Publication:
Ultrametric spaces of branches on arborescent singularities

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2018
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Let S be a normal complex analytic surface singularity. We say that S is arborescent if the dual graph of any resolution of it is a tree. Whenever A,B are distinct branches on S, we denote by A⋅B their intersection number in the sense of Mumford. If L is a fixed branch, we define U_L(A,B)=(L⋅A)(L⋅B)/(A⋅B) when A≠B and U_L(A,A)=0 otherwise. We generalize a theorem of P{\l}oski concerning smooth germs of surfaces, by proving that whenever S is arborescent, then UL is an ultrametric on the set of branches of S different from L. We compute the maximum of U_L, which gives an analog of a theorem of Teissier. We show that U_L encodes topological information about the structure of the embedded resolutions of any finite set of branches. This generalizes a theorem of Favre and Jonsson concerning the case when both S and L are smooth. We generalize also from smooth germs to arbitrary arborescent ones their valuative interpretation of the dual trees of the resolutions of S. Our proofs are based in an essential way on a determinantal identity of Eisenbud and Neumann.
Description
Keywords
Citation
1.Abío, I., Alberich-Carramiñana, M., González-Alonso, V.: The ultrametric space of plane branches. Commun. Algebra 39(11), 4206–4220 (2011) 2.Artin, M.: On isolated rational singularities of surfaces. Am. J. Math. 83, 129–136 (1966) 3.Bandelt, H.-J., Steel, M.A.: Symmetric matrices representable by weighted trees over a cancellative abelian monoid. SIAM J. Discrete Math. 8(4), 517–525 (1995) 4.Böcker, S., Dress, S.: Recovering symbolically dated, rooted trees from symbolic ultrametrics. Adv. Math. 138, 105–125 (1998) 5.Braun, G., Némethi, A.: Surgery formula for Seiberg-Witten invariants of negative definite plumbed 3-manifolds. J. Reine Angew. Math. 638, 189–208 (2010) 6.Buneman, P.: A note on the metric properties of trees. J. Comb. Theory 17, 48–50 (1974) 7.Camacho, C.: Quadratic forms and holomorphic foliations on singular surfaces. Math. Ann. 282, 177–184 (1988) 8.Campillo, A.: Algebroid Curves in Positive Characteristic. Lecture Notes in Mathematics, vol. 813. Springer, Berlin (1980) 9.Caubel, C., Némethi, A., Popescu-Pampu, P.: Milnor open books and Milnor fillable contact 3-manifolds. Topology 45, 673–689 (2006) 10.Cha̧dzyński, J., Płoski, A.: An inequality for the intersection multiplicity of analytic curves. Bull. Pol. Acad. Sci. Math. 36(3–4), 113–117 (1988) 11.Coxeter, H.S.M.: Discrete groups generated by reflections. Ann. Math. 35(3), 588–621 (1934) 12.Coxeter, H.S.M.: Regular Polytopes. Dover Publications Inc., New York (1973) 13.Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992) 14.Duchon, N.: Involutions of plumbed manifolds. Thesis, University of Maryland, College Park (1982). Available at http://sandsduchon.org/duchon/DuchonThesis.zip 15.Du Val, P.: The unloading problem for plane curves. Am. J. Math. 62(1), 307–311 (1940) 16.Du Val, P.: On absolute and non-absolute singularities of algebraic surfaces. Revue de la Faculté des Sciences de l’Univ. d’Istanbul (A) 91, 159–215 (1944) 17.Eggers, H.: Polarinvarianten und die Topologie von Kurvensinguläritaten. Bonner Math. Schriften 147 (1983) 18.Eisenbud, D., Neumann, W.: Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Princeton University Press, Princeton (1985) 19.Fauvet, F., Menous, F., Sauzin, D.: Explicit linearization of one-dimensional germs through tree-expansions. https://hal.archives-ouvertes.fr/hal-01053805v2. Submitted on 22 Jan 2015 20.Favre, C., Jonsson, M.: The Valuative Tree. Lecture Notes in Mathematics, vol. 1853. Springer, Berlin (2004) 21.García Barroso, E.: Invariants des singularités de courbes planes et courbure des fibres de Milnor. PhD thesis, University of La Laguna, Tenerife (1996). Available at http://ergarcia.webs.ull.es/tesis.pdf 22.García Barroso, E., Płoski, A.: An approach to plane algebroid branches. Rev. Mat. Complut. 28(1), 227–252 (2015) 23.García Barroso, E., Płoski, A.: On the intersection multiplicity of plane branches. ArXiv:1710.05346 24.García Barroso, E., González Pérez, P.D., Popescu-Pampu, P.: Variations on inversion theorems for Newton-Puiseux series. Math. Annalen 368, 1359–1397 (2017) 25.García Barroso, E., González Pérez, P.D., Popescu-Pampu, P., Ruggiero, M.: Ultrametric distances on valuative spaces. ArXiv:1802.01165 26.Gignac, W., Ruggiero, M.: Local dynamics of non-invertible maps near normal surface singularities. Arxiv:1704.04726 27.González Pérez, P.D.: Toric embedded resolutions of quasi-ordinary hypersurface singularities. Ann. Inst. Fourier Grenoble 53(6), 1819–1881 (2003) 28.Grauert, H.: Über Modifikationen und exzeptionnelle analytische Mengen. Math. Ann. 146, 331–368 (1962) 29.Hartshorne, R.: Algebraic Geometry. Springer, New York (1977) 30.Holly, J.E.: Pictures of ultrametric spaces, the p-adic numbers, and valued fields. Am. Math. Mon. 108, 721–728 (2001) 31.Ishii, S.: Introduction to Singularities. Springer, Tokyo (2014) 32.Jonsson, M.: Dynamics on Berkovich spaces in low dimensions. In: Berkovich Spaces and Applications. Lecture Notes in Mathematics, vol. 2119, pp. 205–366. Springer, Cham (2015) 33.Kuo, T.C., Lu, Y.C.: On analytic function germs of two complex variables. Topology 16(4), 299–310 (1977) MathSciNetCrossRefGoogle Scholar 34.Laufer, H.: Normal Two-Dimensional Singularities. Annals of Mathematics Studies, vol. 71. Princeton University Press, Princeton (1971) 35.Lipman, J.: Rational singularities with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math. No. 36, 195–279 (1969) 36.Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math. No. 9, 5–22 (1961) 37.Neumann, W.: Abelian covers of quasihomogeneous surface singularities. In: Singularities, Arcata 1981. Proceedings of Symposia in Pure Mathematics, vol. 40, pp. 233–243. American Mathematical Society (1983) 38.Neumann, W.: On bilinear forms represented by trees. Bull. Aust. Math. Soc. 40, 303–321 (1989) 39.Neumann, W., Wahl, J.: Complete intersection singularities of splice type as universal abelian covers. Geom. Topol. 9, 699–755 (2005) 40.Noether, M.: Les combinaisons caractéristiques dans la transformation d’un point singulier. Rend. Circ. Mat. Palermo IV, 89–108; 300–301 (1890) 41.Okuma, T.: Universal abelian covers of certain surface singularities. Math. Ann. 334, 753–773 (2006) 42.Płoski, A.: Remarque sur la multiplicité d’intersection des branches planes. Bull. Pol. Acad. Sci. Math. 33, 601–605 (1985) 43.Popescu-Pampu, P.: Arbres de contact des singularités quasi-ordinaires et graphes d’adjacence pour les 3-variétés réelles. PhD thesis, University of Paris 7 (2001). Available at https://tel.archives-ouvertes.fr/tel-00002800v1 44.Popescu-Pampu, P.: Ultrametric spaces of branches on arborescent singularities. Math. Forsch. Oberwolfach Rep. 46, 2655–2658 (2016) 45.Teissier, B.: Sur une inégalité à la Minkowski pour les multiplicités. Appendix to Eisenbud, D., Levine, H.: An algebraic formula for the degree of a C ∞-map germ. Ann. Math. 106(38–44), 19–44 (1977) 46.Wall, C.T.C.: Chains on the Eggers tree and polar curves. In: Proceedings of the International Conference on Algebraic Geometry and Singularities, Sevilla 2001. Rev. Mat. Iberoamericana 19(2), 745–754 (2003) 47.Wall, C.T.C.: Singular Points of Plane Curves. London Mathematical Society Student Texts, vol. 63. Cambridge University Press, Cambridge (2004) 48.Zariski, O.: The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math. 76(3), 560–615 (1962)