Universidad Complutense de Madrid
E-Prints Complutense

Quantum Genetic Algorithms for Computer Scientists

Impacto

Descargas

Último año

Lahoz Beltrá, Rafael (2016) Quantum Genetic Algorithms for Computer Scientists. Computers, 5 (24). ISSN 2073-431X

[img]
Vista previa
PDF
Creative Commons License
Esta obra está bajo una licencia de Creative Commons: Reconocimiento.

1MB

URL Oficial: http://www.mdpi.com/journal/computers



Resumen

Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs). In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.


Tipo de documento:Artículo
Palabras clave:quantum genetic algorithms; quantum evolutionary algorithms; reduced quantum genetic algorithm; quantum computing
Materias:Ciencias Biomédicas > Biología > Biomatemáticas
Código ID:45844
Depositado:19 Dic 2017 15:11
Última Modificación:10 Dic 2018 15:25

Descargas en el último año

Sólo personal del repositorio: página de control del artículo