Universidad Complutense de Madrid
E-Prints Complutense

On optimal approximation in periodic Besov spaces

Impacto

Downloads

Downloads per month over past year

Cobos, Fernando and Kühn, Thomas and Sickel, Winfried (2019) On optimal approximation in periodic Besov spaces. Journal of Mathematical Analysis and Applications . ISSN 0022-247X (In Press)

[img]
Preview
PDF
337kB

Official URL: https://doi.org/10.1016/j.jmaa.2019.02.027



Abstract

We work with spaces of periodic functions on the d-dimensional torus. We show that estimates for L∞-approximation of Sobolev functions remain valid when we replace L1 by the isotropic periodic Besov space B01;1 or the periodic Besovspace with dominating mixed smoothness S01;1B. For t > 1=2, we also prove estimates for L2-approximation of functions in the Besov space of dominating mixed smoothness St 1;1B, describing exactly the dependence of the involved constants on the dimension d and the smoothness t.


Item Type:Article
Uncontrolled Keywords:Análisis matemático
Palabras clave (otros idiomas):Mathematical analysis, Approximation numbers, Besov Spaces
Subjects:Sciences > Mathematics
Sciences > Mathematics > Algebra
Sciences > Mathematics > Mathematical analysis
ID Code:51180
Deposited On:12 Feb 2019 13:25
Last Modified:13 Feb 2019 09:02

Origin of downloads

Repository Staff Only: item control page