Publication:
Estimando el potencial dispersivo de sámaras mediante modelos de regresión

Loading...
Thumbnail Image
Official URL
Full text at PDC
Publication Date
2017-06
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
La dispersión de semillas es una parte fundamental en el ciclo biológico de las plantas. Muchas especies producen frutos con características que facilitan su dispersión por un vector determinado. Por ejemplo, las especies anemócoras tinene frutos con alas o vilanos para aumentar su distancia de dispersión. Las sámaras son frutos típicos de la dispersión anemócora. Las variables morfológicas que se utilizan para estimar la capacidad de dispersión de las sámaras están basadas en proyecciones planas, lo que obvia su estructura tridimensional. Esto puede afectar en la comparación de especies que difieran en el grado de desarrollo tridimensional de sus sámaras. En este estudio se ha comparado la influencia de morfología sobre la capacidad dispersiva en sámaras de F. angustifolia y A. altissima que varían ampliamente en su estructura tridimensional. Se corrobora que las variables que predicen la capacidad dispersiva son diferentes.
Seeds dispersion is a fundamental stage in biological life cycle of plants. A lot of species produce fruits with characteristics that improve the dispersion by some vector. For example, anemochoric species have winged fruits or pappus to increase their dispersion range. Samaras are typical fruits of anemoochory. Morphological variables used to estimate dispersion capacity of samaras are based in plain proyections, which obviates the tridimensional structure. This can affect the comparison of species that differs on tridimensional structure development of their samaras. In this research we compare the influence of morphology on dispersion capacity of samaras of de F. angustifolia and A. altissima that vary widely on their tridimensional structure. We corroborate that variables which predict dispersive capacity are different.
Description
Grado Biología, mención Biología ambiental
Keywords
Citation
Andersen, M. C. 1993. Diaspore Morphology and Seed Dispersal in Several Wind- Dispersed Asteraceae. American Journal of Botany, 80(5), 487–492. Azuma, A. & Okamoto, M. 2005. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings. Journal of Theoretical Biology, 234(1), 67–78. Bory, G. & Clair Maczulajtys, D. 1981. Production, dissemination et polymorphisme des semences d'Ailanthus altissima (Mill.) Swingle, Simarubacees. (Production and different types of seeds in relation with dissemination in Ailanthus altissima (Mill.) Swingle,(Simarubaceae).). Rev. Gen. Bot. 88, 1049e1050. Bullock, J.M. & Clarke, R.T. 2000. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124: 506–521. Burrows, F. M. 1973. Calculation of the primary trajectories of plumed seeds in steady winds with variable convection. New Phytologist 72: 647-664. Darwin, C. 1859. The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray. Debussche, M. & Lepart, J. 1992. Establishment of woody plants in Mediterranean old fields: opportunity in space and time. Landscape Ecology, 6(3), 133–145. Delgado, J.A., Jimenez, M.D. & Gomez, A. 2009. Samara size versus dispersal and seeding establishment in Ailanthus altissima (Miller) swingle. Journal of Environmental Biology, 30(2), 183–186. Drezner, T.D., Fall, P.L. & Stromberg, J.C. 2001. Plant distribution and dispersal mechanisms at the Hassayampa River Preserve, Arizona, USA. Global Ecol Biogeogr 10: 205–217. Green, D.S. 1980. The terminal velocity and dispersal of spinning samaras. Am. J. Bot. 67: 1218-1224. Greene, D.F. & Johnson E.A. 1993. Seed Mass and Dispersal Capacity in Wind-Dispersed Diaspores. Oikos 67(1), 69-74 Howe, H.F. & Smallwood, J. 1982. Ecology of seed dispersal. Annu Rev Ecol Syst 13: 201–228. Kowarik, I. & Säumel, I. 2007. Biological flora of Central Europe: Ailanthus altissima (Mill.) Swingle. Perspectives in Plant Ecology, Evolution and Systematics, 8(4), 207–237. Kowarik, I. & Säumel, I. 2008. Water dispersal as an additional pathway to invasions by the primarily wind-dispersed tree Ailanthus altissima. Plant Ecol 198: 241–252. Landenberger, R.E., Kota, N.L. & McGraw, J.B. 2006. Seed dispersal of the non-native invasive tree Ailanthus altissima into contrasting environments. Plant Ecol 192: 55–70. Lovell, P.H. & Moore, K. G. 1970. The shapes and sizes of seeds. Annu. Rev. Ecol. Syst. 1: 327-356. Minami, S. & Azuma, A. 2003. Various flying modes of wind-dispersal seeds. Journal of Theoretical Biology, 225(1), 1–14. Nathan, R., Schurr, F.M., Spiegel, O., Steinitz O., Trakhtenbrot A. & Tsoar A. 2008. Mechanisms of long-distance seed dispersal. Trends Ecol Evol 23: 638–647. Peroni, P.A. 1994. Seed size and dispersal potential of Acer rubrum (Aceraceae) samaras produced by populations in early and late successional environments. American Journal of Botany, 81(11), 1428–1434. Planchuelo, G., Catalán, P. & Delgado, J.A. 2016. Gone with the wind and the stream: Dispersal in the invasive species Ailanthus altissima. Acta Oecologica, 73, 31–37. Planchuelo, G., Catalán, P., Delgado, J.A. & Murciano, A. 2017. Estimating wind dispersal potential in Ailanthus altissima : The need to consider the three-dimensional structure of samaras. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology, 151(2), 316–322. Schäfer, M. 2002. Beobachtung, Analyse und Beschreibung von realen Fallbewegungen [Observation, analysis and description of real cases of movement]. Göttingen: DLR. Sheldon, J.C., & Burrows, F.M. 1973. The Dispersal Effectiveness of the Achene-Pappus Units of Selected Compositae in Steady Winds With Convection. New Phytologist, 72(3), 665–675. Van der Pijl, L. 1982. Principles of dispersal in higher plants, 3d ed. Springer-Verlag, New York, NY. Vittoz, P. & Engler, R. 2007. Seed dispersal distances: A typology based on dispersal modes and plant traits. Bot Helv 117: 109–124. von der Lippe, M., Bullock, J.M., Kowarik, I., Knopp, T. & Wichmann, MC. 2013. Human-mediated dispersal of seeds by the airflow of vehicles. PLoS One 8: e52733. Wickert, K.L., O’Neal, E.S., Davis, D.D. & Kasson, M.T. (2017). Seed Production, Viability, and Reproductive Limits of the Invasive Ailanthus altissima (Tree-of-Heaven) within Invaded Environments. Forests, 8(7), 226. Yasuda, K. & Azuma, A. 1997. The Autorotation Boundary in the Flight of Samaras. Journal of Theoretical Biology, 185(3), 313–320.