Publication:
Constraints on anharmonic corrections of fuzzy dark matter

Loading...
Thumbnail Image
Full text at PDC
Publication Date
2018-08-14
Authors
Núñez Jareño, S.J.
Villarrubia-Rojo, H.
Advisors (or tutors)
Editors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Citations
Google Scholar
Research Projects
Organizational Units
Journal Issue
Abstract
he cold dark matter (CDM) scenario has proved successful in cosmology. However, we lack a fundamental understanding of its microscopic nature. Moreover, the apparent disagreement between CDM predictions and subgalactic-structure observations has prompted the debate about its behaviour at small scales. These problems could be alleviated if the dark matter is composed of ultralight fields m ∼ 10^(−22) eV, usually known as fuzzy dark matter (FDM). Some specific models, with axion-like potentials, have been thoroughly studied and are collectively referred to as ultralight axions (ULAs) or axion-like particles (ALPs). In this work we consider anharmonic corrections to the mass term coming from a repulsive quartic self-interaction. Whenever this anharmonic term dominates, the field behaves as radiation instead of cold matter, modifying the time of matter-radiation equality. Additionally, even for high masses, i.e. masses that reproduce the cold matter behaviour, the presence of anharmonic terms introduce a cut-off in the matter power spectrum through its contribution to the sound speed. We analyze the model and derive constraints using a modified version of class and comparing with CMB and large-scale structure data.
Description
© The Authors (2018). This work has been supported by the MINECO (Spain) projects FIS2014-52837-P, FIS2016- 78859-P(AEI/FEDER, UE), and Consolider-Ingenio MULTIDARK CSD2009-00064.
Unesco subjects
Keywords
Citation
Collections