en tumores EGFR+ que en tumores EGFR-, sin embargo, este dato no es significativo. (Tabla 23b). En la serie en general la expresión de este marcador fue baja, aunque el número de tumores EGFR+ que recidivaron (n=6) constituieron un 37,5% de las metástasis. La expresión del EGFR en el estudio que nos ocupa se ha relacionado con tumores indiferenciados (p=0,0003) y con la ausencia de receptores hormonales (p=0,00002) y por tanto, con parámetros de peor pronóstico. (Tabla 21). En las metástasis también hemos objetivado una relación inversa entre la expresión del EGFR y el RE (10 tumores RE+/EGFR-; p=0,01). En la serie de Schroeder et al., (1997), que semeja a la nuestra en porcentajes de positividad (19%) y número de enfermos (n=111), tan solo observaron una relación inversa entre el EGFR y el RE, careciendo este
marcador de valor pronóstico. Por el contrario, para algunos autores la positividad para el EGFR es un indicador de recidiva (Gasparini et al., 1992; Toi et al., 1994; Klijn et al., 1994).

En nuestro estudio la expresión de C-erbB-2 no se relacionó con la aparición de metástasis precoces (p=0,51). (Tabla 23a). El riesgo relativo de metástasis de cánceres C-erbB-2+ es de 1,13 veces (I.C. al 95%: 0,42 – 2,98) el de cánceres C-erbB-2-, aunque este valor carece de significación estadística. (Tabla 23b). En nuestra serie cerca de la mitad de los tumores fueron C-erbB-2+ (43%) y esta proporción se mantiene en las recidivas a distancia (C-erbB-2 +, n=7; C-erbB-2 - n=7). Los resultados publicados con relación al valor pronóstico independiente de ILE del C-erbB-2 son discordantes. Algunos grupos citan que la sobreexpresión de C-erbB-2 se asocia a tumores de mayor tamaño, con altos grados histológicos, metástasis ganglionares, ausencia de RE y mayor número de metástasis, aunque en el análisis multivariante su valor pronóstico fue inferior al de los parámetros clásicos (van de Vijver et al., 1988; Rilke et al., 1991; Quenel et al., 1995). Para Gasparini et al., (1994) y Reed et al., 2000 la tinción positiva de C-erbB-2 careció de valor pronóstico en pacientes con ganglios negativos. En cambio, en otras publicaciones se señala que la positividad de este marcador se relaciona directamente con el desarrollo de metástasis, destacando además, que la tinción positiva para C-erbB-2 se acompañaba de sobreexpresión de ki67, EGFR y p53 (Nicholson et al., 1993; Stal et al., 1994; Delarue et al., 1994; Weissener et al., 1998; Gago et al., 1998; Quinn et al., 1999). En la literatura se cita un grupo de tumores RE+/C-erbB-2+ caracterizados por una pobre respuesta al tratamiento endocrino y una corta supervivencia (Allred et al., 1992; Wright et al., 1992; Borg et al., 1994). Nosotros hemos identificado este fenotipo tumoral sólo en 3 de los 16 tumores que recidivaron.

Aunque hemos observado una mayor proporción de metástasis en cánceres con elevados índices de PCNA y el riesgo relativo de metástasis de los cánceres PCNA+ fue 1,9 veces superior al de los cánceres PCNA- (I.C. 95%:0,6 – 5,3), la asociación careció de significación estadística. (Tabla 23a y 23b). Tanto el Ki-67 como el PCNA se han utilizado para medir la fracción de proliferación celular, pero sus funciones en el ciclo de división celular son distintas. Para algunos autores este marcador es de escasa utilidad para medir la fracción de crecimiento y su positividad no siempre se corresponde con un aumento de la actividad proliferativa (van Dierendonck et al., 1991; Gillet et al., 1993). Por otra parte, en algunos trabajos la elevada expresión de este antígeno mostró una asociación significativa con la recidiva y con una disminución de la supervivencia (Aaltomaa et al., 1992; Haerslev et al., 1994; Sheen-Chen et al., 1997). Gohring et al., (1994) señalan que el PCNA es un indicador de recidiva sólo en pacientes con ganglios axilares positivos. Destaca en estos estudios que el índice de PCNA se
basó en el porcentaje de núcleos teñidos y no en el valor de la mediana. En nuestra serie los resultados han sido similares a los descritos en los trabajos que han utilizado el anticuerpo monoclonal PC10 y el dintel de positividad se basó en el promedio o la mediana (Thomas et al., 1993; Gasparini et al., 1994).

En nuestro estudio la expresión de p53 no se relacionó con la aparición de metástasis precoces. Los tumores p53+ supusieron el 21% de la serie y el 25% del total de metástasis (n=4). (Tablas 4 y 23a). Este porcentaje se mantiene en los casos con metástasis, de tal modo, que las ¼ partes restantes de las metástasis no pueden ser explicadas por la sobreexpresión de esta proteína. La razón de riesgos de metástasis de cánceres p53+ es 1,23 veces el de los cánceres p53- (I.C. al 95%:0,43 – 3,50), aunque este dato no es estadísticamente significativo (Tabla 23b). Sin embargo, en las enfermas que desarrollaron enfermedad metastásica la sobreexpresión de p53 se relacionó significativamente con grados histológicos (p=0,03) y nucleares (p=0,07) moderados y altos. En el grupo de pacientes sin metástasis durante los 36 meses, la proporción de fenotipos tumorales p53-/ki67- (p=0,02) y p53-/PCNA- (p=0,01) había sido significativamente superior a los fenotipos con expresión conjunta de ambos marcadores. De este modo, en el grupo sin metástasis, la ausencia de expresión de p53 y bajos índices de tumores ki67 y PCNA se relacionaron significativamente con un mejor pronóstico. En varios estudios inmunohistoquímicos, tanto en cánceres con ganglios negativos como positivos, la expresión de p53 se ha relacionado significativamente con una disminución del intervalo libre y de la supervivencia (Thor et al., 1992; Barnes et al., 1993, Silvestrini et al., 1993; Gohring et al., 1995). En estos trabajos se ha utilizado el anticuerpo monoclonal P1801, siendo el número de enfermos y los porcentajes de positividad superiores al registrado en nuestra serie. En cambio, en otros estudios como en el nuestro, a pesar de que la expresión de p53 se asoció significativamente a altos grados histológicos y nucleares, ausencia de receptores hormonales, elevada expresión de C-erbB-2 y altos índices de proliferación celular, en el análisis multivariante otros parámetros fueron de mayor valor pronóstico que la p53 (Isola et al., 1992; Bianchi et al., 1997). Lipponen et al., (1993) publican que paradójicamente tumores con ganglios positivos y p53+ tuvieron un mayor intervalo libre de enfermedad. Según Fresno et al., (1997) la elevada expresión de p53 en tumores con ganglios negativos se relacionó significativamente con una disminución de la supervivencia, con la salvedad que este autor utilizó un dintel de positividad alto (50% > de células teñidas).

Se observó una relación directa entre la elevada expresión de catepsina D en el componente ductal y el desarrollo de enfermedad metastásica, aunque las diferencias entre las proporciones de tumores con tinción positiva o negativa no fueron significativas. (Tabla 23a). El riesgo
relativo de metástasis de las pacientes con cánceres catepsina D+ fue 1,6 veces (I.C. 95%: 0,6 – 4,1) el de las pacientes con cánceres catepsina D- . En la literatura consultada los resultados con relación al valor pronóstico de la catepsina D determinada por tinción IHQ son variables y contradictorios. Según algunos autores el valor pronóstico de la catepsina D reside en su elevada expresión en el componente estromal (Joensuu et al., 1995; Nadji et al., 1996; Tetu et al., 1999; Gonzalez-Vela et al., 1999). En contraste, una elevada expresión de catepsina D en el componente ductal se relacionó con una disminución del intervalo libre y de la supervivencia (Losch et al., 1998). Algunos autores han encontrado que la catepsina D es de valor pronóstico en tumores con ganglios negativos (Tandon et al., 1990; Isola et al., 1993; Gohring et al., 1996), en cambio, Ravdin et al., (1994) citan el valor pronóstico nulo de la catepsina D determinada por Western blotting e IHQ en 927 cánceres ductales con ganglios axilares negativos.

2-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces en pacientes con ganglios axilares positivos.

Cuando analizamos las metástasis en función de la positividad de los ganglios axilares, la estadificación fue la variable que mostró una asociación significativa con el desarrollo de la enfermedad metastásica precoz, correspondiendo el 70% de las metástasis en este subgroup (n=10) al estadio III. (Tabla 24). También se observó una débil asociación entre las metástasis y los cánceres con grados nucleares III y ganglios en estadio N2 (p=0,07).

2-b) Análisis de la asociación entre los marcadores tumorales moleculares y las recidivas precoces en pacientes con ganglios axilares positivos.

Al analizar las metástasis registradas en pacientes con cánceres con ganglios positivos (n=10), un índice de Ki-67 por encima de la mediana y la elevada expresión de catepsina D se asociaron significativamente con el desarrollo de la enfermedad metastásica precoz. (Tabla 25).

Diversas series, que incluyen un mayor número de pacientes que la nuestra, han puesto de manifiesto una buena correlación entre los elevados índices de tinción positiva del antígeno Ki-67 y la presencia de metástasis ganglionares (Charpin et al., 1988; Gaglia et al., 1993), así como un mayor número de metástasis precoces (Bouzubar et al., 1989; Sahin et al., 1991 Weikel et al., 1991; Beck et al., 1995; Archer et al., 1995).

En nuestra serie la expresión de la catepsina D se asoció con las metástasis en pacientes con ganglios axilares positivos. El riesgo relativo de metástasis de las pacientes con cánceres catepsina D+ y N+ fue 5,13 veces superior (I.C. 95%: 1,1 – 27,7) al de las pacientes con cánceres catepsina D+ y N- y, por consiguiente, las probabilidades de metástasis son mayores
Discusión

3-a) Análisis de la asociación entre los parámetros clínico-patológicos y las recidivas precoces en pacientes con ganglios axilares negativos.

La cohorte de pacientes que compone este subgrupo es pequeña (n=6), lo que supone ciertas limitaciones para obtener resultados debido al pequeño tamaño muestral, sin embargo, el porcentaje de metástasis (37.5%) fue similar al descrito en otras series que incluyen un mayor número de pacientes (Rosen et al., 1989; Quiet et al.,1995). Nosotros no hemos observado asociación entre las metástasis precoces en pacientes con ganglios negativos y los parámetros clínico-patológicos, lo cual hace que sea un grupo de alto interés y reafirma la necesidad de investigar otros parámetros de pronóstico que nos permita identificar este 30% de metástasis y así poder seleccionar una terapia adyuvante más adecuada. Destaca además, que la mitad de estas pacientes recibieron radioterapia postoperatoria y tamoxifén como única terapia adyuvante (n=3), por tanto, este tipo de tratamiento no fue eficaz para evitar la aparición de enfermedad metastásica. La selección para el tratamiento hormonal se basó en el estado menstrual (5 postmenopáusicas y 1 premenopáusica) y del RE (RE+ = 4 vs RE− = 2). Según Rosen et al., (1989) fallecen un 30% de las pacientes con cánceres con ganglios negativos tratadas con cirugía exclusivamente. Por otra parte, desconocemos en este subgrupo el efecto sobre el desarrollo de las metástasis si se hubiese administrado citotóxicos como tratamiento único o complementario con el tratamiento hormonal.
3-b) Análisis de la asociación entre los marcadores tumoriales moleculares y las recidivas precoces en pacientes con ganglios axilares negativos.

Aunque faltan datos debido a la ausencia de determinación de algunos marcadores en este subgrupo, la ausencia de expresión de la proteína pS2 se asoció significativamente con las metástasis precoces. De los 6 tumores que recidivaron en este subgrupo destacan los fenotipos tumoriales RE+/pS2- (n=4) vs RE-/pS2- (n=2); pS2-/catepsina D- (n=4) vs pS2-/catepsina D+ (n=2) y pS2-/ki67+ (n=3) vs pS2-/ki67- (n=1). (Tabla 27). La ausencia de expresión de esta proteína en tumores RE+, junto con una mayor frecuencia de tumores pS2/catepsina D- y pS2-/ki67+, sugiere la pérdida inducción de la síntesis de esta proteína a través de la vía estrogénica y su relación con una mayor actividad proliferativa. También dentro de este subgrupo se observó una mayor proporción de tumores pS2-/GH II (n=4) y pS2-/GH III (n=1) y pS2-/GN II (n=4) y pS2-/GN III (n=2). (Tablas 26 y 27). En nuestra serie observamos que esta proteína se relaciona con la diferenciación tumoral y sería un indicador de hormonodependencia definiendo un subgrupo de tumores RE+ de mayor agresividad.

Inicialmente la pS2 conjuntamente con la catepsina D se utilizó en diversos experimentos para medir la integridad de las vías de señalización estrogénica (Westley et al., 1984; Cavailles et al., 1989; Lane et al., 1999). Nuestros resultados concuerdan con los descritos en otras series donde la expresión de esta proteína varía inversamente con el grado de diferenciación del tumor y con la actividad proliferativa (Henry et al., 1991; Cappelletti et al., 1992). También se ha objetivado en algunos estudios inmunoenzimáticos e inmunorradiométricos un menor número de recidivas y mayor supervivencia en los cánceres de mama con elevados niveles de esta proteína (Foekens et al., 1990; Foekens et al., 1993; Gion et al., 1993; Foekens et al., 1994). Thompson et al., (1998), que midieron el RNAmpS2, demostraron un menor número de recidivas y mejor supervivencia en tumores con ganglios negativos y expresión positiva de pS2.

En contraste, a lo que hemos observado en este subgrupo de pacientes, otros autores que han determinado la expresión de pS2 mediante técnicas inmunohistoquímicas no han podido constatar una asociación entre la positividad de pS2 y las recidivas, aunque sí han objetivado una mejor respuesta a la terapéutica endocrina de los cánceres pS2+ (Henry et al., 1991; Thor et al., 1992; Cappelletti et al., 1992; Dookeran et al., 1993). En un estudio reciente se observó que los tumores RE+/pS2+ presentaron una mejor respuesta al tamoxifén y una supervivencia más prolongada (Elledge et al., 2000). El porcentaje de expresión de pS2 en nuestra serie fue más bajo debido que, a diferencia de estos trabajos, utilizamos un dintel de positividad del 10% y un antisuero monoclonal diferente. Estos autores han establecido el punto de corte en un 5% de células con tinción positiva existiendo, además, una gran heterogeneidad en los patrones de
Discusión

tinción citoplásmica. Quizá un 5% de tinción positiva sea un dintel no adecuado para una proteína presente en el tejido sano y que su expresión se eleva significativamente en los cánceres. La concentración de esta proteína en la glándula mamaria normal oscila según diferentes autores, entre 0 y 2,16 ng/mg prt (Predine et al., 1992) y 0 y 10,5 ng/mg de prt (media 1,6; mediana 0,2), mientras que en el tejido cancerígeno fluctúa entre 0,3 y 43,3 ng/mg prt (media 11,5; mediana:5,7) (Hähnel et al., 1993). Probablemente, los mejores resultados observados en los estudios basados en el análisis de la concentración citosólica de la proteína en las neoplasias se deban a que los puntos de corte se han escogido tomando en cuenta los valores promedio en los cánceres. Los dinteles de positividad descritos en la literatura según diferentes autores han sido de: 11 ng/mg prt (Foekens et al., 1990) 2 ng/mg prt (Foekens et al.,1993); 11 ng/mg prt (Foekens et al., 1994); 4 ng/mg prt (Gion et al., 1993); 2 ng/mg prt (Fernández-Fernández et al., 1993) y 4 y 11 ng/mg prt (Racca et al., 1995). En cambio, en los estudios inmunohistoquímicos aún no se ha seleccionado el dintel de positividad más adecuado.

II- ANALISIS DEL INTERVALO LIBRE DE ENFERMEDAD A 36 MESES CON RELACION A LOS PARÁMETROS CLINICO-PATOLOGICOS Y MARCADORES TUMORALES MOLECULARES.

1-) Análisis del intervalo libre de enfermedad a 36 meses con relación a los parámetros clínico-patológicos.

En nuestro estudio hemos observado una disminución del intervalo libre de enfermedad a 36 meses en pacientes que presentaban cánceres multicéntricos, ganglios axilares clasificados N2, afectación de 4 o más ganglios, rotura con desbordamiento de la cápsula ganglionar y un estadio III.

El ILE disminuyó significativamente en las enfermas con más de una lesión en la misma mama evidenciando un comportamiento más agresivo de los cánceres multicéntricos. (Gráfica 1). La razón de riesgos estimada para el ILE de un cáncer multicéntrico fue 3,3 veces (I.C. 95%: 1,1 – 10,2) el de un tumor único, así, en este estudio la presencia de más de un foco de cáncer en el mismo cuadrante o en la mama condicionó una peor evolución. (Tabla 28). En algunos trabajos la multicentricidad se ha relacionado a una mayor frecuencia de metástasis ganglionares y recidivas locales, sin embargo, no hay suficientes datos sobre la evolución final de estos tumores (Lesser et al., 1982; Kurtz et al., 1990). En la serie que nos ocupa la multicentricidad
con relación a las metástasis ha sido independiente de la afectación ganglionar. Por consiguiente, consideramos que la presencia de más de un foco de cáncer infiltrante puede suponer una carga tumoral adicional y una mayor posibilidad de originar metástasis. En el análisis multivariante este parámetro ha sido de valor pronóstico independiente para el ILE.

La comparación de las curvas de intervalo libre de enfermedad a 36 meses mostró diferencias significativas entre los tumores sin afectación ganglionar y aquellos con ganglios axilares positivos. La evolución ha sido significativamente peor, con una caída importante de las curvas en las pacientes con ganglios axilares clasificados N2 (HR: 4; I.C. 95%: 1,2 – 13), cuando hubo compromiso de cuatro o más ganglios axilares (HR: 3,7; I.C 95%: 1,2 – 11,4) y en los casos donde se ha objetivado la rotura con desbordamiento de la cápsula del ganglio infiltrado (HR: 3,1; I.C. 95%: 1,1 – 8,7). (Gráficas 2,3,4 y Tabla 28). El tamaño de los ganglios con metástasis no influyó en el curso clínico de las enfermas, siendo las curvas prácticamente paralelas. De este modo la afectación ganglionar N2, según el análisis univariante, constituye un factor pronóstico para el desarrollo de enfermedad metastásica; dato que fue confirmado en el análisis multivariante. Las metástasis aparecieron tempranamente cuando hubo más ganglios afectados, de tal manera, que a mayor número de ganglios infiltrados mayor es la probabilidad de metástasis. Los resultados en nuestro estudio son análogos a los descritos en otras publicaciones, siendo la afectación ganglionar (Fisher et al., 1978; Nemoto et al., 1980; Carbone et al., 1980; Carter et al., 1987; Rosen et al., 1989) y especialmente el número de ganglios (Fisher et al., 1969; Carbone et al., 1981; Carter et al., 1987) y el desbordamiento de la cápsula ganglionar (Fisher et al., 1976; Mambo et al., 1977; Goldstein et al., 1995; Leonard et al., 1995) importantes parámetros de pronóstico para la recidiva y la supervivencia.

Las probabilidades de supervivencia libre de enfermedad a 36 meses postoperatorios fueron significativamente inferiores en pacientes en el estadio III en comparación con el estadio II y el I. La caída de la curva de las enfermas clasificadas en estadio III es progresiva y acentuada. En cambio, las diferencias entre el estadio II y I no son significativas durante este periodo de tiempo, siendo las curvas casi paralelas, destacando por tanto, el mal pronóstico de las pacientes que fueron clasificadas en el estadio III. (Gráfica 5). En la serie que nos ocupa, la razón de riesgos estimada para las metástasis de las pacientes clasificada en el estadio III fue 6,3 veces superior (I.C. 95%: 1,6 – 24,3) al de pacientes en el estadio I. (Tabla 28). El valor pronóstico de la estadificación TNM para el ILE objetivado en el análisis univariante se corroboró en el análisis multivariante. De manera similar a lo descrito en otros estudios, encontramos una elevada frecuencia de recidivas en pacientes en estadío III (Schottenfeld et al., 1976; Arnold y
Con relación al tamaño tumoral no se observaron diferencias estadísticamente significativas entre las curvas de ILE a 36 meses. (Gráfica 6) La razón de riesgos estimada para el ILE de las enfermas con un cáncer de más de 5 cm fue 3,6 veces (I.C. 95%: 0,9 – 15,1) el de las enfermas con un tumor inferior a 2 cm, sin embargo, las diferencias no son estadísticamente significativas al incluir el valor nulo en el intervalo de confianza. (Tabla 28). En nuestra serie, tanto en el análisis univariante como en el multivariante, el tamaño tumoral no constituyó un parámetro pronóstico para la enfermedad metastásica a 36 meses, aunque destaca una disminución del ILE en los casos de tumores mayores de 5 cm, de tal modo, que se precisaría de tiempo de seguimiento más prolongado o un mayor tamaño muestral para demostrar si existen o no diferencias significativas. (Gráfica 6) Diversos estudios describen una relación inversa entre el tamaño tumoral y el ILE y la supervivencia global (Eggers et al., 1941; Berg y Robbins 1966; Fisher et al., 1969; Fisher et al., 1986), pero a diferencia de nuestra serie, estos trabajos incluyen un mayor número de pacientes y tiempos de seguimiento más prolongados. No obstante, en nuestra serie el tamaño tumoral cuando se valoró conjuntamente con la afectación ganglionar para definir la estadificación TNM, especialmente el estadio III, constituyó un parámetro pronóstico para establecer el riesgo de metástasis. Aunque la afectación ganglionar por sí misma mostró ser un parámetro pronóstico importante para la recidiva precoz, la razón de riesgos de las pacientes clasificadas en el estadio III es superior (HR:6,3; I.C. 95%:1,6 – 24,3) al de las pacientes con ganglios axilares N2 (HR:3,9; I.C 95%: 1,2 – 13), así, de alguna manera el tamaño tumoral posee algún efecto aditivo cuando se combina con la afectación ganglionar. Rosen et al., (1989) demostraron que los tumores T1 presentaron un mayor número de recidivas durante los dos primeros años de seguimiento cuando estaban afectados más de 4 ganglios (48%), en comparación con la afectación de 1 a 3 ganglios (25%) y de 0 ganglios (5%). El estudio de Rosen et al., (1989) corroboró que cuando se comparan tumores con un diámetro de 2 o menos cm, es decir del mismo tamaño, el efecto sobre el pronóstico para la recidiva del tamaño desaparece, siendo la afectación ganglionar el parámetro de mayor importancia. De manera similar, en el estadio III, el factor principal o determinante de recidivas lo constituye la positividad de los ganglios axilares (Frachia et al., 1980; McCready et al., 1989).

No se observaron diferencias estadísticamente significativas entre las curvas de metástasis a 3 años según el tamaño de los ganglios infiltrados y la gradación histológica y nuclear. (Gráficas 7, 8, 9). Sin embargo, las pacientes con grados histológicos y nucleares I, correspondientes a tumores con características arquitecturales y citológicas de buena
diferenciación, tuvieron un mejor pronóstico con un menor número de metástasis que las pacientes con grados histológicos y nucleares II y III. La razón de riesgos estimada de metástasis para las pacientes con un cáncer con un grado nuclear I fue 1,6x10^{-6} veces (I.C. 95%: 0,0 - --) el de las enfermas con grado nuclear III. Asimismo, la razón de riesgos estimada para el ILE de las enfermas con cáncer grado histológico III fue de 1,4 veces (I.C. 95%: 0,3 – 7,9) el de las pacientes con tumor grado histológico I y de 1,1 veces (I.C. 95%: 0,2 – 5) el de pacientes con grado histológico II en comparación con aquéllas con grado histológico I. (Tabla 28). Sin embargo, estos datos carecen de significación estadística al quedar incluido el valor nulo en el intervalo de confianza y por tanto, no podemos rechazar la hipótesis nula. En nuestra serie observamos un exceso de pacientes clasificadas en grados histológicos y nucleares intermedios, lo que dificulta las comparaciones entre los grupos y muestra el grado de subjetividad inherente a este sistema de clasificación. En este caso podemos concluir que en nuestro estudio la gradación nuclear e histológica no constituyó un parámetro de pronóstico para la enfermedad metastásica a 36 meses.

Por otra parte, se observó una mala evolución con una importante disminución del ILE a 36 meses en las pacientes con cánceres grado nuclear e histológico III y ganglios axilares en estadio N2. Cuando la gradación nuclear se valoró con relación a la afectación ganglionar se apreciaron diferencias significativas entre las curvas de ILE. (Gráfica 10). La razón de riesgos para las metástasis de una paciente con un cáncer con ganglios N2 y grado nuclear III fue 7,4 veces (I.C. 95%: 1,2 – 46,4) el de una paciente con idéntica afectación ganglionar y un grado nuclear I. Con relación a la gradación histológica la razón de riesgos de las pacientes con cánceres con ganglios N2 y gradación histológica III fue 4,5 veces (I.C. 95%: 0,7 – 25) el de pacientes con grado histológico III, careciendo este dato de significación estadística. (Tabla 28). Nuestro estudio muestra que existe una relación entre el grado de diferenciación celular del tumor medido por la gradación nuclear y las metástasis ganglionares. En la literatura se describe un aumento en el número de recidivas y una disminución de la supervivencia de tumores con gradación histológica y nuclear III con respecto del I, siendo el efecto menor entre los grados histológicos y nucleares II en comparación con el I (Bloom y Richardson 1957; Black et al., 1975; Andersen et al., 1981; Fisher et al., 1990; Elston et al., 1991; Henson et al., 1991; Carter et al., 1992).

Según se desprende del análisis de las curvas de intervalo libre de enfermedad, el estado menstrual de las pacientes no influyó en la evolución clínica al menos durante el tiempo de seguimiento establecido en el diseño. Las curvas de ILE de pacientes premenopáusicas y postmenopáusicas mantienen un paralelismo evidente. (Gráfica 11). La razón de riesgos de
Discusión

La metástasis para las pacientes postmenopáusicas fue de 1,02 veces (I.C. 95%:0,3 – 3,6) el de las pacientes premenopáusicas. (Tabla 28). En consecuencia, en este estudio no se ha observado que el estado hormonal constituya un parámetro de pronóstico a corto plazo. Algunos autores no encuentran diferencias con relación al pronóstico de pacientes postmenopáusicas y premenopáusicas, excepto aquellas pacientes premenopáusicas que presentaron un cáncer antes de los 35 años de edad (Hyman et al., 1972; Rosen et al., 1984; Nixon et al., 1994; Albain et al., 1994; Bonnier et al., 1995).

No hemos observado diferencias estadísticamente significativas al contrastar las curvas de intervalo libre a 36 meses de las pacientes que recibieron radiaciones ionizantes en el postoperatorio con aquéllas sin tratamiento. (Gráfica 12). La razón de riesgos para el ILE de enfermas tratadas con radiaciones ionizantes fue 1,06 veces superior (I.C. al 95%: 0,4 – 2,8) en comparación con las no tratadas con radioterapia. (Tabla 28). En proporción habían sido radiadas mas enfermas en el estadio III en comparación con el estadio I y II, sin embargo, el tratamiento radioterápico postoperatorio no influyó en la evolución clínica de las pacientes en ninguno de los estadios. Si bien es cierto, tan sólo se registraron dos recidivas axilares en pacientes que no habían sido radiadas, siendo el resto metástasis a distancia tanto en el grupo radiado como en el que no recibieron radiaciones. Durante este periodo de seguimiento no se objetivaron recidivas locales en ninguna de las pacientes de los dos grupos. Varios estudios han demostrado que la radioterapia adyuvante, algunos independientemente de la administración de quimioterapia u hormonoterapia, disminuye significativamente la incidencia de recidivas locorregionales sin tener un claro efecto sobre la enfermedad diseminada (Host et al., 1986; Rutqvist et al., 1989; Overgaard et al., 1990; Arraigada et al., 1995). Un metanálisis reciente hace referencia a la escasa influencia sobre la supervivencia global del tratamiento radioterápico tras cirugía conservadora de la mama (EBCTCG, 1995).

Con relación al tratamiento quimioterápico adyuvante tampoco se apreciaron diferencias estadísticamente significativas entre las curvas de supervivencia para el intervalo libre de enfermedad durante los primeros 3 años de seguimiento de los grupos que recibieron o no citotóxicos en el postoperatorio. (Gráfica 13). De las 38 pacientes, 30 con ganglios positivos y 8 con ganglios negativos tratadas con quimioterapia postoperatoria, recidivaron 7 del grupo con ganglios positivos. No recidivó durante el seguimiento de 36 meses ninguna de las 8 pacientes con ganglios negativos y que habían recibido quimioterapia, aunque sabemos que este grupo precisa un tiempo de seguimiento más prolongado, debido a que las tasas de metástasis son más bajas y tardías en este grupo en comparación con las pacientes con afectación ganglionar. Por tanto, en las 23 pacientes restantes con ganglios positivos la quimioterapia postoperatoria podría
bien ser beneficiosa o condicionar un retraso en la aparición de las metástasis. En estos casos el tiempo de seguimiento aún corto, no permite esclarecer esta duda. Los resultados del EBCTCG han puesto de manifiesto el beneficio de la poliquimioterapia adyuvante previamente señalado por otros autores (Nissen-Meyer et al., 1978; Fisher et al., 1989; Goldhirsch et al., 1989; Senn et al., 1989; Bonadonna et al., 1995). Según este estudio las recidivas se reducen principalmente durante el periodo comprendido entre 0 y 4 años en las pacientes tratadas con poliquimioterapia y por consiguiente, de ser esto así, la quimioterapia podría condicionar un retraso en la aparición de las metástasis en el grupo de pacientes de nuestra serie tratadas con citotóxicos al quedar incluido su efecto en el periodo de seguimiento fijado en el diseño.

Tampoco objetivamos diferencias estadísticamente significativas entre las curvas de intervalo libre de enfermedad de pacientes tratadas o no con tamoxifén durante los primeros 36 meses de seguimiento. (Gráfica 14). El número de metástasis en el grupo con hormonoterapia (n=8) fue idéntico al grupo sin tratamiento (n=8). (Tabla 22a). De las 8 pacientes bajo tratamiento con tamoxifén y que desarrollaron enfermedad metastásica, 4 habían recibido previamente poliquimioterapia. A 21 pacientes de la serie general se les había administrado citotóxicos seguidamente de tratamiento hormonal al final del último ciclo de quimioterapia y de este grupo con tratamiento secuencial recidivaron 4 (19%), de este modo, el 81% restante se mantuvo libre de enfermedad durante los primeros 36 meses. Sin embargo, para determinar si las curvas se siguen manteniendo paralelas o se separan estableciendo diferencias entre los dos grupos es necesario un tiempo de vigilancia más prolongado. Como se ha señalado anteriormente el beneficio de la terapia adyuvante (quimioterapia y hormonoterapia) se sitúa entre los 0 a 4 años (EBCTCG 1995), siendo el tiempo de seguimiento aún corto para valorar con exactitud los efectos del tratamiento complementario. Sin embargo, el objetivo de este estudio es detectar las variables que puedan ser de valor pronóstico para las metástasis precoces, aún a pesar de la influencia que pueda ejercer en algunos casos el tratamiento adyuvante.

2-) Análisis del intervalo libre de enfermedad a 36 meses con relación a los marcadores tumorales moleculares.

En esta serie se ha objetivado una disminución del intervalo libre de enfermedad a 36 meses de las pacientes con cánceres que carecían de expresión de la proteína pS2, en aquellos cánceres con porcentajes de células Ki-67 por encima de la mediana y en los cánceres con ganglios positivos y elevada expresión de catepsina D.

Presentaron una disminución del ILE a 36 meses las enfermas con cánceres pS2 negativo (Gráfica 15). La razón de riesgos estimada para el ILE de pacientes con cánceres pS2+ fue 0,14
Discusión

veces (I.C. 95%: 0,02 – 1,0) el de pacientes con cánceres pS2-; indicando un menor riesgo de metástasis para aquéllas cuyos cánceres tienen positivamente para este marcador, sin embargo, la significación (p=0,054) se aleja del valor p prefijado en el diseño al quedar incluido el valor nulo en el intervalo de confianza. (Tabla 28). La curva de intervalo libre de enfermedad decrece con mayor rapidez en pacientes con ganglios negativos y ausencia de expresión de pS2, lo que indica que las pacientes con tumores pS2+ y ganglios negativos presentaron un menor número de metástasis. (Grafica 16). La razón de riesgos estimada para la metástasis de pacientes con cánceres pS2+ y ganglios negativos fue 0,02 (I.C. 95%: 2,5 x 10^-5 – 20,3), de manera similar a lo expuesto anteriormente, hay una menor proporción de metástasis en el grupo con positividad para la pS2, sin embargo, el intervalo de confianza incluye el valor nulo y no podemos rechazar la hipótesis nula (p=0,051). (Tabla 28). No obstante, aunque las diferencias no han alcanzado la significación estadística prefijada en el diseño, sí se ha objetivado una mayor proporción de metástasis en las pacientes con cánceres pS2-; en comparación con las pacientes con cánceres pS2+. En trabajos basados en la determinación inmunoenzimática e inmunorradiométrica de pS2 se hace referencia al menor intervalo libre de enfermedad y supervivencia observado en pacientes con cánceres pS2 negativo (Foekens et al., 1990; Foekens et al., 1993; Gion et al., 1993; Foekens et al., 1994). La medición del pS2-RNAm (Northern blotting), en 90 cánceres de mama, también demostró un menor número de metástasis y mejor supervivencia en el grupo de tumores con ganglios negativos y pS2+ (Thompson et al., 1998).

Los resultados observados en esta serie también se corresponden con los publicados por Molina et al., (1990) que, en un estudio basado en la determinación IHQ de pS2 en 286 cánceres de mama con ganglios negativos, observaron una disminución del intervalo libre y la supervivencia global en las pacientes con tinción negativa para la pS2. De manera similar Abbondanzo et al., (1990), en una serie basada en la determinación IHQ de pS2 en 598 cánceres con ganglios axilares negativos, objetivaron una significativa mayor supervivencia en pacientes cuyos cánceres tuvieron positivamente para esta proteína. En cambio, algunos trabajos basados en técnicas inmunohistoquímicas citan su escaso valor pronóstico demostrado en el análisis multivariante, aunque si objetivaron en algunos casos un menor número de recidivas, una mayor supervivencia y una mejor respuesta al tratamiento endocrino de tumores pS2 positivo (Thor et al., 1992; Dookeran et al., 1993; Spyrtos et al., 1994). Cappelletti et al., (1992) observaron en 200 cánceres de mama con ganglios negativos que los tumores RE-/pS2+ tuvieron un menor intervalo libre de enfermedad, efecto que atribuyeron a una mayor actividad proliferativa estimulada probablemente por la vía de los factores de crecimiento. A diferencia de este estudio, en nuestra serie, la ausencia de expresión de la proteína pS2 se asoció a una mayor actividad proliferativa y baja diferenciación citológica. Además, los cánceres pS2+ fueron
moderadamente y bien diferenciados y presentaban positividad para el RE, por tanto, la ausencia de expresión de esta proteína sería de utilidad para definir un grupo de tumores RE+ con mayor riesgo de metástasis.

El análisis de las curvas de supervivencia para el ILE a 36 meses evidencia una peor evolución con una caída acentuada de la curva de las pacientes con cánceres con una elevada expresión del antígeno nuclear de proliferación celular ki67. (Gráfica 17). En el análisis univariante el antígeno Ki-67 fue un parámetro pronóstico para la enfermedad metastásica a corto plazo, siendo la razón de riesgos para el desarrollo de enfermedad metastásica de las pacientes con cánceres con valores de Ki-67 por encima de la mediana 15,1 veces superior (I.C. 95%:1,9 – 114) al de las pacientes con porcentajes de tinción por debajo de la mediana. (Tabla 28). El aumento de expresión de ki67 conjuntamente con la afectación ganglionar e independientemente del número de ganglios infiltrados (1 – 3, más de 4) también condiciona una mala evolución para la enfermedad metastásica precoz. (Gráfica 18). Sin embargo, en esta serie el efecto sobre las metástasis en este caso no pudo ser atribuido exclusivamente a la afectación ganglionar, demostrándose en el análisis multivariante el valor pronóstico de Ki-67. Aunque no en todos los estudios se ha podido demostrar el valor pronóstico de la determinación del antígeno ki67, en la literatura se describe que los cánceres con elevados índices de ki-67 presentan una elevada actividad mitósica, una menor diferenciación citológica, metástasis ganglionares, un mayor número de recidivas y una menor supervivencia (Sahin et al., 1991; Gasparini et al., 1992; Railo et al., 1993; Veronese et al., 1993; Gaglia et al., 1993; Beck et al., 1995; Weikel et al., 1995; Pinder et al., 1995; Ioachim et al., 1996; Brown et al., 1996; Pierga et al., 1996; Molino et al., 1997; Rudolph et al., 1999). Las discrepancias observadas en los resultados de los distintos estudios se deben a diferencias en el número de pacientes incluidos y en los tiempos de seguimiento, a la falta de un dintel de positividad universal, y a las variaciones en la sensibilidad de los anticuerpos monoclonales utilizados (ki67, kiS2, MIB1). Sin embargo, a pesar de estas divergencias, el antígeno Ki-67 parece ser un mejor parámetro pronóstico que los receptores hormonales y que el tamaño tumoral. En nuestra serie la determinación del antígeno ki-67 ha sido de utilidad para identificar un grupo de tumores con mayor probabilidad de metástasis precoces.

No se observaron diferencias significativas entre las curvas de ILE a 36 meses de las pacientes con cánceres con elevada expresión de catepsina D en comparación con las que presentaban tumores con ausencia de tinción para la catepsina D. (Gráfica 19). La razón de riesgos de metástasis de pacientes con tumores catepsina D+ fue 1,7 veces (I.C. 95%:0,6 – 4,7) el de pacientes con tumores catepsina D-, dato que careció de significación estadística. (Tabla
28). Sin embargo, cuando se examinaron las curvas en función de la afectación ganglionar se objetivó que las pacientes con elevada expresión de catépsina D y ganglios positivos tuvieron un peor pronóstico, siendo el ILE menor en este grupo. (Gráfica 20). La razón de riesgos de metástasis fue 5,1 (IC 95%: 1,1 – 27,7) veces superior en pacientes con tinción positiva para la catépsina D en las células ductales y con ganglios positivos. (Tabla 28). Por tanto, este marcador según el análisis univariante podría ser de utilidad para definir un grupo de pacientes con ganglios positivos con mayor riesgo de metástasis, aunque en el análisis multivariante no se demostró su valor pronóstico para la enfermedad metastásica. En la literatura los resultados con relación al valor como factor pronóstico para el ILE de esta proteasa y probablemente factor mitogénico, son discordantes. Algunos estudios basados en técnicas inmunoenzimáticas e inmunorradiométricas consideran a la catépsina D como un marcador de valor pronóstico para el ILE y SG en pacientes con ganglios positivos y negativos (Spyratos et al., 1989; Pujol et al., 1993; Barbi et al., 1994; Ardanavis et al., 1998; Foekens et al., 1999), mientras que otros sólo para el ILE (Thorpe et al., 1989; Namer et al., 1991). El valor como parámetro pronóstico en pacientes con ganglios positivos ha sido citado por Seshadri et al., (1994) y Ferno et al., (1994). En cambio, para Tandon et al., (1990) y Kute et al., (1992) elevadas concentraciones de catépsina D han sido de utilidad en cánceres con ganglios negativos. Por otra parte, hay grupos que hacen referencia a su nulo valor pronóstico para el ILE y SG (Maudelonde et al., 1988; Brouillet et al., 1990; Stonelake et al., 1994).

para el ILE y la supervivencia los cánceres con elevada expresión de la catepsina en las células estromales. Según Riley et al., (2000) la catepsina D (31 kDa) no fue de valor para predecir las metástasis, aunque los cánceres con tinción positiva y ganglios positivos tuvieron una significativa menor supervivencia.

No se observaron diferencias estadísticamente significativas entre las curvas de intervalo libre de enfermedad a 36 meses en pacientes con cánceres RE+ y RE-. (Gráfica 21). La razón de riesgos para el ILE de las enfermas con cánceres RE+ fue de 0,7 veces (IC 95%: 0,2 – 1,9) el de las pacientes con cánceres RE-. (Tabla 28). El valor de la razón de riesgos estimado para la recidiva por debajo del 1 indicaría un efecto protector, es decir, el riesgo de metástasis de los cánceres RE+ es 1,43 veces menor que el de los RE-, sin embargo, el valor de la hipótesis nula queda incluido en el intervalo de confianza y por tanto, la asociación carece de significación estadística. Así, en este trabajo se ha observado que el valor pronóstico de los RE para el ILE a corto plazo es muy limitado, a pesar que la positividad para el RE se relacionó con parámetros considerados de buen pronóstico (apartado 1-a y 1-b). Estos resultados contrastan con los publicados basados en la determinación de la concentración citosólica de los RE, donde la diferencia de supervivencia libre de enfermedad y supervivencia a 5 años entre los tumores RE+ y RE- es significativa (Samaan et al., 1981; Clark y McGuire et al., 1988; Fisher et al., 1989). Algunos autores con tiempos de seguimiento a 36 meses también encuentran un mayor número de metástasis en tumores RE- en comparación con RE+ y señalan además, que en el caso de producirse la recidiva esta es más tardía en los tumores RE+ (Maynard et al., 1978; Cooke et al., 1979; Hubay et al., 1980; Bertuzzi et al., 1981). Por el contrario, y de manera similar a nuestra serie, otros trabajos no confirman el valor pronóstico de los RE para la recidiva y la supervivencia (Hilf et al., 1980; Skinner et al., 1982; Shapiro et al., 1982; Butler et al., 1985). Varias de estas publicaciones corresponden a estudios retrospectivos con una mezcla heterogenea de casos N+/N- y donde no se han controlado las posibles interacciones con otras variables mediante análisis multivariante. En los estudios en que se han realizado análisis de riesgos proporcionales de Cox se ha demostrado una mayor supervivencia a largo plazo de los cánceres RE+ con ganglios negativos en comparación con los tumores RE- (Fisher et al., 1989; Crowe et al., 1991;). En pacientes con ganglios positivos, el RE, también ha mostrado ser de valor pronóstico en el análisis multivariante (Godolphin et al., 1981; Parl et al., 1984; Clark et al., 1993; Molino et al., 1997) Los estudios inmunohistoquímicos también han puesto de manifiesto el mejor pronóstico de las enfermas con cánceres RE+ (Allred et al., 1990; Reiner et al., 1990; Crowe et al., 1991; Thor et al., 1992; Li et al., 1994). Stierer et al., (1995) en una serie basada en la determinación IHQ de 288 cánceres de mama objetivaron una mejor supervivencia de tumores RE en el análisis univariante, efecto que se perdió en el estudio
multivariante. Klijn et al., (1994) hacen referencia a la pérdida progresiva de utilidad pronóstica a largo plazo y según estos autores el valor pronóstico del RE para la recidiva fue significativo a los 5 años (p=0,01) disminuyendo considerablemente a los 10 años (p=0,4), a diferencia del tamaño tumoral, la afectación ganglionar y el RPg que mantuvieron su valor pronóstico.

También observamos que la mitad de los cánceres que recidivaron presentaban el fenotipo tumoral RE+/ki67+ (Tabla 23a). El análisis de las curvas de intervalo libre del RE+ con relación a la positividad o negatividad del ki67 desveló que las pacientes con el fenotipo tumoral RE+/ki67+ tuvieron un menor intervalo libre de enfermedad en comparación con las que presentaban el fenotipo RE+/ki67-, siendo esta diferencias estadísticamente significativas (p=0,003). Sin embargo, el efecto de este fenotipo tumoral para el desarrollo de metástasis se debió a la expresión del antígeno ki-67 comportándose el RE como una variable de confusión. No obstante, autores como Romain et al., (1994), en un estudio de 542 pacientes postmenopáusicas, evidenciaron que algunos tumores RE+ mostraban una elevada actividad proliferativa y en este grupo la evolución fue tan mala como la observada en los tumores con baja expresión del RE. Según Thorpe et al., (1993) desde el punto de vista clínico es más importante la concentración del RE que su positividad o negatividad. Este autor demostró que un elevado contenido de RE (108 > fmol/mg prt) fue de mayor valor pronóstico para la recidiva que el grado de anaplasia y el tamaño tumoral. Scott et al., (1991) objetivaron que un grupo de tumores RE+ era incapaz de unirse al DNA a través de su ERE a fin. El análisis confirmó que se trataban de formas truncadas del RE constituídas por heterodímeros de 67 y 50 kDa. Encarnación et al., (1993) observaron en 30 pacientes con cáncer de mama en tratamiento con tamoxifén que 8 de 11 pacientes en franca progresión presentaban el fenotipo tumoral RE+/RPg+. Por consiguiente, los hallazgos descritos en estas publicaciones sugieren que no siempre la positividad del RE se corresponde con un buen pronóstico y que existen otros mecanismos implicados que determinan el comportamiento evolutivo de los cánceres. Por tal motivo, consideramos que se debe valorar la expresión del RE conjuntamente con otros factores pronóstico.

Tampoco observamos diferencias significativas entre las curvas de intervalo libre de enfermedad a 36 meses en pacientes con cánceres RPg positivo o negativo. (Gráfica 22). En el análisis univariante el RPg careció de valor pronóstico, siendo la razón de riesgos estimada para la enfermedad metastásica de las enfermas con cánceres RPg+ 0,8 veces (I.C. 95%: 0,3 – 2,2) el de las pacientes con cánceres RPg-, lo que equivale a una disminución del riesgo de 1,25 veces menor de los cánceres RPg+ en comparación con los RPg. (Tabla 28). Algunos autores consideran de mayor valor pronóstico al RPg que al RE, así, la ausencia de expresión del RPg se
ha relacionado con la pérdida de funcionalidad del RE y con la progresión de la enfermedad y mayor número de recidivas (Pichon et al., 1980; Saez et al., 1983; Clark et al., 1983; Thorpe et al., 1987; Collet et al., 1996). También se cita que la mejor supervivencia observada en tumores RPg+ se debe a la buena respuesta de estos tumores al tratamiento endocrino y en este caso, el RPg es un mejor indicador de respuesta a la terapia hormonal que el RE (Horwitz et al., 1981; McGuire et al., 1982; Alanko et al., 1985; Nardelli et al., 1986; Vollenweider-Zerargui et al., 1986; Ferno et al., 2000). En cambio, en nuestra serie el desarrollo de metástasis ha sido independiente del estado del RPg y del tratamiento hormonal.

No se observaron diferencias significativas entre la proporción de pacientes que recidivaron precozmente con relación a la positividad o negatividad de la proteína Hsp27. La curva de ILE tiende a decaer en el grupo de tumores Hsp27+, sin embargo, las diferencias a los 36 meses de seguimiento no son estadísticamente significativas. (Gráficas 23). La razón de riesgos de metástasis de tumores Hsp27+ fue 2,3 veces (I.C. 95%:0,3 – 1,18) el de tumores Hsp7-, careciendo este dato de significación estadística. (Tabla 28). En este estudio la Hsp27 a pesar de su relación con grados histológicos y nucleares moderados y altos y con los antígenos nucleares de proliferación celular (PCNA y ki67), no fue un parámetro pronóstico. Los resultados en esta serie concuerdan con los publicados por otros autores, donde la positividad de este marcador se ha relacionado con tumores indiferenciados, metástasis ganglionares y disminución de la supervivencia, sin embargo, en el análisis multivariante no se ha podido demostrar su valor pronóstico (Thor et al., 1991; Love et al., 1994; Tetu et al., 1995; Oesterreich et al., 1996).

El examen de las curvas de supervivencia de ILE a 36 meses no demostró diferencias significativas entre tumores EGFR+ y EGFR-. Sin embargo, el descenso de la curva es discretamente mayor en el grupo de tumores EGFR+, sugiriendo que estas pacientes recaen más pronto. (Gráfica 24). La tasa de riesgos estimada para el ILE de las pacientes con cánceres EGFR+ fue 1,8 veces superior (I.C. 95%:0,6 – 5,8) a la de las pacientes con cánceres EGFR-, aunque este valor careció de significación estadística al incluir el valor nulo en el intervalo de confianza. (Tabla 28). Las pacientes con cánceres con ganglios negativos y EGFR+ presentaron un peor pronóstico con una disminución del intervalo libre de enfermedad, aunque las diferencias con relación a los tumores EGFR- no alcanzaron la significación estadística (p=0,06) prefijada en el diseño (HR:4,6; I.C. 95%:0,8 – 27,8). (Gráfica 25). En nuestra serie el EGFR careció de valor pronóstico tanto el análisis univariante como el multivariante, a pesar de que su positividad se había detectado en el 25% de los cánceres de las pacientes que recidivaron.
En la literatura los resultados con relación al valor del EGFR como parámetro de pronóstico para el ILE son diversos. Los expresados en esta serie semejan en algunos casos y contrastan en otros con los publicados. Sainsbury et al., (1987) evidenciaron, en el análisis multivariante de en un estudio basado en la determinación IHQ de 135 cánceres de mama, que el EGFR fue un parámetro de valor pronóstico en pacientes con ganglios negativos y el segundo en importancia en tumores con ganglios positivos. Gasparini et al., (1992) señala que la positividad de EGFR fue un indicador de recidiva. Este autor (Gasparini et al., 1994) al prolongar el tiempo de seguimiento durante 5 años corroboró en el análisis multivariante que el EGFR es un indicador pronóstico para la recidiva. Nicholson et al., (1993) hacen referencia al peor pronóstico de tumores con positividad para C-erbB-2 y EGFR. Según Toi et al., (1994) el EGFR fue de valor pronóstico para la recidiva en el análisis multivariante; los tumores EGFR+/C-erbB-2+ presentaron un elevado riesgo de recidiva. Para Noguchi et al., (1994) el EGFR fue de utilidad pronóstica sólo cuando se retiró del modelo de riesgos proporcionales de Cox la afectación ganglionar, de este modo, el EGFR fue pronóstico en los cánceres con ganglios negativos, pero su valor pronóstico es limitado. Fox et al., (1994) señalan que el EGFR fue un parámetro pronóstico para la recidiva y supervivencia en pacientes con ganglios negativos. Otros estudios, basados en la determinación del EGFR por métodos inmunoenzimáticos e inmunoradiométricos, también hacen referencia al mayor número de recidivas y menor supervivencia de cánceres N+/N- que presentaban concentraciones elevadas de EGFR (Nicholson et al., 1988; Spyratos et al., 1990; Torregrosa et al., 1997). En contraste, varios trabajos basados en la determinación del EGFR con técnicas inmunohistoquímicas (Pirinen et al., 1995; Schroeder et al., 1997) e inmunoenzimáticas (Koenders et al., 1993; Bolla et al., 1994; Cerra et al., 1995) no demuestran su valor como factor pronóstico para el ILE y SG. Para Klijn et al., (1994) el valor pronóstico inicial del EGFR se perdió con el seguimiento a largo plazo.

No hemos objetivado diferencias significativas entre las curvas de intervalo libre de enfermedad a 36 meses de cánceres C-erbB-2+ y C-erbB-2-. (Gráfica 26). La razón de riesgos estimada para la enfermedad metastásica de las enfermas con cánceres Ce-erbB-2+ correspondió a 1,2 veces (I.C. 95%: 0,4 – 3,3) el de las pacientes C-erB-2- y por tanto, según el análisis univariante el C-erbB-2 no constituía un parámetro de pronóstico para las metástasis. (Tabla 28). En la literatura existen discrepancias con relación al valor como parámetro pronóstico independiente de ILE y SG, si bien, en algunos trabajos se considera la amplificación/sobreexpresión como un indicador de menor supervivencia en tumores con ganglios positivos (Slamon et al., 1987; Slamon et al., 1989; Tsuda et al., 1989; Tandon et al., 1989; Borg et al., 1990; Guterson et al., 1992; Tetu et al., 1994; Prost et al., 1994; Schonborn et
al., 1995), otros en cambio, han encontrado que el C-erbB-2 es de valor pronóstico para el ILE y supervivencia en pacientes con ganglios negativos (Paik et al., 1990; Allred et al., 1990; Giai et al., 1994; Quenel et al., 1995) y en pacientes con ganglios positivos y negativos (Wright et al., 1989; Gullick et al., 1991; Yamashita et al., 1993; Delarue et al., 1994; Wiesener et al., 1998; Gago et al., 1998). En contraste varias series, al igual que la nuestra, hacen referencia al escaso valor pronóstico de este marcador (Van der Vijver et al., 1988; Gusterson et al., 1988; Ali et al., 1988; Thor et al., 1989; Rilke et al., 1991; Bianchi et al., 1993; Gasparini et al., 1994; Reed et al., 2000).

La comparación de las curvas de supervivencia para el ILE a 36 meses del antígeno nuclear de proliferación celular, PCNA, desvela un descenso de la curva de las pacientes con elevados índices de este antígeno. (Gráfica 27). La razón de riesgos estimada para el desarrollo de enfermedad metastásica en este grupo de pacientes es 2 veces (I.C. 95%:0,7 – 61) el de las pacientes con cánceres con bajos índices de PCNA, sin embargo, la inclusión del valor nulo en el intervalo de confianza demuestra que no hay significación estadística y por tanto, en este estudio el PCNA no fue un parámetro de pronóstico para las metástasis. (Tabla 28). Los datos consultados en la literatura acerca del valor del PCNA como parámetro de pronóstico para el ILE también son discordantes. Algunos autores hacen referencia al menor intervalo libre de enfermedad y supervivencia observado en enfermas con cánceres que presentaban elevados porcentajes (20 – 35%) de núcleos teñidos para PCNA (Aaltomaa et al., 1992; Haerslev et al., 1994; Sheen-Chen et al., 1997). Para Ghoring et al., (1994) el PCNA fue de valor pronóstico para la recidiva en pacientes con ganglios positivos. Schimmelpenning et al., (1994) y Haerslev et al., (1995) señalan que elevados índices de PCNA (20% >) y la expresión de p53 se relacionaron con una menor supervivencia. En contraste, los resultados de nuestra serie semejan a los publicados por otros autores que han empleando la mediana de expresión (18% - 25%) y el anticuerpo PC10 y en los que no se demuestra el valor pronóstico este marcador (Thomas et al., 1993; Gasparini et al., 1994; Schonborn et al., 1995; Heimann et al., 1997). En nuestra serie el PCNA, a diferencia del Ki-67, no ha sido de valor pronóstico para la enfermedad metastásica a corto plazo.

En nuestro estudio la p53 careció de valor pronóstico para la enfermedad metastásica a 36 meses. La prueba de Mantel-Haenszel mostró que no existen diferencias entre las proporciones de metástasis en los grupos con positividad o negatividad para la p53. (Gráfica 28). El análisis univariante objetivo que la p53 no fue un parámetro de pronóstico para el ILE (HR: 1,3; I.C. 95%: 0,4 – 4). (Tabla 28). La utilidad como factor pronóstico de la p53 ha sido analizado en diversos estudios, sin embargo, los resultados publicados en algunos casos son contradictorios.
Determinados grupos coinciden en señalar que las alteraciones del gen y la sobreexpresión de p53 se relacionan con cánceres de mayor tamaño, aumentada proliferación celular, aneuploïdia, elevados grados histológicos y nucleares, ausencia de expresión de los receptores hormonales y sobreexpresión del C-erbB-2. Estos tumores son de mayor agresividad y se caracterizan por un mayor número de recidivas y menor supervivencia (Thor et al., 1992; Barnes et al., 1993; Noguchi et al., 1993; Allred et al., 1993; Silvestrini et al., 1993; Stenmark-Askmalm et al., 1994; Gasparini et al., 1994; Beck et al., 1995; Fresno et al., 1997). Para Levesque et al., (1994), Gohring et al., (1995) y Tsuda et al., (1998) la sobreexpresión de p53 fue de valor pronóstico para el ILE y SG en cánceres con ganglios positivos. En cambio, otros autores han observado que las pacientes con cánceres p53+ presentaron una disminución del ILE y SG, sin embargo, su valor como parámetro pronóstico fue inferior al del tamaño tumoral, la gradación nuclear y la medición de la actividad proliferativa (Isola et al., 1992; Yamashita et al., 1993; Bianchi et al., 1997). Paradójicamente, Lipponen et al., (1993) objetivaron un grupo de enfermas con cánceres con ganglios positivos y positividad para p53+ gozaron de un mayor intervalo libre de enfermedad. El porcentaje de cánceres con expresión de p53 en nuestra serie ha sido baja, como también lo fue el porcentaje de cánceres p53+ que desarrollaron metástasis. Sin embargo, la presencia de p53 se asoció a características citológicas de desdiferenciación, aumento de la actividad proliferativa y ausencia de los receptores hormonales y en estos aspectos los resultados concuerdan con los de los autores anteriormente expuestos. Por consiguiente, en algunos tumores factores como la desdiferenciación celular, la afectación ganglionar, la pérdida de hormonodependencia, la elevada actividad proliferativa, la expresión de EGFR, C-erbB-2, p53 y catépsina D condicionaron una peor evolución, de este modo, el pronóstico de una paciente no puede ser juzgado exclusivamente por la positividad o negatividad de un marcador y se hace necesario la valoración conjunta de varios marcadores.

El análisis de las curvas de supervivencia del intervalo libre de enfermedad no mostró diferencias significativas entre la proporción de pacientes con cánceres glicoproteína P positivo o negativo. (Gráfica 29). La razón de riesgos de metástasis de pacientes con glicoproteína P+ fue 0,2 veces (I.C. al 95%: 0,02 – 1,5) el de las pacientes con cánceres glicoproteína P-, sin embargo, este dato careció de significación estadística. (Tabla 28). No se apreciaron diferencias estadísticamente negativas entre tumores glicoproteína P+/glicoproteína P- en función de la afectación ganglionar, aunque las metástasis fueron discretamente menores en tumores glicoproteína P+ y ganglios positivos (p=0,07). (Gráfica 30). Estos resultados aunque carecen de significación estadística contrastan con los publicados que señalan que la expresión de glicoproteína P se ha relacionado con un peor y no con un mejor pronóstico (Verrelle et al., 1991; Botti et al., 1993; Schneider et al., 1995; Linn et al., 1995; Linn et al., 1996; Gregorczyk
et al., 1996). Estos estudios incluyeron cánceres avanzados de mama y también se valoró la respuesta a la terapia adyuvante, mientras que en nuestra serie el porcentaje de tumores avanzados es muy reducido y además la falta de datos en el grupo de pacientes que recidivaron puede también modificar las conclusiones acerca del valor pronóstico de este marcador. No obstante, en nuestro estudio la glicoproteína P careció de valor pronóstico tanto en el análisis univariante como multivariante. Trock et al., (1997) en en metanalisis concluye que la glicoproteína P está relacionada con la resistencia y pobre respuesta al tratamiento quimioterápico. Lizard-Nacol et al., (1999) hacen referencia a la ausencia de correlación entre la expresión del gen MDRI y la presencia de mutaciones en el gen p53, la respuesta a la quimioterapia y la supervivencia. El valor pronóstico de este marcador está aún por determinar y más bien podría predecir la respuesta a la quimioterapia.

III- ANALISIS MULTIVARIANTE DE LOS PARAMETROS CLINICO-PATOLOGICOS Y DE LOS MARCADORES TUMORALES MOLECULARES.

Los modelos de riesgos proporcionales de Cox han permitido medir de manera precisa el efecto recidiva mediante el control de las variables de confusión y de las interacciones entre las diferentes variables incluidas en este estudio. Examinando diversos modelos se ha podido seleccionar y analizar una serie de variables independientes predictoras de respuesta (recidiva), es decir, aquellas variables con capacidad para pronosticar las probabilidades de supervivencia libre de enfermedad de cualquiera paciente a partir de un determinado valor o patrón de valores que adquiere en las variables pronósticas. También, el análisis multivariante ha permitido valorar la contribución de cada una de las variables predictoras y así poder seleccionar por orden de importancia aquellas con mejor capacidad pronóstica y que se puedan medir a un menor coste económico. Por consiguiente, de múltiples modelos analizados se han seleccionado dos que cumplen las asunciones de validez y que incluyen las variables tipo de tumor, estadiaje y Ki-67.

La presencia de más de un foco de cáncer infiltrante en la mama del mismo lado (multicentricidad) ha constituido un parámetro pronóstico de importancia para la enfermedad metastásica a 36 meses. La Gráfica 31 muestra que una vez realizado el ajuste por el estadiaje, la supervivencia libre de enfermedad es menor en las pacientes que poseían un tumor multicéntrico. La razón de riesgos estimada para la enfermedad metastásica de las pacientes con un cáncer multicéntrico fue 3,35 veces superior (I.C. 95%: 1,1 – 10,45) al de las pacientes con un tumor único. (Modelo 1, Tabla 29). En la literatura la incidencia de multicentricidad en los
casos de cánceres ductales infiltrantes exclusivamente, es decir, sin incluir cánceres intraductales ni in situ, varía entre un 4% y 30%, aunque cifras entre un 5% y 10% son más frecuentes. (Fisher et al., 1975; Schwartz et al., 1980; Westman-Naeser et al., 1981; Tinnemans et al., 1986; Gump et al., 1986; Sarnelli y Squartini, 1986). Existen discrepancias con relación a la mejor definición de multicentricidad, ya que para algunos autores este término debe ser aplicado sólo a aquellas lesiones demostradas en cuadrantes distintos del asiento del cáncer primario (Fisher et al., 1975; Fisher et al., 1986). Otros en cambio, han aplicado el término multicentricidad a la presencia de más de un foco de tumor en el mismo cuadrante, pero a una distancia de 2 o más cm del cáncer dominante o lesión considerada índice (Holland et al., 1985).

Nosotros nos hemos adherido a esta última definición incluyendo como tumores multicéntricos la existencia de más de un foco de cáncer infiltrante independientemente de su localización y tamaño, aunque no se excluye en algunos casos la presencia de componente intraductal asociado a estos focos tumorales en la pieza quirúrgica. Los estudios citogenéticos apoyan la hipótesis que establece que la diseminación intraductal del tumor es el mecanismo implicado en la patogénesis de la multicentricidad, de tal manera que múltiples focos tienen un origen monoclonal (Noguchi et al., 1994; Teixeira et al., 1994). Sin embargo estos estudios, al encontrar clones no relacionados citogenéticamente en los focos multicéntricos, avalan la posibilidad de que un cáncer pueda ser policlonal (Teixeira et al., 1994). También hay indicios que sugieren que en algunos cánceres se produce un cambio clonal durante la transición de un carcinoma in situ a infiltrante (Fuji et al., 1996). Por tanto, parece que el mecanismo principal que explicaría el fenómeno de multicentricidad es la diseminación intraductal y en unos pocos casos el origen policlonal.

Con relación al pronóstico a largo plazo hay un vacío en la literatura, aunque se ha señalado una relación entre la multicentricidad con el componente intraductal extenso, el tamaño tumoral, la afectación ganglionar y la aparición de recidivas locales (Rosen et al., 1975; Fisher et al., 1975; Lesser et al., 1982; Kurtz et al., 1990). Si bien es cierto que la clasificación TNM prevé que en los casos de más de un tumor en la misma mama, el de mayor tamaño, y no el número, es el que define la categoría T y por ende, tanto la estadificación como el pronóstico final; sin embargo, nuestros resultados muestran que posiblemente los tumores multicéntricos deberían ser considerados aparte. En la mayoría de los casos de cánceres multicéntricos, las recidivas se producen en la vecindad del tumor primario durante los primeros 4 años. Después de los 5 años, las lesiones ocurren a mayor distancia de la lesión primaria, pero la incidencia de recidivas locales se reduce aproximándose a la de un nuevo primario en la mama contralateral y el pronóstico también es mejor (Dawson, 1993). Por otra parte, tampoco se han observado diferencias significativas con relación al ILE y SG entre grupos de pacientes con cánceres en
Discusión

241

estadio I y II tratadas con cirugías conservadoras y mastectomía radicales, a excepción del aumento de las recidivas locales en el grupo de cirugía conservadora sin radioterapia (Veronesi et al., 1995; Fisher et al., 1995; Kato et al., 2000). Por tanto, no parece que la multicentricidad en sí condicione un peor pronóstico, a excepción de un aumento en el número de recidivas locales en los casos de cirugía conservadora sin radioterapia, donde el volumen de la mama resecada es menor que en el caso de las mastectomías radicales y las posibilidades de dejar focos tumorales sin extirpar son mayores. Según Fisher et al., (1986) más que la multicentricidad, un tamaño tumoral superior a los 2 cm, altos grados nucleares e histológicos y la extensión intralinfática se asociaron significativamente a las recidivas locales en pacientes tratadas con tumorectomía. En estos trabajos sin embargo, se valora la multicentricidad en el contexto del componente intraductal asociado más que a la presencia de dos o más focos de cáncer infiltrante.

En la actualidad conocemos que existen diferentes vías de diseminación (linfática y hematogénea) de las células cancerosas (Fisher et al., 1985; Cote et al., 1991) y que la presencia de células micrometastásicas en la médula ósea varía en función del tamaño tumoral, pero es independiente de la afectación ganglionar (Braun et al., 2000). No obstante, el efecto que supone una carga tumoral adicional en los casos de tumores multicéntricos infiltrantes, no se ha medido con relación a la posibilidad de diseminación micrometastásica por vía hematogénea. En la serie que nos ocupa la multicentricidad tumoral no se ha relacionado con el estado menstrual, tamaño tumoral, gradación nuclear e histológica, afectación ganglionar, los marcadores tumoriales moleculares, ni con la aparición de recidivas locales, sin embargo, este parámetro ha mostrado ser de valor pronóstico independiente para la enfermedad metastásica a 36 meses. Destaca además que de las 11 pacientes con cánceres multicéntricos que desarrollaron metástasis a distancia, 3 correspondían a un estadio I, 6 al estadio II y 2 al estadio III, de tal modo, que en los estadios I y II, la multicentricidad puede ser considerada de utilidad pronóstica.

En el modelo 1 y 2, el estadaje constituyó un parámetro pronóstico de importancia para el desarrollo de la enfermedad metastásica precoz. (Tabla 29 y 30). En presente estudio, el estadio III, condicionó un mal pronóstico para el ILE a 36 meses. En las Gráficas 32 y 33 una vez realizado los ajustes por las variables tipo de tumor multicéntrico y Ki-67 respectivamente, se observa una menor supervivencia libre de enfermedad de las pacientes clasificadas en un estadio III. En el modelo 1 la razón de riesgos estimada de metástasis a 36 meses de las enfermas clasificadas en estadio III fue 6,2 veces superior (I.C. 95%:1,6 – 24,02) al de las pacientes en el estadio I, mientras que en el modelo 2, la razón de riesgos estimada para la enfermedad
Discusión

metastásica de pacientes en el estadio III fue de 9,3 veces (I.C. 95%: 1,9 – 45,3) el de las pacientes en estadio I. El mal pronóstico observado en pacientes clasificadas en un estadio III es un hecho conocido y constatado en la literatura (Fisher et al., 1969; Schottenfeld et al., 1976; Arnold y Lesnick, 1979; Ariel et al., 1979; Ferguson et al., 1982; Carter et al., 1989; Scholl et al., 1994; Schwartz et al., 1994). En la serie que nos ocupa el tamaño tumoral careció de valor pronóstico, siendo el factor determinante de metástasis en este estadio la afectación ganglionar. El análisis univariante mostró que la afectación ganglionar N2 (HR N2/N0: 3,9; I.C. 95%: 1,2 – 13) y no el tamaño tumoral (HR T3/T1: 3,6 I.C. 95%: 0,9 – 15,1; HR T2/T1: 1,6 I.C. 95%: 0,5 – 48) constituyó el parámetro pronóstico más importante para la enfermedad metastásica de las pacientes clasificadas en el estadio III. (Tabla 28). En el análisis multivariante el estadio N2 se comporta como una variable de confusión permitiendo un mejor ajuste de la estadificación. Estos resultados concuerdan con otros estudios donde se señala que el parámetro discriminatorio más importante para establecer el estadiaje y por ende, el factor determinante de mayor importancia para las recidivas y supervivencia es la afectación ganglionar (Hutter, 1980; Fracchia et al., 1980; McCready et al., 1980).

Entre los marcadores tumorales moleculares, el Ki-67 fue el de mayor valor pronóstico independiente para la enfermedad metastásica precoz, siendo la razón de riesgos estimada de metástasis a 36 meses de los cánceres Ki-67 positivos 15,3 veces superior (I.C. 95%: 1,9 – 117,6) al de los cánceres Ki-67 negativos. (Modelo 2, Tabla 30). Al realizar el ajuste por la estadificación, se objetiva una disminución del intervalo libre de enfermedad de las pacientes con tumores Ki-67 con valores por encima de la mediana. (Gráfica 34). Los resultados encontrados en nuestro estudio coinciden con los descritos por algunos autores, siendo este marcador que mide la proliferación celular, de valor pronóstico en varias series que incluyen números reducidos y amplios de pacientes con tiempos de seguimiento variables y que han empleado distintos anticuerpos monoclonales y diferentes dintel de positividad. Railo et al., (1993) en un estudio basado en 327 cánceres de mama con seguimiento durante 4 años (media 2,7), hacen referencia al valor pronóstico independiente del índice Ki-67 demostrado en un modelo de riesgos proporcionales de Cox. Gaglia et al., (1993) citan en una serie de 385 cánceres de mama el valor pronóstico independiente para la recidiva del estado nodal y el índice Ki-67. Estos autores utilizaron como dintel de positividad el valor de la mediana (9%), así, en el análisis mutivariante comprobaron que la probabilidad de recidiva a los 4 años postcirugía era significativamente menor en las pacientes sin afectación ganglionar y con un índice Ki-67 por debajo de la mediana. Pinder et al., (1995) en un estudio de 177 cánceres de mama, señalan que en el análisis multivariante fueron de valor pronóstico para la recidiva el elevado índice Ki-67 junto con el grado histológico, el tamaño tumoral y la afectación ganglionar. Si el grado
histológico no se incluía en el análisis el índice Ki-67 constituía el factor pronóstico más importante para la supervivencia. Brown et al., (1996) en un estudio de 674 cánceres de mama con ganglios negativos y seguimiento prolongado, objetivaron en el análisis multivariante que los cánceres con un alto índice Ki-67 (5% > célula con núcleos teñidos) presentaron un riesgo de recidiva 1,8 veces superior a pacientes con bajos índices. En una serie de 140 pacientes con cáncer de mama N+/N- y una mediana de seguimiento de 6 años, Pierga et al., (1996), comprueban en el análisis multivariante que la elevada fracción de crecimiento determinada mediante tinción IHQ para Ki-67 (valor por arriba de la mediana 8%) fue de valor pronóstico independiente para la recidiva. Molino et al., (1997), al analizar varios factores pronóstico mediante el análisis multivariante en una serie de 322 cánceres de mama, señalan el valor pronóstico de los elevados índices del antígeno Ki-67. Rudolph et al., (1999) también hacen referencia al valor pronóstico independiente para el ILE y SG de altos índices del antígeno Ki-67 (10% > células con núcleos teñidos) en el análisis multivariante de 351 cánceres de mama.

La elevada expresión del antígeno Ki-67 también ha mostrado ser de valor pronóstico para la recidiva en estudios con seguimiento inferior a los 5 años y que han sustentados sus conclusiones en el análisis univariante (Sahin et al., 1991; Wintzer et al., 1991; Veronese et al., 1993). Sin embargo, otros autores no han podido comprobar el valor pronóstico para el ILE de la elevada expresión del antígeno Ki-67. Así, Bouzubar et al., (1989), en un estudio de 136 cánceres de mama y con seguimiento a 30 meses, citan que la alta expresión del antígeno Ki-67 se relacionó con la recidiva precoz tras la mastectomía; sin embargo, en el análisis univariante no se demostró su valor pronóstico. Según Weikel et al., (1991) la elevada expresión de Ki-67 no fue un factor pronóstico en el análisis univariante de una serie de 568 cánceres y seguimiento durante 36 meses. Para Rudas et al., (1994) tanto el índice de timidina como el Ki-67 carecieron de valor pronóstico independiente para el ILE y la SG según se demostró en el análisis univariante y multivariante de un estudio basado en 184 cánceres de mama.

Aunque los resultados en algunos casos son discordantes probablemente porque no existe un dintel de positividad ideal que permita agrupar a los tumores en grupos de alto y bajo riesgo de recidiva, y así poder comparar los resultados entre diferentes series, sí parece existir en un buen número de estudios una asociación entre la elevada expresión de este antígeno y un mayor riesgo de metástasis. La determinación IHQ del antígeno Ki-67 ha sido útil para cuantificar la fracción de crecimiento de un tumor, y la simplicidad de su medición y su bajo coste económico ofrecen ventajas en comparación con otras técnicas más sofisticadas y costosas como son el índice de timidina tritiada y la medición de la fracción S por citometría de flujo (Silvestrini et al., 1988; Sahin et al., 1991; McGrogan et al., 1997).
Las variables incluidas en los dos modelos pueden ser cuantificadas con facilidad, a bajo coste económico, sin embargo, el hecho que la incidencia de multicentricidad sea baja (5 – 10%) hace que el modelo 2 pueda ser más universalmente aplicado al incluir la estadificación TNM y la tinción IHQ de Ki-67. De todos modos, en los casos en que se demuestra multicentricidad creemos que debe aplicarse además el modelo 1.

Por tanto, nuestro estudio muestra, en definitiva, que puede ser rechazada la hipótesis nula que establece que los marcadores tumorales moleculares no poseen capacidad para pronosticar las metástasis que se producen durante los primeros 36 meses de seguimiento, al observar que al menos un marcador tumoral molecular ha sido de valor pronóstico para la enfermedad metastásica precoz.
CONCLUSIONES

Primera. Nuestro estudio muestra que las variables correspondientes a los parámetros clínico-patológicos tipo de tumor multicéntrico, la afectación de 4 o más ganglios axilares, la rotura con desbordamiento de la cápsula ganglionar y la estadificación se asociaron significativamente con el desarrollo de enfermedad metastásica durante los primeros 36 meses postoperatorios. No hubo una asociación estadísticamente significativa con relación al estado premenopáusico o postmenopáusico, al tamaño tumoral, al tamaño de los ganglios infiltrados, al grado histológico y nuclear y a los tratamientos complementarios.

Segunda. Los marcadores tumorales moleculares que mostraron una asociación significativa con la aparición de enfermedad metastásica durante los 36 meses de seguimiento en esta serie han sido la proteína pS2, el antígeno nuclear de proliferación celular Ki-67 y la catepsina D. No se asociaron significativamente con el desarrollo de metástasis los receptores hormonales RE y RPg, la proteína de choque térmico Hsp27, el factor de crecimiento epidérmico EGFR, el antígeno nuclear de proliferación celular PCNA, la proteína p53 y la glicoproteína P.

Tercera. En el análisis univariante y multivariante la multicentricidad fue un parámetro pronóstico de importancia para la enfermedad metastásica a 36 meses. La razón de riesgos de metastatización de las pacientes con tumores multicéntricos fue 3,35 veces superior al de las pacientes con tumores únicos.

Cuarta. Los ganglios axilares clasificados N2, la presencia de 4 o más ganglios positivos y la rotura con desbordamiento de la cápsula ganglionar, determinaron una evolución muy desfavorable, con un riesgo de metástasis 3 veces superior al de las pacientes sin afectación ganglionar.

Quinta. El estadio III de la clasificación TNM es un factor pronóstico para el desarrollo de enfermedad metastásica a 36 meses. La razón de riesgos de metástasis para las pacientes en este estadío fue 9,3 veces superior al de las pacientes en un estadío I.

Sexta. La expresión negativa de pS2 define un grupo de tumores RE+ y RPg+ de mal pronóstico. La ausencia de la proteína pS2 se asocia a una disminución del intervalo libre de enfermedad a 36 meses, especialmente en el grupo de tumores con axila libre.
Séptima. La tinción positiva para catepsina D aumenta 5,1 veces el riesgo de enfermedad metastásica a 36 meses en pacientes con ganglios axilares positivos.

Octava. Los antígenos de proliferación celular, ki67 y PCNA identifican tumores más agresivos caracterizados por altos grados histológicos y nucleares, ausencia de receptores hormonales y sobreexpresión de p53.

Novena. Tanto en el análisis univariante como en el multivariante, el Ki-67, es el marcador tumoral molecular que mejor predice el desarrollo de enfermedad metastásica a 36 meses, constituyendo el principal marcador de pronóstico en esta serie. La razón de riesgos de metástasis para las enfermas con cánceres con expresión de Ki-67 por encima del valor de la mediana es 15,3 veces.

Décima. Desde el punto de vista clínico la estadificación TNM y la positividad para el Ki-67 (modelo 2) han sido los dos factores que han mostrado utilidad para establecer los grupos pronóstico.

Bitran JD, Samuels B, Trujillo Y, Klein L, Schroeder L, Martinec J. Her2/neu overexpression is associated with treatment failure in women with high-risk stage II and stage IIIA breast cancer (>10 involved lymph nodes) treated with high-dose chemotherapy and autologous hematopoietic progenitor cell support following standard-dose adjuvant chemotherapy. Clin Cancer Res 1996; 2: 1509-1513.

Chromatin structure of the regulatory regions of pS2 and cathepsin D genes in hormone-dependent and -independent breast cancer cell lines. Oncogene 1999;18:533-541.

Bibliografía

Elledge RM, Green S, Pugh R, Allred DC, Clark GM, Hill J, Ravdin P, Martino S, Osborne CK. Estrogen receptor and progesterone receptor, by ligand-binding assay compared with ER, PgR and pS2, by...

Fakharzadeh S, Trusko SP, George DL. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 1991; 10: 1565-1569.

Fu XY, Zhang JJ. Transcription factor p91 interacts with the EGF receptor and mediates activation of the c-fos gene promoter. Cell 1993; 74: 1135-1145.

Glascock RF, Hoeskstra WG. Accumulation of tritium-labelled hexoestradio1 by the reproductive organs of immature female goats and sheep. Biochem J 1959; 72: 673-678.
Bibliografía

Gonzalez-Vela MC, Garijo MF, Fernandez F, Buelta L, Val-Bernal JF. Cathepsin D in host stromal cells is associated with more highly vascular and aggressive invasive breast carcinoma. Histopathology 1999; 34:35-42.

Lange CA, Shen T, Horwitz KB. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci USA 2000; 97: 1032-1037.

Bibliografía

Lin VC, Ng EH, Aw SE, Tan MG, Ng EH, Bay BH. Progesterone induces focal adhesion in breast cancer cells MDA-MB-231 transfected with progesterone receptor complementary DNA. Mol Endocrinol 2000; 14: 348-358.

Lin VC, Ng EH, Aw SE, Tan MG, Ng EH, Chan VS, Ho GH. Progestins inhibit the growth of MDA-MB-231 cells transfected with progesterone receptor complementary DNA. Clin Cancer Res 1999; 5: 395-403.

MacCallum DE, Hall PA. The location of pKi67 in the outer dense fibrillar compartment of the nucleolus points to a role in ribosomal biogenesis during the cell division cycle. J Pathol 2000; 190:537-544.

Bibliografía

Bibliografía

NK. p53 protein detected by immunohistochemical staining is not always mutant. Dis Markers 1993;11:239-250.

Poulson R, Hanby AM, Lalani EN, Hauser F, Hoffmann W, Stamp GW. Intestinal trefoil factor (TFF 3) and pS2 (TFF 1), but not spasmyloytic polypeptide (TFF 2) mRNAs are co-expressed in normal, hyperplastic, and neoplastic human breast epithelium. J Pathol 1997; 183: 30-38.

Ravdin PM. How can prognostic and predictive factors in breast cancer be used in a practical way today? Recent Results Cancer Res. 1998;152: 86-93.

Rosen PP, Groshen S, Saigo PE, Kinne Dw, Hellman S: Pathological prognostic factors in stage I (T1 N0 M0) and stage II (T1 N1 M0) breast carcinoma: A study of 644 patients with median follow-up of 18 years. J Clin Oncol 1989; 7: 1239-1251.

Seib T, Blin N, Hilgert K, Seiffert M, Theisunger B, Engel M, Dooley S, Zang K-D, Welter C. The three human trefoil genes TFF1, TFF2 and TFF3 are located within a region of 55 kb on chromosome 21q22.3.

Skoog L, Rutqvist LE, Wilking N. Analysis of hormone receptors and proliferation fraction in fine-needle aspirates from primary breast carcinomas during chemotherapy or tamoxifen treatment. Acta Oncol 1992; 31:139-141.

Thorpe SM, Christensen IJ, Rasmussen BB, Rose C. Short recurrence-free survival associated with high oestrogen receptor levels in the natural history of postmenopausal, primary breast cancer. Eur J Cancer 1993; 29: 971-977.

Bibliografía

Tzukerman MT, Esty A, Santiso-Mere D, Danielian P, Parker MG, Stein RB, Pike JW, McDonell DP. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 1994; 8: 21-34.

