Universidad Complutense de Madrid
E-Prints Complutense

On nuclearity of embeddings between Besov spaces

Impacto

Downloads

Downloads per month over past year

Cobos, Fernando and Domínguez, Oscar and Kühn, Thomas (2018) On nuclearity of embeddings between Besov spaces. Journal of Approximation Theory, 225 . pp. 209-223.

[img]
Preview
PDF
422kB

URLURL Type
https://www.elsevier.es/corp/Publisher


Abstract

Let Bp,qs,α(Ω) be the Besov space with classical smoothness s and additional logarithmic smoothness of order α on a bounded Lipschitz domain Ω in Rd. For s1, s2 ∈ R, 1 ≤ p1, p2, q1, q2 ≤ ∞ and s1 − s2 = d − d(1/p2 − 1/p1)+, we show a sufficient condition on q1, q2 for nuclearity of embedding Bs1,α1 (superíndices) y p1, q1 (subíndices)(Ω) → Bp2,α2 (superíndice) y s2 q,2 (subíndices) (Ω). We also show that the condition is necessary in a wide range of parameters.


Item Type:Article
Uncontrolled Keywords:Espacios de Besov
Palabras clave (otros idiomas):Besov spaces, Nuclear embeddings, Generalized smoothness
Subjects:Sciences > Mathematics
Sciences > Mathematics > Functional analysis and Operator theory
ID Code:47561
Deposited On:15 Feb 2019 12:06
Last Modified:18 Feb 2019 08:23

Origin of downloads

Repository Staff Only: item control page