Universidad Complutense de Madrid
E-Prints Complutense

A state of the art of sensor location, flow observability, estimation, and prediction problems in traffic networks

Impacto

Descargas

Último año

Castillo, Enrique y Grande, Zacarias y Calviño Martínez, Aida y Szeto, W. Y. y Lo, Hong K. (2015) A state of the art of sensor location, flow observability, estimation, and prediction problems in traffic networks. Journal of Sensors, 2015 . pp. 1-26.

[img]
Vista previa
PDF
Creative Commons License
Esta obra está bajo una licencia de Creative Commons: Reconocimiento.

1MB

URL Oficial: http://dx.doi.org/10.1155/2015/903563




Resumen (otros idiomas)

A state-of-the-art review of flow observability, estimation, and prediction problems in traffic networks is performed. Since mathematical optimization provides a general framework for all of them, an integrated approach is used to perform the analysis of these problems and consider them as different optimization problems whose data, variables, constraints, and objective functions are the main elements that characterize the problems proposed by different authors. For example, counted, scanned or “a priori” data are the most common data sources; conservation laws, flow nonnegativity, link capacity, flow definition, observation, flow propagation, and specific model requirements form the most common constraints; and least squares, likelihood, possible relative error, mean absolute relative error, and so forth constitute the bases for the objective functions or metrics. The high number of possible combinations of these elements justifies the existence of a wide collection of methods for analyzing static and dynamic situations.

Tipo de documento:Artículo
Palabras clave:flujo; estimación; predicción; tráfico
Palabras clave (otros idiomas):flow observability; estimation; prediction; traffic
Materias:Ciencias > Estadística
Ciencias > Estadística > Probabilidades
Código ID:47249
Depositado:18 Abr 2018 15:30
Última Modificación:19 Abr 2018 07:13

Descargas en el último año

Sólo personal del repositorio: página de control del artículo