Universidad Complutense de Madrid
E-Prints Complutense

Duality for logarithmic interpolation spaces when 0 < q < 1 and applications

Impacto

Downloads

Downloads per month over past year

Cobos, Fernando and Domínguez, Óscar and Kühn, Thomas (2018) Duality for logarithmic interpolation spaces when 0 < q < 1 and applications. Journal of Mathematical Analysis and Applications, 466 (1). pp. 373-399. ISSN 1432-0940

[img]
Preview
PDF
422kB

Official URL: https://www.sciencedirect.com/science/article/pii/S0022247X1830489X


URLURL Type
UNSPECIFIEDPublisher


Abstract

We work with spaces (A0;A1)θ;q;A which are logarithmic perturbations of the real interpolation spaces. We determine the dual of (A0;A1)θ;q;A when0 < q < 1. As we show, if θ = 0 or 1 then the dual space depends on the relationship between q and A. Furthermore we apply the abstract results to compute the dual space of Besov spaces of logarithmic smoothness and the dual space of spaces of compact operators in a Hilbert space which are closeto the Macaev ideals.


Item Type:Article
Uncontrolled Keywords:Teoría de la aproximación
Palabras clave (otros idiomas):Approximation spaces, Besov spaces Compact embeddings, Entropy numbers, Approximation numbers
Subjects:Sciences > Mathematics
Sciences > Mathematics > Mathematical analysis
ID Code:48260
Deposited On:28 Jun 2018 11:31
Last Modified:03 Jul 2018 07:36

Origin of downloads

Repository Staff Only: item control page