Universidad Complutense de Madrid
E-Prints Complutense

Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients

Impacto

Downloads

Downloads per month over past year

Cifuentes Canorea, Pilar and Ruiz Medrano, Jorge and Gutierrez Bonet, Rosa and Peña García, Pablo and Sáenz Francés, Federico and García Feijoo, Julián and Martínez de la Casa, Jose Maria (2018) Analysis of inner and outer retinal layers using spectral domain optical coherence tomography automated segmentation software in ocular hypertensive and glaucoma patients. PLoS ONE, 13 (4). e0196112. ISSN 1932-6203

[img]
Preview
PDF
Creative Commons Attribution.

4MB

Official URL: https://doi.org/10.1371/journal.pone.0196112




Abstract

Objective: To analyse the morphological features and diagnostic ability of eight macular retinal layers using a new segmentation software Heidelberg's Spectralis Optical Coherence Tomography (SD-OCT) in healthy, ocular hypertensive and primary open angle glaucoma patients.
Methods: Single-center, cross-sectional, non-interventional study. 193 eyes from 193 consecutive patients (56 controls, 63 ocular hypertensives, 32 early primary open glaucoma patients and 42 moderate-advanced primary open glaucoma patients). Those patients presenting any retinal disease were excluded. Macular segmentation of the retinal layers was automatically performed using the new segmentation Heidelberg's Spectralis OCT software providing measurements for eight retinal layers. The software provides thickness maps divided into nine subfields.
Results: Statistically significant differences in inner layers’ thickness was found between all 4 four groups. Superior and inferior sectors of macular retinal nerve fiber layer; nasal, temporal, superior and inferior sectors of ganglion cell layer and inner plexiform layer were significantly different when comparing ocular hypertensive patients and early glaucoma patients. Areas under the ROC curves for early glaucoma diagnosis were 0.781±0.052 for macular retinal nerve fiber layer outer inferior sector, 0.760±0.050 for ganglion cell layer outer temporal sector, 0.767±0.049 for the inner plexiform layer outer temporal sector and 0.807±0.048 for the combination of all three. No differences were found between groups when considering outer retinal layers.
Conclusions: The automated segmentation software from Heidelberg's Spectralis OCT provides a new diagnostic tool for the diagnosis of ocular hypertensive and glaucoma patients.


Item Type:Article
Additional Information:

Received: January 13, 2018; Accepted: April 8, 2018; Published: April 19, 2018.

Uncontrolled Keywords:Glaucoma; Tomography; OCT; Gnglion cells; Nerve fibers; Chorid; Retinal layers; Hypertension; Ocular hipertensive patients
Subjects:Medical sciences > Medicine > Ophtalmology
Medical sciences > Optics > Eyes anatomy
Medical sciences > Optics > Imaging systems
ID Code:47315
Deposited On:25 Apr 2018 10:56
Last Modified:25 Apr 2018 10:56

Origin of downloads

Repository Staff Only: item control page