Publication:
Random constructions in Bell Inequalities: a survey

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2018-01
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Initially motivated by their relevance in foundations of quantum mechanics and more recently by their applications in different contexts of quantum information science, violations of Bell inequalities have been extensively studied during the last years. In particular, an important effort has been made in order to quantify such Bell violations. Probabilistic techniques have been heavily used in this context with two different purposes. First, to quantify how common the phenomenon of Bell violations is; and second, to find large Bell violations in order to better understand the possibilitiesand limitations of this phenomenon. However, the strong mathematical content of these results has discouraged some of the potentially interested readers. The aim of the present work is to review some of the recent results in this direction by focusing on the main ideas and removing most of the technical details, to make the previous study more accessible to a wide audience.
Description
Keywords
Citation
[1] A. Ambainis, A. Backurs, K. Balodis, D. Kravcenko, R. Ozols, J. Smotrovs, M. Virza, Quantum strategies are better than classical in almost any XOR game, Automata, Languages, and Programming Lecture Notes in Computer Science Volume 7391, 25-37 (2012). [2] A. Ambainis, J. Iraids, Provable Advantage for Quantum Strategies in Random Symmetric XOR Games. Available in arXiv:1302.2347. [3] A. Ambainis, J. Iraids, D. Kravchenko, M. Virza, Advantage of quantum strategies in random symmetric XOR games, Mathematical and Engineering Methods in Computer Science, Lecture Notes in Computer Science, vol. 7721, 57-68 (2013). [4] A. Ambainis, D. Kravchenko, N. Nahimovs, A. Rivosh, Nonlocal quantum XOR games for large number of players, Theory and Applications of Models of Computation, Lecture Notes in Computer Science, vol. 6108, 72-83 (2010). [5] M. Ardehali, Bell inequalities with a magnitude of violation that grows exponentially with the number of particles, Phys. Rev. A, 46(9), 5375-5378 (1992). [6] M. R. Atkin, S. Zohren, Violations of Bell inequalities from random pure states. Available in arXiv:1407.8233. [7] G. Aubrun, S. Szarek, D. Ye, Entanglement thresholds for random induced states, Comm. Pure Appl. Math. 67, 129-171 (2014). [8] J.S. Bell, On the Einstein-Poldolsky-Rosen paradox, Physics 1, 195 (1964). [9] R. C. Blei, Multidimensional extensions of the Grothendieck inequality and applications, Arkiv fur Matematik, 17, 51-68 (1979). [10] F. Bombal, D. P´erez-Garc´ıa, I. Villanueva, Multilinear extensions of Grothendieck’s theorem, Q. J. Math. 55, 441-450 (2004) . [11] G. Brassard, A. Broadbent, A. Tapp, Quantum Pseudo-Telepathy, Foundations of Physics, Volume 35, Issue 11, 1877-1907 (2005). [12] M. Braverman, K. Makarychev, Y. Makarychev, A. Naor, The Grothendieck constant is strictly smaller than Krivine’s bound, Forum of Mathematics, Pi, Volume 1 (2013). [13] J. Bri¨et, H. Buhrman, T. Lee, T. Vidick, Multipartite entanglement in XOR games. Quantum Information Processing 13, 334-360 (2013). [14] J. Briet, T. Vidick, Explicit lower and upper bounds on the entangled value of multiplayer XOR games, Comm. Math. Phys. 321(1), (2013). [15] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014). [16] H. Buhrman, R. Cleve, S. Massar, R. de Wolf, Non-locality and Communication Complexity, Rev. Mod. Phys. 82, 665 (2010). [17] H. Buhrman, O. Regev, G. Scarpa, R. de Wolf, Near-Optimal and Explicit Bell Inequality Violations, IEEE Conference on Computational Complexity 2011: 157-166. [18] T. K. Carne, Banach Lattices and Extensions of Grothendieck’s Inequality, J. London Math. Soc., 21 (3), 496-516 (1980). [19] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt, Proposed Experiment to Test Local-HiddenVariable Theories, Phys. Rev. Lett. 23, 880 (1969). [20] D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Bell inequalities for arbitrarily high dimensional systems, Phys. Rev. Lett. 88(4), 040404 (2002). [21] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland, (1993). [22] R. C. Drumond, R. I. Oliveira, Small violations of full correlations Bell inequalities for multipartite pure random states, Physical Review A, 86 (1), 012117 (2012). [23] A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935). [24] C. E. Gonz´alez-Guill´en, C. H. Jim´enez, C. Palazuelos, I. Villanueva, Sampling quantum nonlocal correlations with high probability. Comm. Math. Phys. 344, 141-154 (2016). [25] C. E. Gonz´alez-Guill´en, C. Lancien, C. Palazuelos, I. Villanueva, Random quantum correlations are generically non-classical. Available in arXiv:1607.04203. [26] C. Gonz´alez-Guill´en, C. Palazuelos, I. Villanueva, Distance between Haar unitary and random gaussian matrices. J. Theor. Probab. DOI 10.1007/s10959-016-0712-6. [27] M. Junge, T. Oikhberg, C. Palazuelos, Reducing the number of inputs in nonlocal games, J. Math. Phys. 57, 102203 (2016). [28] M. Junge, C. Palazuelos, Large violation of Bell inequalities with low entanglement, Comm. Math. Phys. 306 (3), 695-746 (2011). [29] M. Junge, C. Palazuelos, D. P´erez-Garc´ıa, I. Villanueva, M.M. Wolf, Unbounded violations of bipartite Bell Inequalities via Operator Space theory. Comm. Math. Phys. 300 (3), 715-739 (2010). [30] M. Junge, C. Palazuelos, D. P´erez-Garc´ıa, I. Villanueva, M.M. Wolf, Operator Space theory: a natural framework for Bell inequalities, Phys. Rev. Lett. 104, 170405 (2010). [31] J. Kempe, O. Regev, B. Toner, The Unique Games Conjecture with Entangled Provers is False, Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2008). 32] Y.-C. Liang, N. Harrigan, S. D. Bartlett, T. Rudolph, Nonclassical Correlations from Randomly Chosen Local Measurements, Phys. Rev. Lett. 104, 050401 (2010). [33] Y.-C. Liang, T. Vertesi, N. Brunner, Semi-device-independent bounds on entanglement, Phys. Rev. A 83, 022108 (2011). [34] V. A. Marcenko, L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Math. USSR Sbornik, 1:457-483, (1967). [35] D. Mermin, Extreme quantum entanglement in a superposition of macroscopically distinct states, Phys Rev Lett. 65 (15), 1838-1840 (1990). [36] S. Khot, N. Vishnoi, The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into `1, Proceedings of 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005). [37] C. Palazuelos, On the largest Bell violation attainable by a quantum state, J. Funct. Anal., 267 (7), 1959-1985 (2014). [38] C. Palazuelos, T. Vidick, Survey on Nonlocal Games and Operator Space Theory, J. Math. Phys. 57, 015220 (2016). [39] D. P´erez-Garc´ıa, M.M. Wolf, C. Palazuelos, I. Villanueva, M. Junge, Unbounded violation of tripartite Bell inequalities, Comm. Math. Phys. 279 (2), 455-486 (2008). [40] G. Pisier, Grothendieck’s Theorem, past and present, Bull. Amer. Math. Soc. 49, 237-323 (2012). See also arXiv:1101.4195. [41] G. Pisier, Tripartite Bell inequality, random matrices and trilinear forms. Available in arXiv:1203.2509. [42] I. Pitowsky, Macroscopic objects in quantum mechanics: A combinatorial approach, Phys. Rev. A 70, 022103-1-6 (2004). [43] R. Raz, A Parallel Repetition Theorem, SIAM Journal on Computing 27, 763-803 (1998). [44] O. Regev, Bell Violations through Independent Bases Games, Quantum Inf. Comput., 12(1-2): 9-20 (2012). [45] R. Salem, A. Zygmund, Some properties of trigonometric series whose terms have random signs, Acta Mathematica 91(1), 245-301 (1954). [46] P. Shadbolt, T. Vertesi, Y.-C. Liang, C. Branciard, N. Brunner, J. O’Brien, Guaranteed violation of a Bell inequality without aligned reference frames or calibrated devices, Scientific Reports 2, 470 (2012). [47] S. Szarek, E. Werner, K. Zyczkowski, How often is a random quantum state k-entangled?, J. Phys. A: Math. Theor. 44, 045303 (2011). [48] A. Tonge, The Von Neumann inequality for polynomials in several Hilbert-Schmidt operators, J. London Math. (2) 1, 519-526 (1978). [49] B. S. Tsirelson, Some results and problems on quantum Bell-type inequalities, Hadronic J. Supp. 8(4), 329-345 (1993). [50] T. Vidick, S. Wehner, More nonlocality with less entanglement, Phys. Rev. A 83, 052310 (2011). [51] J. J. Wallman, Y.-C. Liang, S. D. Bartlett, Generating nonclassical correlations without fully aligning measurements, Phys. Rev. A 83, 022110 (2011). [52] R. F. Werner, M. M. Wolf, Bell inequalities and Entanglement, Quant. Inf. Comp. 1(3), 1-25 (2001). [53] R. F. Werner, M. M. Wolf, All multipartite Bell correlation inequalities for two dichotomic observables per site, Phys. Rev. A 64, 032112 (2001). [54] M. Zukowski, C. Brukner, Bell’s theorem for general N-qubit states, Phys. Rev. Lett. 88, 210401 (2002). [55] K. Zyczkowski, K. A. Penson, I. Nechita, B. Collins, Generating random density matrices, J. Math. Phys. 52 (6), 062201 (2011).
Collections