Publication:
Quantized electron transport through graphene nanoconstrictions

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2018-09-10
Authors
Clerico, V.
Delgado Notario, J. A.
Saiz Bretín, Marta
Fuentevilla, C. H.
Malyshev, A. V.
Lejarreta, Lejarreta
Diez, E.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-V C H Verlag Gmbh
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
Here, the quantization of Dirac fermions in lithographically defined grapheme nanoconstrictions is studied. Quantized conductance is observed in single nanoconstrictions fabricated on top of a thin hexamethyldisilazane layer over a Si/SiO₂ wafer. This nanofabrication method allows to obtain well defined edges in the nanoconstrictions, thus reducing the effects of edge roughness on the conductance. The occurrence of ballistic transport is proved and several size quantization plateaus are identified in the conductance at low temperature. Experimental data and numerical simulations show good agreement, demonstrating that the smoothening of the plateaus is not related to edge roughness but to quantum interference effects.
Description
©Wiley-V C H Verlag Gmbh The authors are indebted to A. DíazFernandez and J. M. Caridad for enlightened discussions and forá critical reading of the manuscript. This research has been supported by MINECO (Grants MAT2013-46308 and MAT2016- 75955) and Junta de Castilla y Leon (Grant SA045U16).
Keywords
Citation
Collections